organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1179

1,3-Bis(3-phenyl­prop­yl)-1H-1,3-benzimidazole-2(3H)-selone

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 18 March 2011; accepted 13 April 2011; online 22 April 2011)

The title mol­ecule, C25H26N2Se, has mirror symmetry, with the mirror plane passing through the atoms of the C=Se bond and the mid-points of the two C—C bonds of the benzene ring of the benzimidazole group. The dihedral angle between the benzimidazole ring system and the phenyl ring is 71.62 (14)°.

Related literature

For general background to benzimidazole derivatives, see: Aydın et al. (1998[Aydın, A., Soylu, H., Güneş, B., Akkurt, M., Ercan, F., Küçükbay, H. & Çetinkaya, E. (1998). Z. Kristallogr. 213, 473-476.]); Böhm & Herrmann (2000[Böhm, V. P. W. & Herrmann, W. A. (2000). Angew. Chem. Int. Ed. 39, 4036-4038.]); Küçükbay et al. (1996[Küçükbay, H., Çetinkaya, B., Guesmi, S. & Dixneuf, P. H. (1996). Organometallics, 15, 2434-2439.], 1997[Küçükbay, H., Çetinkaya, E., Çetinkaya, B. & Lappert, M. F. (1997). Synth. Commun. 27, 4059-4066.]); Lappert et al. (2009[Lappert, M. F., Alvarez, S., Aullon, G., Fandos, R., Otero, A., Rodriguez, A., Rojas, S. & terreros, P. (2009). Eur. J. Inorg. Chem. pp. 1851-1860.]); Wanzlick & Schikora (1960[Wanzlick, H. W. & Schikora, E. (1960). Chem. Ber. 72, 494.]); Yıldırım et al. (2006[Yıldırım, S. Ö., Akkurt, M., Yılmaz, Ü., Küçükbay, H. & McKee, V. (2006). Acta Cryst. E62, o5697-o5698.]); Yılmaz & Küçükbay (2009[Yılmaz, Ü. & Küçükbay, H. (2009). Asian J. Chem. 21, 6149-6155.]); Çetinkaya et al. (1994[Çetinkaya, E., Hitchcock, P. B., Küçükbay, H., Lappert, M. F. & Al-Juaid, S. (1994). J. Organomet. Chem. 481, 89-95.], 1998[Çetinkaya, B., Çetinkaya, E., Chamizo, J. A., Hitchcock, P. B., Jasim, H. A., Küçükbay, H. & Lappert, M. F. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 2047-2054.]). For related structures, see: Akkurt et al. (2004[Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1263-o1265.]); Aydın et al. (1999[Aydın, A., Soylu, H., Küçükbay, H., Akkurt, M. & Ercan, F. (1999). Z. Kristallogr. New Cryst. Struct. 214, 295-296.]); Yalçın et al. (2008[Yalçın, Ş. P., Akkurt, M., Yılmaz, Ü., Küçükbay, H. & Büyükgüngör, O. (2008). Acta Cryst. E64, o621-o622.]).

[Scheme 1]

Experimental

Crystal data
  • C25H26N2Se

  • Mr = 433.44

  • Tetragonal, P 41 21 2

  • a = 10.5150 (3) Å

  • c = 19.8142 (8) Å

  • V = 2190.76 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.73 mm−1

  • T = 296 K

  • 0.68 × 0.58 × 0.52 mm

Data collection
  • Stowe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.322, Tmax = 0.408

  • 16780 measured reflections

  • 2531 independent reflections

  • 2225 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.066

  • S = 1.07

  • 2531 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1003 Freidel pairs

  • Flack parameter: 0.004 (12)

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Electron-rich olefins (EROs) have been attracted considerable attention in both organic and inorganic preparative literature due to their unique properties as reagent and reaction intermediates since their first report by Wanzlick in 1960 (Wanzlick & Schikora, 1960; Böhm & Herrmann, 2000).

Benzimidazolium salts are convenient precursors for EROs through reacting with a strong base such as NaH comparing with other methods such as reacting a secondary amine (N,N'-disubstituted-1,2-diaminobenzene) with an acetal, chloral or triethyl orthoformate. We have synthesized and isolated first time the ERO, bis(1,3-dimethybenzimidazolidine-2-ylidene) (Çetinkaya et al., 1994). We have also synthesized a number of EROs using different synthesis methods and used them to synthesize many organic or organometallic compounds (Küçükbay et al., 1996, Küçükbay et al., 1997, Çetinkaya et al., 1998; Aydın et al., 1998 Yıldırım et al., 2006; Yılmaz & Küçükbay, 2009). Their electron-richness confers on them a very high reactivity as strong nucleophiles, which assist in the preparation of numerous products by reaction, amongst others, with group 16 elements, transition metals, and many protic compounds (Lappert et al., 2009). It is known that the ultimate oxidation product of EROs with air is urea; sulfur, selenium and tellurium react similarly to give the corresponding analogues. The objective of the present study was to elucidate the crystal structure of the title compound which is new ERO derivative.

In the title molecule (I), Fig. 1, the SeC bond length is 1.828 (2) Å, and this value is similar to those [1.829 (3) Å] found in 1-ethyl-3-(2-phenylethyl)benzimidazole-2-selone (Akkurt et al., 2004) and [1.825 (7) Å] found in 1,3-dimethylbenzimidazole-2-selone (Aydın et al., 1999), and is shorter than that [2.058 (4) Å] found for the Te C bond length in 1,3-bis(3-phenylpropyl)1H-benzimidazole- 2(3H)-tellurone (Yalçın et al., 2008).

The molecular structure is stabilized by a weak C—H···Se interaction (Table 1). The benzimidazole ring system (N1/C10/C11/C12/C13/N1a/C11a/C12a/C13a) of (I) is planar (r.m.s deviation of fitted atoms is 0.09 (3) Å). The dihedral angle between the phenyl ring (C1–C6) and the benzimidazole ring is 71.62 (14)°. The molecular packing in (I) is shown in Fig. 2.

Related literature top

For general background to benzimidazole derivatives, see: Aydın et al. (1998); Böhm & Herrmann (2000); Küçükbay et al. (1996, 1997); Lappert et al. (2009); Wanzlick & Schikora (1960); Yıldırım et al. (2006); Yılmaz & Küçükbay (2009); Çetinkaya et al. (1994, 1998). For related structures, see: Akkurt et al. (2004); Aydın et al. (1999); Yalçın et al. (2008).

Experimental top

A mixture of bis(1,3-di(3-phenylpropyl)benzimidazolidine-2-ylidene) (0.68 g, 0.96 mmol) and selenium (0.15 g, 1.90 mmol) in dry toluene (10 ml) was heated under reflux for 2 h. Then the mixture was filtered to remove unreacted selenium and all volatiles were removed in vacuo (0.02 m mH g). The crude product was crystallized from alcohol upon cooling to 243 K. Yield: 0.63 g, 76%; m.p.: 439–441 K; v(CSe)= 1480 cm-1. Anal. found: C 69.58, H 5.98, N 6.38%. Calculated for C25H26N2Se: C 69.27, H 6.05, N 6.46%. 1H-NMR (δ, CDCl3): 7.26–7.06 (m, 14H, Ar—H), 4.47 (t, 4H, NCH2CH2CH2C6H5, J = 7.8 Hz), 2.81 (t, 4H, NCH2CH2CH2C6H5, J = 7.8 Hz), 2.23 (quint, 4H, NCH2CH2CH2C6H5, J = 7.8 Hz). 13C-NMR (δ, CDCl3): 165.7 (C=Se), 140.8, 132.9, 128.5, 128.4, 126.2, 123.2 and 109.5 (Ar-C), 46.1 (NCH2CH2CH2C6H5), 33.0 (NCH2CH2CH2C6H5), 29.3 (NCH2CH2CH2C6H5).

Refinement top

All H atoms were positioned geometrically with C—H = 0.93–0.97 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C). The absolute configuration of the title compound was established by refinement of the Flack (1983) parameter.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title molecule, showing the atom labelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. (Symmetry code: (a) y, x, 1 - z).
[Figure 2] Fig. 2. The packing diagram of (I) viewing down the b axis. All hydrogen atoms have been omitted for clarity.
1,3-Bis(3-phenylpropyl)-1H-1,3-benzimidazole-2(3H)-selone top
Crystal data top
C25H26N2SeDx = 1.314 Mg m3
Mr = 433.44Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 20954 reflections
Hall symbol: P 4abw 2nwθ = 1.9–28.0°
a = 10.5150 (3) ŵ = 1.73 mm1
c = 19.8142 (8) ÅT = 296 K
V = 2190.76 (13) Å3Block, colourless
Z = 40.68 × 0.58 × 0.52 mm
F(000) = 896
Data collection top
Stowe IPDS 2
diffractometer
2531 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2225 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.055
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 2.2°
ω scansh = 1313
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1313
Tmin = 0.322, Tmax = 0.408l = 2525
16780 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0285P)2 + 0.3345P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2531 reflectionsΔρmax = 0.17 e Å3
128 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983), 1003 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (12)
Crystal data top
C25H26N2SeZ = 4
Mr = 433.44Mo Kα radiation
Tetragonal, P41212µ = 1.73 mm1
a = 10.5150 (3) ÅT = 296 K
c = 19.8142 (8) Å0.68 × 0.58 × 0.52 mm
V = 2190.76 (13) Å3
Data collection top
Stowe IPDS 2
diffractometer
2531 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2225 reflections with I > 2σ(I)
Tmin = 0.322, Tmax = 0.408Rint = 0.055
16780 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.066Δρmax = 0.17 e Å3
S = 1.07Δρmin = 0.24 e Å3
2531 reflectionsAbsolute structure: Flack (1983), 1003 Freidel pairs
128 parametersAbsolute structure parameter: 0.004 (12)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.35581 (2)0.35581 (2)0.500000.0563 (1)
N10.20501 (16)0.15139 (19)0.55133 (8)0.0486 (5)
C10.6763 (3)0.0124 (4)0.71439 (17)0.0933 (12)
C20.7825 (3)0.0624 (5)0.7188 (2)0.116 (2)
C30.7813 (3)0.1823 (4)0.69632 (19)0.0997 (16)
C40.6739 (4)0.2301 (4)0.6684 (2)0.1013 (16)
C50.5668 (3)0.1541 (3)0.66230 (17)0.0868 (11)
C60.5656 (2)0.0317 (3)0.68586 (12)0.0593 (8)
C70.4485 (2)0.0505 (3)0.68283 (11)0.0623 (9)
C80.3849 (2)0.0578 (3)0.61434 (11)0.0587 (8)
C90.2714 (2)0.1457 (3)0.61606 (10)0.0544 (7)
C100.2329 (2)0.2329 (2)0.500000.0474 (6)
C110.1061 (2)0.0716 (2)0.53275 (11)0.0508 (7)
C120.0438 (3)0.0248 (3)0.56674 (13)0.0675 (9)
C130.0536 (3)0.0863 (3)0.53297 (16)0.0813 (11)
H10.679100.095000.731100.1120*
H20.856500.029400.737700.1390*
H30.853800.232600.699900.1200*
H40.672100.313800.653200.1220*
H50.494300.186900.641800.1040*
H7A0.471500.135900.696700.0750*
H7B0.387200.018300.715200.0750*
H8A0.445600.088400.581200.0700*
H8B0.357700.026500.600800.0700*
H9A0.212700.116800.650500.0650*
H9B0.299500.230500.628300.0650*
H120.066400.047300.610500.0810*
H130.098100.150800.554700.0980*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0586 (1)0.0586 (1)0.0515 (2)0.0076 (2)0.0010 (1)0.0010 (1)
N10.0503 (9)0.0574 (10)0.0382 (8)0.0010 (9)0.0077 (7)0.0101 (8)
C10.070 (2)0.097 (2)0.113 (2)0.0031 (16)0.0375 (17)0.0133 (19)
C20.063 (2)0.135 (4)0.151 (4)0.003 (2)0.040 (2)0.024 (3)
C30.064 (2)0.127 (3)0.108 (3)0.021 (2)0.0043 (18)0.044 (2)
C40.086 (3)0.088 (2)0.130 (3)0.0157 (19)0.001 (2)0.018 (2)
C50.0574 (16)0.087 (2)0.116 (2)0.0015 (16)0.0133 (16)0.005 (2)
C60.0501 (13)0.0737 (17)0.0540 (13)0.0025 (12)0.0056 (11)0.0214 (12)
C70.0573 (14)0.0798 (18)0.0498 (12)0.0021 (13)0.0118 (11)0.0089 (12)
C80.0570 (15)0.0762 (16)0.0429 (11)0.0077 (12)0.0055 (9)0.0103 (10)
C90.0543 (12)0.0730 (15)0.0358 (9)0.0014 (13)0.0081 (9)0.0081 (12)
C100.0517 (10)0.0517 (10)0.0389 (13)0.0066 (13)0.0040 (10)0.0040 (10)
C110.0520 (14)0.0536 (13)0.0467 (11)0.0019 (11)0.0064 (9)0.0096 (10)
C120.0673 (16)0.0664 (16)0.0689 (15)0.0040 (12)0.0058 (13)0.0236 (13)
C130.075 (2)0.0690 (19)0.100 (2)0.0168 (17)0.0071 (16)0.0207 (16)
Geometric parameters (Å, º) top
Se1—C101.828 (2)C12—C131.384 (4)
N1—C91.462 (3)C13—C13i1.394 (4)
N1—C101.362 (2)C1—H10.9300
N1—C111.386 (3)C2—H20.9300
C1—C21.369 (5)C3—H30.9300
C1—C61.375 (4)C4—H40.9300
C2—C31.337 (7)C5—H50.9300
C3—C41.354 (5)C7—H7A0.9700
C4—C51.386 (5)C7—H7B0.9700
C5—C61.369 (4)C8—H8A0.9700
C6—C71.506 (4)C8—H8B0.9700
C7—C81.515 (3)C9—H9A0.9700
C8—C91.510 (4)C9—H9B0.9700
C11—C121.382 (4)C12—H120.9300
C11—C11i1.396 (3)C13—H130.9300
C9—N1—C10125.33 (18)C2—C3—H3120.00
C9—N1—C11124.52 (19)C4—C3—H3120.00
C10—N1—C11110.13 (16)C3—C4—H4120.00
C2—C1—C6121.6 (4)C5—C4—H4120.00
C1—C2—C3120.9 (3)C4—C5—H5119.00
C2—C3—C4119.6 (3)C6—C5—H5119.00
C3—C4—C5119.9 (4)C6—C7—H7A108.00
C4—C5—C6121.3 (3)C6—C7—H7B108.00
C1—C6—C5116.7 (3)C8—C7—H7A108.00
C1—C6—C7121.0 (3)C8—C7—H7B108.00
C5—C6—C7122.3 (2)H7A—C7—H7B108.00
C6—C7—C8115.2 (2)C7—C8—H8A109.00
C7—C8—C9111.1 (2)C7—C8—H8B109.00
N1—C9—C8112.51 (19)C9—C8—H8A109.00
Se1—C10—N1126.67 (11)C9—C8—H8B109.00
Se1—C10—N1i126.67 (11)H8A—C8—H8B108.00
N1—C10—N1i106.66 (17)N1—C9—H9A109.00
N1—C11—C12132.1 (2)N1—C9—H9B109.00
N1—C11—C11i106.54 (18)C8—C9—H9A109.00
C11i—C11—C12121.4 (2)C8—C9—H9B109.00
C11—C12—C13117.3 (2)H9A—C9—H9B108.00
C12—C13—C13i121.4 (3)C11—C12—H12121.00
C2—C1—H1119.00C13—C12—H12121.00
C6—C1—H1119.00C12—C13—H13119.00
C1—C2—H2120.00C13i—C13—H13119.00
C3—C2—H2120.00
C11—N1—C10—Se1179.91 (16)C3—C4—C5—C62.0 (6)
C9—N1—C10—N1i178.5 (2)C4—C5—C6—C11.3 (5)
C11—N1—C10—N1i0.1 (2)C4—C5—C6—C7177.0 (3)
C9—N1—C11—C122.2 (4)C1—C6—C7—C8130.7 (3)
C10—N1—C11—C12179.4 (3)C5—C6—C7—C851.1 (4)
C9—N1—C11—C11i178.7 (2)C6—C7—C8—C9178.1 (2)
C10—N1—C11—C11i0.2 (2)C7—C8—C9—N1177.9 (2)
C9—N1—C10—Se11.5 (3)N1—C11—C12—C13179.5 (3)
C10—N1—C9—C888.2 (3)C11i—C11—C12—C130.5 (4)
C11—N1—C9—C890.0 (3)N1—C11—C11i—N1i0.3 (2)
C6—C1—C2—C31.1 (6)N1—C11—C11i—C12i179.6 (2)
C2—C1—C6—C50.2 (5)C12—C11—C11i—N1i179.6 (2)
C2—C1—C6—C7178.5 (3)C12—C11—C11i—C12i1.2 (4)
C1—C2—C3—C40.5 (6)C11—C12—C13—C13i0.9 (5)
C2—C3—C4—C51.0 (6)C12—C13—C13i—C12i1.6 (5)
Symmetry code: (i) y, x, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···Se10.972.923.310 (3)105

Experimental details

Crystal data
Chemical formulaC25H26N2Se
Mr433.44
Crystal system, space groupTetragonal, P41212
Temperature (K)296
a, c (Å)10.5150 (3), 19.8142 (8)
V3)2190.76 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.73
Crystal size (mm)0.68 × 0.58 × 0.52
Data collection
DiffractometerStowe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.322, 0.408
No. of measured, independent and
observed [I > 2σ(I)] reflections
16780, 2531, 2225
Rint0.055
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.066, 1.07
No. of reflections2531
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.24
Absolute structureFlack (1983), 1003 Freidel pairs
Absolute structure parameter0.004 (12)

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAkkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1263–o1265.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAydın, A., Soylu, H., Güneş, B., Akkurt, M., Ercan, F., Küçükbay, H. & Çetinkaya, E. (1998). Z. Kristallogr. 213, 473–476.  CAS Google Scholar
First citationAydın, A., Soylu, H., Küçükbay, H., Akkurt, M. & Ercan, F. (1999). Z. Kristallogr. New Cryst. Struct. 214, 295-296.  Google Scholar
First citationBöhm, V. P. W. & Herrmann, W. A. (2000). Angew. Chem. Int. Ed. 39, 4036–4038.  CrossRef CAS Google Scholar
First citationÇetinkaya, B., Çetinkaya, E., Chamizo, J. A., Hitchcock, P. B., Jasim, H. A., Küçükbay, H. & Lappert, M. F. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 2047–2054.  Google Scholar
First citationÇetinkaya, E., Hitchcock, P. B., Küçükbay, H., Lappert, M. F. & Al-Juaid, S. (1994). J. Organomet. Chem. 481, 89–95.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKüçükbay, H., Çetinkaya, E., Çetinkaya, B. & Lappert, M. F. (1997). Synth. Commun. 27, 4059–4066.  Google Scholar
First citationKüçükbay, H., Çetinkaya, B., Guesmi, S. & Dixneuf, P. H. (1996). Organometallics, 15, 2434–2439.  CrossRef CAS Web of Science Google Scholar
First citationLappert, M. F., Alvarez, S., Aullon, G., Fandos, R., Otero, A., Rodriguez, A., Rojas, S. & terreros, P. (2009). Eur. J. Inorg. Chem. pp. 1851–1860.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWanzlick, H. W. & Schikora, E. (1960). Chem. Ber. 72, 494.  Google Scholar
First citationYalçın, Ş. P., Akkurt, M., Yılmaz, Ü., Küçükbay, H. & Büyükgüngör, O. (2008). Acta Cryst. E64, o621–o622.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Yılmaz, Ü., Küçükbay, H. & McKee, V. (2006). Acta Cryst. E62, o5697–o5698.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYılmaz, Ü. & Küçükbay, H. (2009). Asian J. Chem. 21, 6149–6155.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1179
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds