metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m645-m646

Bis{μ3-cis-N-(2-carboxyl­ato-5-chloro­phen­yl)-N′-[3-(di­methyl­amino)­prop­yl]oxamidato(3−)}bis­­(perchlorato-κO)bis­­(N,N,N′,N′-tetra­methyl­ethylene­di­amine)­tetra­copper(II)

aMarine Drug and Food Institute, Ocean University of China, Qingdao 266003, People's Republic of China
*Correspondence e-mail: xuelianxuouc@163.com

(Received 10 April 2011; accepted 20 April 2011; online 29 April 2011)

The title complex, [Cu4(C14H15ClN3O4)2(ClO4)2(C6H16N2)2], is a tetra­nuclear copper(II) complex lying about an inversion center wherein a cis-oxamide group is coordinated to both Cu atoms with bite angles of 84.45 (6) and 84.08 (10)°. Both Cu atoms adopt distorted square-pyramidal coordination geometries. The apical position of one Cu atom is occupied by an O atom from a perchlorate group, with a Cu—O bond length of 2.519 (7) Å, while the apical site of the other Cu atom is occupied by a carboxyl­ate O atom with a Cu—O distance of 2.281 (3) Å. The Cu atoms bridged by oxamide and carboxyl­ate-group bridges are separated by 5.204 (6) and 5.603 (2) Å, respectively. The crystal structure is consolidated by weak inter­molecular C—H⋯O inter­actions. Two perchlorate O atoms are disordered with unequal site-occupancy factors.

Related literature

For the preparation of the Na[Cu(oxbm)] ligand, see: Tao et al. (2003[Tao, R. J., Zang, S. Q., Cheng, Y. X., Wang, Q. L., Hu, N. H., Niu, J. Y. & Liao, D. Z. (2003). Polyhedron, 22, 2911-2916.]). For a related crystal structure, see: Zang et al. (2003[Zang, S. Q., Tao, R. J., Wang, Q. L., Hu, N. H., Cheng, Y. X., Niu, J. Y. & Liao, D. Z. (2003). Inorg. Chem. 42, 761-766.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4(C14H15ClN3O4)2(ClO4)2(C6H16N2)2]

  • Mr = 1334.96

  • Monoclinic, P 21 /c

  • a = 12.5750 (13) Å

  • b = 16.4137 (19) Å

  • c = 14.1080 (15) Å

  • β = 113.988 (2)°

  • V = 2660.4 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.85 mm−1

  • T = 298 K

  • 0.49 × 0.48 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.464, Tmax = 0.708

  • 12993 measured reflections

  • 4682 independent reflections

  • 3287 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.133

  • S = 1.00

  • 4682 reflections

  • 359 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O7i 0.93 2.58 3.26 (3) 129
C16—H16A⋯O8ii 0.97 2.46 3.41 (3) 168
C20—H20C⋯O2iii 0.96 2.54 3.139 (6) 121
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker, (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker, (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, (Fig. 1), is a tetranuclear copper(II) complex lying about inversion centers wherein cis-oxamido group is coordinated to Cu1 and Cu2 in an usual mode with the bite angles of 84.45 (6) and 84.08 (10)°, respectively. Both Cu1 and Cu2 atoms adopt distorted square-pyramidal coordination geometries. The basal plane around Cu1 is defined by N1, N2, N3 and O1, with maximum displacement of 0.1050 (11) Å for N1 and the Cu1 lies 0.1298 (12) Å out of this plane. The apical position of Cu1 is occupied by O5 with Cu1—O5 bond length 2.519 (7) Å. Cu2 atom is coordinated by exo-cis oxygen atoms of the oxamido ligand (O3 and O4) and the nitrogen atoms (N4 and N5) of tetramethylethylenediamine ligand thus completing the basal plane, from which the maximum deviation of an atom (O4) being 0.1233 (8) Å; Cu2 is displaced from this basal plane by 0.1835 (6) Å. The apical site of Cu2 is occupied by a carboxyl oxygen atom (O2i where i = -x+1, -y+1, -z+1) with Cu2—O2i distance 2.281 (3) Å. The Cu—N bond lenghts in the title complex lie in the range 1.953 (3)-2.066 (3)Å and are close to the corresponding bond lenghts reported in a copper complex (Zang et al., 2003). The crystal structure is consolidated by weak intermolecular interactions of type C—H···O (Table 1).

