organic compounds
1,3-Bis(3-phenylpropyl)-1H-1,3-benzimidazole-2(3H)-selone
aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr
The title molecule, C25H26N2Se, has mirror symmetry, with the mirror plane passing through the atoms of the C=Se bond and the mid-points of the two C—C bonds of the benzene ring of the benzimidazole group. The dihedral angle between the benzimidazole ring system and the phenyl ring is 71.62 (14)°.
Related literature
For general background to benzimidazole derivatives, see: Aydın et al. (1998); Böhm & Herrmann (2000); Küçükbay et al. (1996, 1997); Lappert et al. (2009); Wanzlick & Schikora (1960); Yıldırım et al. (2006); Yılmaz & Küçükbay (2009); Çetinkaya et al. (1994, 1998). For related structures, see: Akkurt et al. (2004); Aydın et al. (1999); Yalçın et al. (2008).
Experimental
Crystal data
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811013985/qm2004sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811013985/qm2004Isup2.hkl
A mixture of bis(1,3-di(3-phenylpropyl)benzimidazolidine-2-ylidene) (0.68 g, 0.96 mmol) and selenium (0.15 g, 1.90 mmol) in dry toluene (10 ml) was heated under reflux for 2 h. Then the mixture was filtered to remove unreacted selenium and all volatiles were removed in vacuo (0.02 m mH g). The crude product was crystallized from alcohol upon cooling to 243 K. Yield: 0.63 g, 76%; m.p.: 439–441 K; v(CSe)= 1480 cm-1. Anal. found: C 69.58, H 5.98, N 6.38%. Calculated for C25H26N2Se: C 69.27, H 6.05, N 6.46%. 1H-NMR (δ, CDCl3): 7.26–7.06 (m, 14H, Ar—H), 4.47 (t, 4H, NCH2CH2CH2C6H5, J = 7.8 Hz), 2.81 (t, 4H, NCH2CH2CH2C6H5, J = 7.8 Hz), 2.23 (quint, 4H, NCH2CH2CH2C6H5, J = 7.8 Hz). 13C-NMR (δ, CDCl3): 165.7 (C=Se), 140.8, 132.9, 128.5, 128.4, 126.2, 123.2 and 109.5 (Ar-C), 46.1 (NCH2CH2CH2C6H5), 33.0 (NCH2CH2CH2C6H5), 29.3 (NCH2CH2CH2C6H5).
All H atoms were positioned geometrically with C—H = 0.93–0.97 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C). The
of the title compound was established by of the Flack (1983) parameter.Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C25H26N2Se | Dx = 1.314 Mg m−3 |
Mr = 433.44 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P41212 | Cell parameters from 20954 reflections |
Hall symbol: P 4abw 2nw | θ = 1.9–28.0° |
a = 10.5150 (3) Å | µ = 1.73 mm−1 |
c = 19.8142 (8) Å | T = 296 K |
V = 2190.76 (13) Å3 | Block, colourless |
Z = 4 | 0.68 × 0.58 × 0.52 mm |
F(000) = 896 |
Stowe IPDS 2 diffractometer | 2531 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2225 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.055 |
Detector resolution: 6.67 pixels mm-1 | θmax = 27.5°, θmin = 2.2° |
ω scans | h = −13→13 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −13→13 |
Tmin = 0.322, Tmax = 0.408 | l = −25→25 |
16780 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.066 | w = 1/[σ2(Fo2) + (0.0285P)2 + 0.3345P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2531 reflections | Δρmax = 0.17 e Å−3 |
128 parameters | Δρmin = −0.24 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1003 Freidel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.004 (12) |
C25H26N2Se | Z = 4 |
Mr = 433.44 | Mo Kα radiation |
Tetragonal, P41212 | µ = 1.73 mm−1 |
a = 10.5150 (3) Å | T = 296 K |
c = 19.8142 (8) Å | 0.68 × 0.58 × 0.52 mm |
V = 2190.76 (13) Å3 |
Stowe IPDS 2 diffractometer | 2531 independent reflections |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | 2225 reflections with I > 2σ(I) |
Tmin = 0.322, Tmax = 0.408 | Rint = 0.055 |
16780 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.066 | Δρmax = 0.17 e Å−3 |
S = 1.07 | Δρmin = −0.24 e Å−3 |
2531 reflections | Absolute structure: Flack (1983), 1003 Freidel pairs |
128 parameters | Absolute structure parameter: 0.004 (12) |
0 restraints |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Se1 | 0.35581 (2) | 0.35581 (2) | 0.50000 | 0.0563 (1) | |
N1 | 0.20501 (16) | 0.15139 (19) | 0.55133 (8) | 0.0486 (5) | |
C1 | 0.6763 (3) | 0.0124 (4) | 0.71439 (17) | 0.0933 (12) | |
C2 | 0.7825 (3) | −0.0624 (5) | 0.7188 (2) | 0.116 (2) | |
C3 | 0.7813 (3) | −0.1823 (4) | 0.69632 (19) | 0.0997 (16) | |
C4 | 0.6739 (4) | −0.2301 (4) | 0.6684 (2) | 0.1013 (16) | |
C5 | 0.5668 (3) | −0.1541 (3) | 0.66230 (17) | 0.0868 (11) | |
C6 | 0.5656 (2) | −0.0317 (3) | 0.68586 (12) | 0.0593 (8) | |
C7 | 0.4485 (2) | 0.0505 (3) | 0.68283 (11) | 0.0623 (9) | |
C8 | 0.3849 (2) | 0.0578 (3) | 0.61434 (11) | 0.0587 (8) | |
C9 | 0.2714 (2) | 0.1457 (3) | 0.61606 (10) | 0.0544 (7) | |
C10 | 0.2329 (2) | 0.2329 (2) | 0.50000 | 0.0474 (6) | |
C11 | 0.1061 (2) | 0.0716 (2) | 0.53275 (11) | 0.0508 (7) | |
C12 | 0.0438 (3) | −0.0248 (3) | 0.56674 (13) | 0.0675 (9) | |
C13 | −0.0536 (3) | −0.0863 (3) | 0.53297 (16) | 0.0813 (11) | |
H1 | 0.67910 | 0.09500 | 0.73110 | 0.1120* | |
H2 | 0.85650 | −0.02940 | 0.73770 | 0.1390* | |
H3 | 0.85380 | −0.23260 | 0.69990 | 0.1200* | |
H4 | 0.67210 | −0.31380 | 0.65320 | 0.1220* | |
H5 | 0.49430 | −0.18690 | 0.64180 | 0.1040* | |
H7A | 0.47150 | 0.13590 | 0.69670 | 0.0750* | |
H7B | 0.38720 | 0.01830 | 0.71520 | 0.0750* | |
H8A | 0.44560 | 0.08840 | 0.58120 | 0.0700* | |
H8B | 0.35770 | −0.02650 | 0.60080 | 0.0700* | |
H9A | 0.21270 | 0.11680 | 0.65050 | 0.0650* | |
H9B | 0.29950 | 0.23050 | 0.62830 | 0.0650* | |
H12 | 0.06640 | −0.04730 | 0.61050 | 0.0810* | |
H13 | −0.09810 | −0.15080 | 0.55470 | 0.0980* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.0586 (1) | 0.0586 (1) | 0.0515 (2) | −0.0076 (2) | 0.0010 (1) | −0.0010 (1) |
N1 | 0.0503 (9) | 0.0574 (10) | 0.0382 (8) | 0.0010 (9) | −0.0077 (7) | 0.0101 (8) |
C1 | 0.070 (2) | 0.097 (2) | 0.113 (2) | −0.0031 (16) | −0.0375 (17) | 0.0133 (19) |
C2 | 0.063 (2) | 0.135 (4) | 0.151 (4) | 0.003 (2) | −0.040 (2) | 0.024 (3) |
C3 | 0.064 (2) | 0.127 (3) | 0.108 (3) | 0.021 (2) | −0.0043 (18) | 0.044 (2) |
C4 | 0.086 (3) | 0.088 (2) | 0.130 (3) | 0.0157 (19) | −0.001 (2) | 0.018 (2) |
C5 | 0.0574 (16) | 0.087 (2) | 0.116 (2) | −0.0015 (16) | −0.0133 (16) | 0.005 (2) |
C6 | 0.0501 (13) | 0.0737 (17) | 0.0540 (13) | −0.0025 (12) | −0.0056 (11) | 0.0214 (12) |
C7 | 0.0573 (14) | 0.0798 (18) | 0.0498 (12) | 0.0021 (13) | −0.0118 (11) | 0.0089 (12) |
C8 | 0.0570 (15) | 0.0762 (16) | 0.0429 (11) | 0.0077 (12) | −0.0055 (9) | 0.0103 (10) |
C9 | 0.0543 (12) | 0.0730 (15) | 0.0358 (9) | 0.0014 (13) | −0.0081 (9) | 0.0081 (12) |
C10 | 0.0517 (10) | 0.0517 (10) | 0.0389 (13) | 0.0066 (13) | −0.0040 (10) | 0.0040 (10) |
C11 | 0.0520 (14) | 0.0536 (13) | 0.0467 (11) | 0.0019 (11) | −0.0064 (9) | 0.0096 (10) |
C12 | 0.0673 (16) | 0.0664 (16) | 0.0689 (15) | −0.0040 (12) | −0.0058 (13) | 0.0236 (13) |
C13 | 0.075 (2) | 0.0690 (19) | 0.100 (2) | −0.0168 (17) | −0.0071 (16) | 0.0207 (16) |
Se1—C10 | 1.828 (2) | C12—C13 | 1.384 (4) |
N1—C9 | 1.462 (3) | C13—C13i | 1.394 (4) |
N1—C10 | 1.362 (2) | C1—H1 | 0.9300 |
N1—C11 | 1.386 (3) | C2—H2 | 0.9300 |
C1—C2 | 1.369 (5) | C3—H3 | 0.9300 |
C1—C6 | 1.375 (4) | C4—H4 | 0.9300 |
C2—C3 | 1.337 (7) | C5—H5 | 0.9300 |
C3—C4 | 1.354 (5) | C7—H7A | 0.9700 |
C4—C5 | 1.386 (5) | C7—H7B | 0.9700 |
C5—C6 | 1.369 (4) | C8—H8A | 0.9700 |
C6—C7 | 1.506 (4) | C8—H8B | 0.9700 |
C7—C8 | 1.515 (3) | C9—H9A | 0.9700 |
C8—C9 | 1.510 (4) | C9—H9B | 0.9700 |
C11—C12 | 1.382 (4) | C12—H12 | 0.9300 |
C11—C11i | 1.396 (3) | C13—H13 | 0.9300 |
C9—N1—C10 | 125.33 (18) | C2—C3—H3 | 120.00 |
C9—N1—C11 | 124.52 (19) | C4—C3—H3 | 120.00 |
C10—N1—C11 | 110.13 (16) | C3—C4—H4 | 120.00 |
C2—C1—C6 | 121.6 (4) | C5—C4—H4 | 120.00 |
C1—C2—C3 | 120.9 (3) | C4—C5—H5 | 119.00 |
C2—C3—C4 | 119.6 (3) | C6—C5—H5 | 119.00 |
C3—C4—C5 | 119.9 (4) | C6—C7—H7A | 108.00 |
C4—C5—C6 | 121.3 (3) | C6—C7—H7B | 108.00 |
C1—C6—C5 | 116.7 (3) | C8—C7—H7A | 108.00 |
C1—C6—C7 | 121.0 (3) | C8—C7—H7B | 108.00 |
C5—C6—C7 | 122.3 (2) | H7A—C7—H7B | 108.00 |
C6—C7—C8 | 115.2 (2) | C7—C8—H8A | 109.00 |
C7—C8—C9 | 111.1 (2) | C7—C8—H8B | 109.00 |
N1—C9—C8 | 112.51 (19) | C9—C8—H8A | 109.00 |
Se1—C10—N1 | 126.67 (11) | C9—C8—H8B | 109.00 |
Se1—C10—N1i | 126.67 (11) | H8A—C8—H8B | 108.00 |
N1—C10—N1i | 106.66 (17) | N1—C9—H9A | 109.00 |
N1—C11—C12 | 132.1 (2) | N1—C9—H9B | 109.00 |
N1—C11—C11i | 106.54 (18) | C8—C9—H9A | 109.00 |
C11i—C11—C12 | 121.4 (2) | C8—C9—H9B | 109.00 |
C11—C12—C13 | 117.3 (2) | H9A—C9—H9B | 108.00 |
C12—C13—C13i | 121.4 (3) | C11—C12—H12 | 121.00 |
C2—C1—H1 | 119.00 | C13—C12—H12 | 121.00 |
C6—C1—H1 | 119.00 | C12—C13—H13 | 119.00 |
C1—C2—H2 | 120.00 | C13i—C13—H13 | 119.00 |
C3—C2—H2 | 120.00 | ||
C11—N1—C10—Se1 | −179.91 (16) | C3—C4—C5—C6 | −2.0 (6) |
C9—N1—C10—N1i | 178.5 (2) | C4—C5—C6—C1 | 1.3 (5) |
C11—N1—C10—N1i | 0.1 (2) | C4—C5—C6—C7 | −177.0 (3) |
C9—N1—C11—C12 | 2.2 (4) | C1—C6—C7—C8 | 130.7 (3) |
C10—N1—C11—C12 | −179.4 (3) | C5—C6—C7—C8 | −51.1 (4) |
C9—N1—C11—C11i | −178.7 (2) | C6—C7—C8—C9 | −178.1 (2) |
C10—N1—C11—C11i | −0.2 (2) | C7—C8—C9—N1 | −177.9 (2) |
C9—N1—C10—Se1 | −1.5 (3) | N1—C11—C12—C13 | 179.5 (3) |
C10—N1—C9—C8 | −88.2 (3) | C11i—C11—C12—C13 | 0.5 (4) |
C11—N1—C9—C8 | 90.0 (3) | N1—C11—C11i—N1i | 0.3 (2) |
C6—C1—C2—C3 | −1.1 (6) | N1—C11—C11i—C12i | 179.6 (2) |
C2—C1—C6—C5 | 0.2 (5) | C12—C11—C11i—N1i | 179.6 (2) |
C2—C1—C6—C7 | 178.5 (3) | C12—C11—C11i—C12i | −1.2 (4) |
C1—C2—C3—C4 | 0.5 (6) | C11—C12—C13—C13i | 0.9 (5) |
C2—C3—C4—C5 | 1.0 (6) | C12—C13—C13i—C12i | −1.6 (5) |
Symmetry code: (i) y, x, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C25H26N2Se |
Mr | 433.44 |
Crystal system, space group | Tetragonal, P41212 |
Temperature (K) | 296 |
a, c (Å) | 10.5150 (3), 19.8142 (8) |
V (Å3) | 2190.76 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.73 |
Crystal size (mm) | 0.68 × 0.58 × 0.52 |
Data collection | |
Diffractometer | Stowe IPDS 2 diffractometer |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2002) |
Tmin, Tmax | 0.322, 0.408 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16780, 2531, 2225 |
Rint | 0.055 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.066, 1.07 |
No. of reflections | 2531 |
No. of parameters | 128 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.24 |
Absolute structure | Flack (1983), 1003 Freidel pairs |
Absolute structure parameter | 0.004 (12) |
Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
References
Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1263–o1265. Web of Science CSD CrossRef IUCr Journals Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Aydın, A., Soylu, H., Güneş, B., Akkurt, M., Ercan, F., Küçükbay, H. & Çetinkaya, E. (1998). Z. Kristallogr. 213, 473–476. CAS Google Scholar
Aydın, A., Soylu, H., Küçükbay, H., Akkurt, M. & Ercan, F. (1999). Z. Kristallogr. New Cryst. Struct. 214, 295-296. Google Scholar
Böhm, V. P. W. & Herrmann, W. A. (2000). Angew. Chem. Int. Ed. 39, 4036–4038. CrossRef CAS Google Scholar
Çetinkaya, B., Çetinkaya, E., Chamizo, J. A., Hitchcock, P. B., Jasim, H. A., Küçükbay, H. & Lappert, M. F. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 2047–2054. Google Scholar
Çetinkaya, E., Hitchcock, P. B., Küçükbay, H., Lappert, M. F. & Al-Juaid, S. (1994). J. Organomet. Chem. 481, 89–95. CSD CrossRef Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Küçükbay, H., Çetinkaya, E., Çetinkaya, B. & Lappert, M. F. (1997). Synth. Commun. 27, 4059–4066. Google Scholar
Küçükbay, H., Çetinkaya, B., Guesmi, S. & Dixneuf, P. H. (1996). Organometallics, 15, 2434–2439. CrossRef CAS Web of Science Google Scholar
Lappert, M. F., Alvarez, S., Aullon, G., Fandos, R., Otero, A., Rodriguez, A., Rojas, S. & terreros, P. (2009). Eur. J. Inorg. Chem. pp. 1851–1860. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Wanzlick, H. W. & Schikora, E. (1960). Chem. Ber. 72, 494. Google Scholar
Yalçın, Ş. P., Akkurt, M., Yılmaz, Ü., Küçükbay, H. & Büyükgüngör, O. (2008). Acta Cryst. E64, o621–o622. Web of Science CrossRef IUCr Journals Google Scholar
Yıldırım, S. Ö., Akkurt, M., Yılmaz, Ü., Küçükbay, H. & McKee, V. (2006). Acta Cryst. E62, o5697–o5698. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yılmaz, Ü. & Küçükbay, H. (2009). Asian J. Chem. 21, 6149–6155. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Electron-rich olefins (EROs) have been attracted considerable attention in both organic and inorganic preparative literature due to their unique properties as reagent and reaction intermediates since their first report by Wanzlick in 1960 (Wanzlick & Schikora, 1960; Böhm & Herrmann, 2000).
Benzimidazolium salts are convenient precursors for EROs through reacting with a strong base such as NaH comparing with other methods such as reacting a secondary amine (N,N'-disubstituted-1,2-diaminobenzene) with an acetal, chloral or triethyl orthoformate. We have synthesized and isolated first time the ERO, bis(1,3-dimethybenzimidazolidine-2-ylidene) (Çetinkaya et al., 1994). We have also synthesized a number of EROs using different synthesis methods and used them to synthesize many organic or organometallic compounds (Küçükbay et al., 1996, Küçükbay et al., 1997, Çetinkaya et al., 1998; Aydın et al., 1998 Yıldırım et al., 2006; Yılmaz & Küçükbay, 2009). Their electron-richness confers on them a very high reactivity as strong nucleophiles, which assist in the preparation of numerous products by reaction, amongst others, with group 16 elements, transition metals, and many protic compounds (Lappert et al., 2009). It is known that the ultimate oxidation product of EROs with air is urea; sulfur, selenium and tellurium react similarly to give the corresponding analogues. The objective of the present study was to elucidate the crystal structure of the title compound which is new ERO derivative.
In the title molecule (I), Fig. 1, the Se═C bond length is 1.828 (2) Å, and this value is similar to those [1.829 (3) Å] found in 1-ethyl-3-(2-phenylethyl)benzimidazole-2-selone (Akkurt et al., 2004) and [1.825 (7) Å] found in 1,3-dimethylbenzimidazole-2-selone (Aydın et al., 1999), and is shorter than that [2.058 (4) Å] found for the Te═ C bond length in 1,3-bis(3-phenylpropyl)1H-benzimidazole- 2(3H)-tellurone (Yalçın et al., 2008).
The molecular structure is stabilized by a weak C—H···Se interaction (Table 1). The benzimidazole ring system (N1/C10/C11/C12/C13/N1a/C11a/C12a/C13a) of (I) is planar (r.m.s deviation of fitted atoms is 0.09 (3) Å). The dihedral angle between the phenyl ring (C1–C6) and the benzimidazole ring is 71.62 (14)°. The molecular packing in (I) is shown in Fig. 2.