Related literature top

For the preparation of the Na[Cu(oxbm)] ligand [oxbm = Na[Cu(oxamido-N-[3-N,N'-dimethylaminopropyl]-N'-(4-chloro)benzoato]?], see: Tao et al. (2003). For a related crystal structure, see: Zang et al. (2003).

Experimental top

The Na[Cu(oxbm)] ligand, Na[Cu(oxamido-N-[3-N,N'-dimethylaminopropyl]-N'-(4-Chloro) -benzoato)], was prepared according to Tao et al., (2003). A methanol (10 ml) solution of Cu(ClO4)2.6H2O (0.742 g, 2 mmol) was added dropwise into a water solution (10 ml) of Na[Cu(oxbm)] (0.854 g, 2 mmol) with continuous stirring. The mixture was stirred for an hour and then tetramethylethylenediamine (0.0224 g, 2 mmol) in methanol (10 ml) was added dropwise. The solution obtained was stirred at 333 K for 10 h. The resulting solution was then filtered and the filtrate was allowed to stand at room temperature for three weeks to give well shaped green crystals of the title complex suitable for X-ray analysis.

Refinement top

H atoms were positioned geometrically [0.93 (CH), 0.97 (CH2) and 0.96 (CH3)Å] and constrained to ride on their parent atoms with Uiso(H) =1.2(1.5 for methyl)Ueq(C). Two O-atoms of the perchlorate were disordered and their site occupancy factors were determined at earlier stages of refinement and were fixed at these occupancy factors during the final stages of refinements.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% displacement ellipsoids (H atoms omitted for clarity). The symmetry code "A" in the atomic labels: -x+1, -y+1, -z+1.
Bis{µ3-cis-N-(2-carboxylato-5-chlorophenyl)-N'- [3-(dimethylamino)propyl]oxamidato(3-)}bis(perchlorato- κO)bis(N,N,N',N'- tetramethylethylenediamine)tetracopper(II) top
Crystal data top
[Cu4(C14H15ClN3O4)2(ClO4)2(C6H16N2)2]F(000) = 1368
Mr = 1334.96Dx = 1.666 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4604 reflections
a = 12.5750 (13) Åθ = 2.2–27.7°
b = 16.4137 (19) ŵ = 1.85 mm1
c = 14.1080 (15) ÅT = 298 K
β = 113.988 (2)°Block, green
V = 2660.4 (5) Å30.49 × 0.48 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
4682 independent reflections
Radiation source: fine-focus sealed tube3287 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 714
Tmin = 0.464, Tmax = 0.708k = 1919
12993 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.072P)2 + 1.0008P]
where P = (Fo2 + 2Fc2)/3
4682 reflections(Δ/σ)max = 0.001
359 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
[Cu4(C14H15ClN3O4)2(ClO4)2(C6H16N2)2]V = 2660.4 (5) Å3
Mr = 1334.96Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.5750 (13) ŵ = 1.85 mm1
b = 16.4137 (19) ÅT = 298 K
c = 14.1080 (15) Å0.49 × 0.48 × 0.20 mm
β = 113.988 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4682 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3287 reflections with I > 2σ(I)
Tmin = 0.464, Tmax = 0.708Rint = 0.052
12993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.00Δρmax = 0.65 e Å3
4682 reflectionsΔρmin = 0.76 e Å3
359 parameters
Special details top

Experimental. Yield, 58%; analysis, calculated for C40H62Cl4N10O16Cu4: C 35.99, H, 4.68; N 10.49%; found: C 35.96, H 4.69, N, 10.51%.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.28269 (4)0.45069 (3)0.33563 (4)0.03039 (18)
Cu20.62990 (4)0.24708 (3)0.46234 (4)0.03051 (18)
Cl10.79310 (12)0.57100 (8)0.29681 (13)0.0599 (4)
Cl20.21665 (12)0.38831 (7)0.07826 (11)0.0475 (3)
N10.4498 (3)0.45347 (19)0.3604 (3)0.0243 (8)
N20.3096 (3)0.3342 (2)0.3638 (3)0.0317 (9)
N30.1119 (3)0.4486 (2)0.3195 (3)0.0315 (9)
N40.7940 (3)0.2373 (2)0.4680 (3)0.0369 (10)
N50.6464 (3)0.1307 (2)0.5127 (3)0.0324 (9)
O10.2790 (3)0.56694 (18)0.3491 (3)0.0464 (9)
O20.3375 (3)0.69384 (17)0.3819 (3)0.0403 (8)
O30.6008 (2)0.35845 (17)0.4019 (3)0.0357 (8)
O40.4616 (3)0.24340 (16)0.4152 (3)0.0345 (8)
O50.2228 (3)0.4578 (2)0.1424 (3)0.0554 (10)
O60.1517 (4)0.3248 (2)0.0975 (4)0.0762 (13)
O70.338 (3)0.357 (2)0.123 (4)0.068 (5)0.57
O80.190 (7)0.4086 (18)0.022 (3)0.082 (12)0.57
O7'0.322 (5)0.363 (3)0.081 (9)0.076 (13)0.43
O8'0.143 (7)0.415 (3)0.028 (4)0.101 (13)0.43
C10.3547 (4)0.6219 (3)0.3635 (3)0.0316 (10)
C20.4679 (4)0.6027 (2)0.3540 (3)0.0281 (10)
C30.5099 (3)0.5233 (2)0.3491 (3)0.0253 (9)
C40.6111 (4)0.5162 (3)0.3307 (4)0.0329 (11)
H40.63910.46490.32450.039*
C50.6689 (4)0.5847 (3)0.3218 (4)0.0373 (11)
C60.6330 (4)0.6620 (3)0.3304 (4)0.0405 (12)
H60.67460.70740.32560.049*
C70.5320 (4)0.6699 (3)0.3468 (4)0.0348 (11)
H70.50610.72180.35310.042*
C80.4971 (4)0.3808 (2)0.3830 (3)0.0274 (10)
C90.4166 (4)0.3140 (2)0.3888 (3)0.0283 (10)
C100.2293 (4)0.2683 (3)0.3600 (5)0.0467 (14)
H10A0.26960.22910.41440.056*
H10B0.20470.24040.29390.056*
C110.1226 (4)0.2997 (3)0.3737 (5)0.0480 (13)
H11A0.06990.25460.36590.058*
H11B0.14660.32080.44350.058*
C120.0582 (4)0.3660 (3)0.2967 (4)0.0430 (12)
H12A0.05170.34960.22860.052*
H12B0.02010.36980.29370.052*
C130.0402 (4)0.5036 (3)0.2348 (4)0.0489 (14)
H13A0.03740.48340.17000.073*
H13B0.07380.55720.24720.073*
H13C0.03730.50610.23220.073*
C140.1120 (5)0.4791 (4)0.4192 (5)0.0569 (15)
H14A0.14970.53130.43530.085*
H14B0.15300.44130.47380.085*
H14C0.03320.48440.41260.085*
C150.8213 (5)0.1484 (3)0.4798 (5)0.0523 (14)
H15A0.90490.14040.50880.063*
H15B0.78810.12200.41250.063*
C160.7717 (4)0.1115 (3)0.5501 (5)0.0500 (14)
H16A0.78230.05280.55240.060*
H16B0.81270.13260.61990.060*
C170.7999 (6)0.2666 (4)0.3708 (6)0.077 (2)
H17A0.77370.32210.35850.115*
H17B0.75100.23320.31390.115*
H17C0.87870.26340.37720.115*
C180.8777 (4)0.2825 (4)0.5567 (5)0.0631 (17)
H18A0.95460.27550.55930.095*
H18B0.87530.26220.61970.095*
H18C0.85770.33930.54930.095*
C190.5771 (4)0.0761 (3)0.4248 (4)0.0449 (13)
H19A0.60190.08300.36940.067*
H19B0.49610.08970.40070.067*
H19C0.58870.02050.44780.067*
C200.6059 (5)0.1191 (3)0.5964 (4)0.0523 (14)
H20A0.62080.06400.62120.078*
H20B0.52390.12980.57000.078*
H20C0.64670.15590.65230.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0262 (3)0.0263 (3)0.0462 (4)0.0015 (2)0.0225 (3)0.0014 (2)
Cu20.0285 (3)0.0249 (3)0.0457 (4)0.0043 (2)0.0227 (3)0.0056 (2)
Cl10.0542 (9)0.0542 (8)0.1007 (12)0.0039 (7)0.0617 (8)0.0139 (8)
Cl20.0699 (9)0.0377 (7)0.0526 (8)0.0002 (6)0.0430 (7)0.0007 (6)
N10.0249 (19)0.0217 (18)0.031 (2)0.0019 (15)0.0163 (16)0.0022 (15)
N20.027 (2)0.0250 (18)0.050 (2)0.0018 (16)0.0230 (18)0.0045 (17)
N30.0229 (19)0.038 (2)0.041 (2)0.0017 (16)0.0203 (17)0.0030 (17)
N40.032 (2)0.034 (2)0.054 (3)0.0090 (17)0.026 (2)0.0059 (19)
N50.039 (2)0.0243 (18)0.036 (2)0.0013 (17)0.0172 (18)0.0004 (16)
O10.0350 (19)0.0281 (17)0.087 (3)0.0014 (15)0.0353 (18)0.0093 (17)
O20.056 (2)0.0250 (16)0.057 (2)0.0041 (15)0.0403 (18)0.0023 (15)
O30.0270 (17)0.0291 (16)0.059 (2)0.0048 (13)0.0256 (15)0.0134 (15)
O40.0277 (17)0.0231 (16)0.055 (2)0.0021 (13)0.0191 (15)0.0086 (14)
O50.081 (3)0.046 (2)0.051 (2)0.0051 (19)0.039 (2)0.0035 (17)
O60.088 (3)0.060 (3)0.100 (4)0.019 (2)0.058 (3)0.002 (2)
O70.081 (9)0.068 (7)0.082 (15)0.019 (7)0.061 (11)0.005 (10)
O80.16 (3)0.049 (8)0.048 (14)0.002 (12)0.056 (16)0.000 (7)
O7'0.074 (16)0.071 (12)0.11 (4)0.003 (10)0.07 (2)0.012 (19)
O8'0.13 (3)0.082 (14)0.055 (13)0.019 (15)0.002 (14)0.016 (9)
C10.042 (3)0.030 (2)0.032 (3)0.001 (2)0.025 (2)0.000 (2)
C20.036 (3)0.030 (2)0.026 (2)0.000 (2)0.020 (2)0.0025 (18)
C30.029 (2)0.026 (2)0.027 (2)0.0018 (18)0.0173 (19)0.0029 (18)
C40.036 (3)0.030 (2)0.042 (3)0.005 (2)0.025 (2)0.009 (2)
C50.036 (3)0.043 (3)0.046 (3)0.002 (2)0.030 (2)0.009 (2)
C60.048 (3)0.035 (3)0.050 (3)0.005 (2)0.033 (3)0.006 (2)
C70.044 (3)0.025 (2)0.046 (3)0.001 (2)0.028 (2)0.000 (2)
C80.029 (2)0.028 (2)0.031 (2)0.0000 (19)0.019 (2)0.0015 (18)
C90.030 (2)0.028 (2)0.036 (3)0.0021 (19)0.022 (2)0.0031 (19)
C100.035 (3)0.037 (3)0.077 (4)0.007 (2)0.031 (3)0.006 (3)
C110.036 (3)0.047 (3)0.072 (4)0.006 (2)0.032 (3)0.007 (3)
C120.024 (2)0.050 (3)0.057 (3)0.004 (2)0.019 (2)0.003 (3)
C130.033 (3)0.056 (3)0.065 (4)0.012 (2)0.027 (3)0.015 (3)
C140.056 (4)0.070 (4)0.058 (4)0.004 (3)0.038 (3)0.012 (3)
C150.043 (3)0.042 (3)0.081 (4)0.009 (2)0.035 (3)0.006 (3)
C160.039 (3)0.035 (3)0.069 (4)0.009 (2)0.015 (3)0.010 (3)
C170.066 (4)0.095 (5)0.094 (5)0.017 (4)0.059 (4)0.027 (4)
C180.036 (3)0.055 (3)0.102 (5)0.003 (3)0.032 (3)0.015 (3)
C190.049 (3)0.033 (3)0.052 (3)0.008 (2)0.020 (3)0.004 (2)
C200.080 (4)0.034 (3)0.058 (4)0.001 (3)0.043 (3)0.007 (2)
Geometric parameters (Å, º) top
Cu1—O11.920 (3)C4—C51.373 (6)
Cu1—N21.953 (3)C4—H40.9300
Cu1—N11.986 (3)C5—C61.368 (6)
Cu1—N32.066 (3)C6—C71.385 (7)
Cu1—O52.518 (4)C6—H60.9300
Cu2—O41.944 (3)C7—H70.9300
Cu2—O31.987 (3)C8—C91.516 (6)
Cu2—N52.020 (3)C10—C111.521 (7)
Cu2—N42.039 (4)C10—H10A0.9700
Cu2—O2i2.281 (3)C10—H10B0.9700
Cl1—C51.750 (5)C11—C121.519 (7)
Cl2—O81.36 (4)C11—H11A0.9700
Cl2—O7'1.37 (4)C11—H11B0.9700
Cl2—O61.417 (4)C12—H12A0.9700
Cl2—O51.439 (4)C12—H12B0.9700
Cl2—O8'1.47 (4)C13—H13A0.9600
Cl2—O71.48 (3)C13—H13B0.9600
N1—C81.313 (5)C13—H13C0.9600
N1—C31.416 (5)C14—H14A0.9600
N2—C91.288 (5)C14—H14B0.9600
N2—C101.467 (5)C14—H14C0.9600
N3—C131.476 (6)C15—C161.497 (8)
N3—C121.490 (6)C15—H15A0.9700
N3—C141.492 (6)C15—H15B0.9700
N4—C181.468 (7)C16—H16A0.9700
N4—C171.482 (7)C16—H16B0.9700
N4—C151.493 (6)C17—H17A0.9600
N5—C201.475 (6)C17—H17B0.9600
N5—C161.478 (6)C17—H17C0.9600
N5—C191.490 (6)C18—H18A0.9600
O1—C11.266 (5)C18—H18B0.9600
O2—C11.247 (5)C18—H18C0.9600
O2—Cu2i2.281 (3)C19—H19A0.9600
O3—C81.275 (5)C19—H19B0.9600
O4—C91.278 (5)C19—H19C0.9600
C1—C21.517 (6)C20—H20A0.9600
C2—C71.394 (6)C20—H20B0.9600
C2—C31.418 (6)C20—H20C0.9600
C3—C41.404 (6)
O1—Cu1—N2164.01 (16)C5—C6—H6121.3
O1—Cu1—N191.51 (13)C7—C6—H6121.3
N2—Cu1—N184.45 (13)C6—C7—C2122.3 (4)
O1—Cu1—N387.77 (13)C6—C7—H7118.8
N2—Cu1—N395.33 (14)C2—C7—H7118.8
N1—Cu1—N3176.48 (14)O3—C8—N1129.5 (4)
O1—Cu1—O593.01 (14)O3—C8—C9115.4 (4)
N2—Cu1—O5102.50 (14)N1—C8—C9115.1 (4)
N1—Cu1—O591.09 (14)O4—C9—N2127.1 (4)
N3—Cu1—O592.39 (14)O4—C9—C8116.4 (4)
O4—Cu2—O384.08 (11)N2—C9—C8116.4 (4)
O4—Cu2—N591.89 (13)N2—C10—C11112.0 (4)
O3—Cu2—N5174.85 (13)N2—C10—H10A109.2
O4—Cu2—N4162.63 (15)C11—C10—H10A109.2
O3—Cu2—N495.52 (13)N2—C10—H10B109.2
N5—Cu2—N487.36 (15)C11—C10—H10B109.2
O4—Cu2—O2i95.00 (13)H10A—C10—H10B107.9
O3—Cu2—O2i87.23 (12)C12—C11—C10113.2 (4)
N5—Cu2—O2i96.35 (13)C12—C11—H11A108.9
N4—Cu2—O2i102.33 (14)C10—C11—H11A108.9
O8—Cl2—O7'86 (2)C12—C11—H11B108.9
O8—Cl2—O6118 (2)C10—C11—H11B108.9
O7'—Cl2—O6113 (3)H11A—C11—H11B107.7
O8—Cl2—O5112.9 (13)N3—C12—C11115.8 (4)
O7'—Cl2—O5114 (3)N3—C12—H12A108.3
O6—Cl2—O5110.6 (3)C11—C12—H12A108.3
O7'—Cl2—O8'109.0 (19)N3—C12—H12B108.3
O6—Cl2—O8'104 (3)C11—C12—H12B108.3
O5—Cl2—O8'105 (3)H12A—C12—H12B107.4
O8—Cl2—O7107.8 (17)N3—C13—H13A109.5
O6—Cl2—O7103.5 (14)N3—C13—H13B109.5
O5—Cl2—O7102.8 (17)H13A—C13—H13B109.5
O8'—Cl2—O7131 (3)N3—C13—H13C109.5
C8—N1—C3123.6 (4)H13A—C13—H13C109.5
C8—N1—Cu1111.3 (3)H13B—C13—H13C109.5
C3—N1—Cu1125.0 (3)N3—C14—H14A109.5
C9—N2—C10116.6 (4)N3—C14—H14B109.5
C9—N2—Cu1112.5 (3)H14A—C14—H14B109.5
C10—N2—Cu1130.9 (3)N3—C14—H14C109.5
C13—N3—C12107.9 (4)H14A—C14—H14C109.5
C13—N3—C14108.9 (4)H14B—C14—H14C109.5
C12—N3—C14109.6 (4)N4—C15—C16109.4 (4)
C13—N3—Cu1110.2 (3)N4—C15—H15A109.8
C12—N3—Cu1113.5 (3)C16—C15—H15A109.8
C14—N3—Cu1106.8 (3)N4—C15—H15B109.8
C18—N4—C17109.7 (5)C16—C15—H15B109.8
C18—N4—C15110.3 (4)H15A—C15—H15B108.3
C17—N4—C15109.0 (4)N5—C16—C15110.3 (4)
C18—N4—Cu2110.8 (3)N5—C16—H16A109.6
C17—N4—Cu2111.6 (3)C15—C16—H16A109.6
C15—N4—Cu2105.3 (3)N5—C16—H16B109.6
C20—N5—C16110.6 (4)C15—C16—H16B109.6
C20—N5—C19108.2 (4)H16A—C16—H16B108.1
C16—N5—C19110.3 (4)N4—C17—H17A109.5
C20—N5—Cu2112.6 (3)N4—C17—H17B109.5
C16—N5—Cu2105.6 (3)H17A—C17—H17B109.5
C19—N5—Cu2109.5 (3)N4—C17—H17C109.5
C1—O1—Cu1132.6 (3)H17A—C17—H17C109.5
C1—O2—Cu2i128.7 (3)H17B—C17—H17C109.5
C8—O3—Cu2110.4 (3)N4—C18—H18A109.5
C9—O4—Cu2111.3 (3)N4—C18—H18B109.5
Cl2—O5—Cu1124.0 (2)H18A—C18—H18B109.5
O2—C1—O1121.7 (4)N4—C18—H18C109.5
O2—C1—C2117.6 (4)H18A—C18—H18C109.5
O1—C1—C2120.6 (4)H18B—C18—H18C109.5
C7—C2—C3119.1 (4)N5—C19—H19A109.5
C7—C2—C1115.7 (4)N5—C19—H19B109.5
C3—C2—C1125.2 (4)H19A—C19—H19B109.5
C4—C3—N1121.3 (4)N5—C19—H19C109.5
C4—C3—C2117.9 (4)H19A—C19—H19C109.5
N1—C3—C2120.8 (4)H19B—C19—H19C109.5
C5—C4—C3120.2 (4)N5—C20—H20A109.5
C5—C4—H4119.9N5—C20—H20B109.5
C3—C4—H4119.9H20A—C20—H20B109.5
C6—C5—C4123.0 (4)N5—C20—H20C109.5
C6—C5—Cl1119.5 (4)H20A—C20—H20C109.5
C4—C5—Cl1117.5 (4)H20B—C20—H20C109.5
C5—C6—C7117.4 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O7ii0.932.583.26 (3)129
C16—H16A···O8iii0.972.463.41 (3)168
C20—H20C···O2i0.962.543.139 (6)121
C4—H4···O30.932.212.799 (5)120
C7—H7···O20.932.362.714 (6)102
C13—H13A···O50.962.553.158 (7)121
C13—H13B···O10.962.392.960 (6)118
C14—H14A···O10.962.463.026 (7)117
C17—H17A···O30.962.563.103 (7)116
C19—H19B···O40.962.583.084 (6)113
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu4(C14H15ClN3O4)2(ClO4)2(C6H16N2)2]
Mr1334.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.5750 (13), 16.4137 (19), 14.1080 (15)
β (°) 113.988 (2)
V3)2660.4 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.85
Crystal size (mm)0.49 × 0.48 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.464, 0.708
No. of measured, independent and
observed [I > 2σ(I)] reflections
12993, 4682, 3287
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.133, 1.00
No. of reflections4682
No. of parameters359
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.76

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O7i0.932.583.26 (3)129
C16—H16A···O8ii0.972.463.41 (3)168
C20—H20C···O2iii0.962.543.139 (6)121
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the financial support of the Ocean University of China, Qingdao.

References

First citationBruker, (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, R. J., Zang, S. Q., Cheng, Y. X., Wang, Q. L., Hu, N. H., Niu, J. Y. & Liao, D. Z. (2003). Polyhedron, 22, 2911–2916.  CrossRef CAS Google Scholar
First citationZang, S. Q., Tao, R. J., Wang, Q. L., Hu, N. H., Cheng, Y. X., Niu, J. Y. & Liao, D. Z. (2003). Inorg. Chem. 42, 761–766.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m645-m646
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds