organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1198

3,4-Bis(4-bromo­phen­yl)-N-phenyl­male­imide

aMedical College, Northwest University for Nationalities, Lanzhou 730030, Gansu Province, People's Republic of China, and bCollege of Science, Northwest A&F University, Yangling 712100, Shannxi Province, People's Republic of China
*Correspondence e-mail: duzt@nwsuaf.edu.cn

(Received 2 April 2011; accepted 15 April 2011; online 22 April 2011)

In the title mol­ecule, C22H13Br2NO2, the three benzene rings are arranged in a propeller-like fashion around the central malemide ring, making dihedral angles of 48.2 (4), 30.2 (4) and 34.8 (4)° with the malemide ring. The C—C single-bond lengths connecting benzene groups and maleimide are significantly shorter [C—C = 1.468 (9) and 1.478 (9) Å] than a typical Csp3—Csp3 single bond, indicating partial conjugation between the benzene and the mal­eimide. A weak non­classical C—H⋯O hydrogen bond helps to stabilize the crystal structure.

Related literature

For general background to 3,4-diaryl-substituted maleimide derivatives, see: Fujii et al. (2001[Fujii, I., Ohtani, J., Kodama, K., Kunimoto, K. & Hirayama, N. (2001). Anal. Sci. A17, 1471-1472.]); Onimura et al. (2010[Onimura, K., Matsushima, M., Yamabuki, K. & Oishi, T. (2010). Polym. J. 42, 290-297.]); Shorunov et al. (2006[Shorunov, S. V., Krayushkin, M. M., Stoyanovich, F. M. & Irie, M. (2006). Russ. J. Org. Chem. 42, 1490-1497.]).

[Scheme 1]

Experimental

Crystal data
  • C22H13Br2NO2

  • Mr = 483.13

  • Monoclinic, P 21 /c

  • a = 10.844 (5) Å

  • b = 18.594 (9) Å

  • c = 9.602 (5) Å

  • β = 102.760 (6)°

  • V = 1888.3 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.31 mm−1

  • T = 296 K

  • 0.32 × 0.30 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.]) Tmin = 0.339, Tmax = 0.424

  • 8594 measured reflections

  • 3382 independent reflections

  • 1427 reflections with I > 2σ(I)

  • Rint = 0.117

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.133

  • S = 0.94

  • 3382 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O1i 0.93 2.41 3.267 (9) 153
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

3,4-Diaryl-substituted maleimide is a conjugated unit which has interesting optical and electronic properties. A number of 3,4-diaryl-substituted maleimide derivatives have been designed and synthesized to be used as monomer of some electro–optic polymers (Shorunov et al., 2006; Onimura et al., 2010). In the course of exploring new electro–optic compounds, we obtained a intermediate compound 3,4-bis(4-bromophenyl)-N-phenylmaleimide I. Here we report the structure and synthesis of title compound.

The molecule holds four rings. The maleimide ring locates the core position, and the other three benzene rings are arranged in a propeller–like fashion around the central malemide 5–membering ring with the dihedral angeles being 48.2 (4)° (C1–C6), 30.2 (4)° (C9–C14) and 34.8 (4)° (C17–C22). The C—C single bond lengths conecting benzene groups and maleimide unit are respectively 1.468 (9)Å (C4—C7) and 1.478 (9)Å (C17—C18), which are obviously shorter than typical Csp3—Csp3 single bond. This means that the bonding between the benzenes and the maleimide is quite conjugated.

The molecules of I are crystalized in P21/c space group which is different from that of N–3,4–triphenylmaleimide (Pbca, Fujii et al., 2001). There are no classic hydrogen bonds in this crystal structure. However, the weak intermolecular interaction C21—H21···O1i is helpful to the stabilization of the packing (Fig. 2). This intermolecular non–classical H–bond is characterized by the parameters: bond lengths of 0.93Å (C21—H21), 2.41Å (H21···O1i), 3.267 (9)Å (C21···O1i) and angle 153° (C21—H21···O1i). Symmetry code: (i) 1-x, -1/2+y, 1/2-z.

Related literature top

For general background to 3,4-diaryl-substituted maleimide derivatives, see: Fujii et al. (2001); Onimura et al. (2010); Shorunov et al. (2006).

Experimental top

3,4–Bis(4–bromophenyl)maleic anhydride (0.60 g, 1.47 mmol), 4–methylbenzenesulfonic acid (0.30 g, 3.26 mmol) and H2SO4 (2 ml) were dissolved in N,N–dimethylformamide (DMF, 1.0 ml) and toluene (20 ml) mixed solvent. After heating the mixture to refluxing, a toluene solution of anilin (0.20 g, 2.17 mmol) was slowly added. After stirring for 2 h, the mixture was cooled to 333 K and poured into 8% Na2CO3 solution and further stirred for 10 min. The solution was extracted with toluene and dried over Na2SO4. After removing the solvent, the crude product was purified by recrystallization from ethanol, affording the title compound, I, (0.51 g, 72%). Then the compound I was dissolved in THF, and yellow crystals were formed on slow evaporation at room temperature over one week.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.93%A (for aromatic H) with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing of I along b axis.
3,4-bis(4-bromophenyl)-1-phenyl-2,5-dihydro-1H-pyrrole-2,5-dione top
Crystal data top
C22H13Br2NO2F(000) = 952
Mr = 483.13Dx = 1.699 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1226 reflections
a = 10.844 (5) Åθ = 2.2–20.8°
b = 18.594 (9) ŵ = 4.31 mm1
c = 9.602 (5) ÅT = 296 K
β = 102.760 (6)°Block, yellow
V = 1888.3 (16) Å30.32 × 0.30 × 0.24 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3382 independent reflections
Radiation source: fine–focus sealed tube1427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.117
ϕ and ω scansθmax = 25.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1212
Tmin = 0.339, Tmax = 0.424k = 2221
8594 measured reflectionsl = 911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0468P)2]
where P = (Fo2 + 2Fc2)/3
3382 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
C22H13Br2NO2V = 1888.3 (16) Å3
Mr = 483.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.844 (5) ŵ = 4.31 mm1
b = 18.594 (9) ÅT = 296 K
c = 9.602 (5) Å0.32 × 0.30 × 0.24 mm
β = 102.760 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
3382 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
1427 reflections with I > 2σ(I)
Tmin = 0.339, Tmax = 0.424Rint = 0.117
8594 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 0.94Δρmax = 0.51 e Å3
3382 reflectionsΔρmin = 0.71 e Å3
244 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero fornegative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.18239 (9)1.08051 (4)0.16015 (9)0.0659 (4)
Br20.12170 (9)0.59744 (5)0.09998 (9)0.0681 (4)
C10.2818 (7)1.0177 (4)0.0272 (8)0.042 (2)
C20.3009 (7)1.0324 (4)0.1166 (8)0.044 (2)
H20.26611.07350.14740.052*
C30.3718 (7)0.9859 (4)0.2152 (7)0.046 (2)
H30.38540.99650.31210.055*
C40.4223 (7)0.9244 (3)0.1720 (7)0.037 (2)
C50.4019 (7)0.9103 (4)0.0241 (7)0.041 (2)
H50.43530.86890.00800.050*
C60.3333 (8)0.9573 (4)0.0718 (7)0.049 (2)
H60.32140.94800.16900.058*
C70.4950 (7)0.8740 (4)0.2765 (7)0.0317 (19)
C80.5979 (7)0.8995 (4)0.3949 (7)0.037 (2)
C90.7668 (7)0.8405 (4)0.5799 (7)0.0324 (19)
C100.8549 (8)0.8948 (4)0.5883 (8)0.049 (2)
H100.84490.92990.51760.059*
C110.9570 (8)0.8967 (5)0.7012 (9)0.064 (3)
H111.01690.93290.70670.077*
C120.9715 (9)0.8455 (5)0.8061 (8)0.066 (3)
H121.03850.84830.88520.079*
C130.8877 (9)0.7907 (5)0.7936 (9)0.067 (3)
H130.90130.75410.86120.080*
C140.7840 (8)0.7881 (4)0.6845 (8)0.049 (2)
H140.72520.75130.68020.059*
C150.5930 (7)0.7768 (4)0.4054 (7)0.038 (2)
C160.4904 (7)0.8021 (4)0.2827 (7)0.0321 (19)
C170.3999 (8)0.7505 (4)0.1988 (7)0.035 (2)
C180.2750 (8)0.7690 (4)0.1499 (8)0.050 (2)
H180.24700.81360.17410.060*
C190.1900 (8)0.7226 (4)0.0653 (7)0.052 (2)
H190.10530.73520.03530.063*
C200.2331 (8)0.6571 (4)0.0260 (7)0.043 (2)
C210.3549 (8)0.6361 (4)0.0806 (7)0.046 (2)
H210.38160.59050.06070.055*
C220.4388 (7)0.6829 (4)0.1659 (7)0.036 (2)
H220.52210.66870.20140.044*
N10.6588 (6)0.8394 (3)0.4625 (6)0.0341 (16)
O10.6229 (5)0.9610 (3)0.4283 (5)0.0494 (15)
O20.6167 (5)0.7165 (3)0.4467 (5)0.0480 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0834 (8)0.0516 (6)0.0525 (6)0.0141 (5)0.0068 (5)0.0128 (4)
Br20.0699 (7)0.0590 (6)0.0689 (7)0.0182 (5)0.0015 (5)0.0198 (5)
C10.056 (6)0.032 (5)0.034 (5)0.004 (4)0.002 (4)0.000 (4)
C20.058 (6)0.034 (5)0.043 (5)0.007 (4)0.021 (5)0.006 (4)
C30.073 (7)0.030 (5)0.031 (5)0.008 (5)0.005 (4)0.006 (4)
C40.055 (6)0.018 (4)0.037 (5)0.003 (4)0.011 (4)0.002 (4)
C50.064 (6)0.027 (5)0.033 (4)0.012 (4)0.011 (4)0.008 (4)
C60.078 (7)0.048 (5)0.019 (4)0.003 (5)0.008 (4)0.007 (4)
C70.043 (6)0.025 (4)0.027 (4)0.002 (4)0.009 (4)0.006 (3)
C80.047 (6)0.031 (5)0.034 (5)0.000 (4)0.009 (4)0.002 (4)
C90.039 (6)0.030 (4)0.029 (5)0.000 (4)0.010 (4)0.011 (4)
C100.050 (6)0.054 (6)0.041 (5)0.002 (5)0.004 (5)0.014 (4)
C110.060 (7)0.055 (6)0.072 (6)0.007 (5)0.003 (5)0.008 (5)
C120.060 (7)0.080 (7)0.047 (6)0.011 (6)0.012 (5)0.003 (5)
C130.072 (8)0.064 (7)0.054 (6)0.008 (6)0.010 (6)0.021 (5)
C140.056 (7)0.035 (5)0.052 (6)0.003 (4)0.004 (5)0.019 (4)
C150.055 (6)0.035 (5)0.025 (5)0.003 (4)0.014 (4)0.002 (4)
C160.051 (6)0.023 (4)0.022 (4)0.004 (4)0.007 (4)0.001 (3)
C170.058 (7)0.024 (5)0.023 (4)0.001 (4)0.011 (4)0.003 (3)
C180.054 (7)0.034 (5)0.059 (6)0.008 (5)0.007 (5)0.006 (4)
C190.058 (7)0.038 (5)0.053 (5)0.003 (5)0.004 (5)0.010 (4)
C200.049 (7)0.038 (5)0.038 (5)0.005 (4)0.000 (4)0.003 (4)
C210.075 (8)0.029 (5)0.041 (5)0.006 (5)0.027 (5)0.004 (4)
C220.047 (6)0.027 (5)0.037 (5)0.005 (4)0.012 (4)0.003 (4)
N10.039 (4)0.030 (4)0.031 (4)0.008 (3)0.004 (3)0.001 (3)
O10.067 (4)0.028 (3)0.046 (3)0.003 (3)0.005 (3)0.005 (3)
O20.066 (4)0.028 (3)0.043 (3)0.000 (3)0.004 (3)0.004 (2)
Geometric parameters (Å, º) top
Br1—C11.883 (7)C11—C121.369 (10)
Br2—C201.873 (7)C11—H110.9300
C1—C61.365 (9)C12—C131.352 (11)
C1—C21.378 (8)C12—H120.9300
C2—C31.384 (9)C13—C141.357 (9)
C2—H20.9300C13—H130.9300
C3—C41.371 (9)C14—H140.9300
C3—H30.9300C15—O21.198 (7)
C4—C51.414 (8)C15—N11.412 (8)
C4—C71.468 (9)C15—C161.506 (9)
C5—C61.365 (9)C16—C171.478 (9)
C5—H50.9300C17—C181.375 (10)
C6—H60.9300C17—C221.385 (9)
C7—C161.339 (9)C18—C191.387 (9)
C7—C81.484 (9)C18—H180.9300
C8—O11.202 (7)C19—C201.386 (9)
C8—N11.385 (8)C19—H190.9300
C9—C101.380 (9)C20—C211.366 (10)
C9—C141.383 (8)C21—C221.388 (9)
C9—N11.435 (8)C21—H210.9300
C10—C111.369 (10)C22—H220.9300
C10—H100.9300
C6—C1—C2119.7 (6)C11—C12—H12120.3
C6—C1—Br1120.7 (6)C12—C13—C14121.4 (8)
C2—C1—Br1119.6 (6)C12—C13—H13119.3
C1—C2—C3120.0 (7)C14—C13—H13119.3
C1—C2—H2120.0C13—C14—C9119.4 (8)
C3—C2—H2120.0C13—C14—H14120.3
C4—C3—C2120.9 (7)C9—C14—H14120.3
C4—C3—H3119.6O2—C15—N1126.1 (7)
C2—C3—H3119.6O2—C15—C16128.3 (7)
C3—C4—C5118.3 (6)N1—C15—C16105.6 (6)
C3—C4—C7121.0 (6)C7—C16—C17130.6 (7)
C5—C4—C7120.6 (6)C7—C16—C15108.6 (6)
C6—C5—C4120.0 (7)C17—C16—C15120.7 (6)
C6—C5—H5120.0C18—C17—C22118.5 (7)
C4—C5—H5120.0C18—C17—C16120.6 (7)
C5—C6—C1121.1 (7)C22—C17—C16121.0 (7)
C5—C6—H6119.5C17—C18—C19121.4 (7)
C1—C6—H6119.5C17—C18—H18119.3
C16—C7—C4130.3 (6)C19—C18—H18119.3
C16—C7—C8108.3 (6)C18—C19—C20119.0 (8)
C4—C7—C8121.3 (6)C18—C19—H19120.5
O1—C8—N1125.9 (7)C20—C19—H19120.5
O1—C8—C7126.6 (7)C21—C20—C19120.1 (7)
N1—C8—C7107.5 (6)C21—C20—Br2120.7 (6)
C10—C9—C14119.5 (7)C19—C20—Br2119.2 (6)
C10—C9—N1119.4 (6)C20—C21—C22120.0 (7)
C14—C9—N1121.1 (7)C20—C21—H21120.0
C11—C10—C9119.6 (7)C22—C21—H21120.0
C11—C10—H10120.2C17—C22—C21120.6 (7)
C9—C10—H10120.2C17—C22—H22119.7
C10—C11—C12120.4 (9)C21—C22—H22119.7
C10—C11—H11119.8C8—N1—C15109.6 (6)
C12—C11—H11119.8C8—N1—C9125.3 (6)
C13—C12—C11119.5 (8)C15—N1—C9124.9 (6)
C13—C12—H12120.3
C6—C1—C2—C30.1 (12)O2—C15—C16—C7178.1 (8)
Br1—C1—C2—C3178.8 (6)N1—C15—C16—C72.8 (8)
C1—C2—C3—C41.0 (12)O2—C15—C16—C172.3 (12)
C2—C3—C4—C51.0 (11)N1—C15—C16—C17178.6 (6)
C2—C3—C4—C7178.5 (7)C7—C16—C17—C1832.3 (12)
C3—C4—C5—C60.1 (11)C15—C16—C17—C18142.5 (7)
C7—C4—C5—C6179.5 (7)C7—C16—C17—C22146.8 (8)
C4—C5—C6—C11.0 (12)C15—C16—C17—C2238.4 (10)
C2—C1—C6—C51.1 (12)C22—C17—C18—C192.3 (11)
Br1—C1—C6—C5177.8 (6)C16—C17—C18—C19176.9 (7)
C3—C4—C7—C16135.2 (9)C17—C18—C19—C201.9 (12)
C5—C4—C7—C1644.3 (12)C18—C19—C20—C215.8 (12)
C3—C4—C7—C848.7 (10)C18—C19—C20—Br2175.2 (6)
C5—C4—C7—C8131.7 (7)C19—C20—C21—C225.5 (12)
C16—C7—C8—O1174.1 (8)Br2—C20—C21—C22175.5 (5)
C4—C7—C8—O19.1 (12)C18—C17—C22—C212.7 (10)
C16—C7—C8—N14.7 (8)C16—C17—C22—C21176.5 (6)
C4—C7—C8—N1172.1 (6)C20—C21—C22—C171.2 (11)
C14—C9—C10—C111.1 (11)O1—C8—N1—C15172.3 (7)
N1—C9—C10—C11179.0 (7)C7—C8—N1—C156.5 (8)
C9—C10—C11—C120.5 (13)O1—C8—N1—C93.4 (12)
C10—C11—C12—C133.5 (14)C7—C8—N1—C9177.8 (6)
C11—C12—C13—C144.8 (15)O2—C15—N1—C8175.1 (7)
C12—C13—C14—C93.2 (14)C16—C15—N1—C85.8 (8)
C10—C9—C14—C130.2 (11)O2—C15—N1—C90.6 (12)
N1—C9—C14—C13179.7 (7)C16—C15—N1—C9178.5 (6)
C4—C7—C16—C179.3 (14)C10—C9—N1—C833.2 (10)
C8—C7—C16—C17174.2 (7)C14—C9—N1—C8146.9 (7)
C4—C7—C16—C15175.3 (7)C10—C9—N1—C15151.7 (7)
C8—C7—C16—C151.1 (8)C14—C9—N1—C1528.2 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O1i0.932.413.267 (9)153
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H13Br2NO2
Mr483.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.844 (5), 18.594 (9), 9.602 (5)
β (°) 102.760 (6)
V3)1888.3 (16)
Z4
Radiation typeMo Kα
µ (mm1)4.31
Crystal size (mm)0.32 × 0.30 × 0.24
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.339, 0.424
No. of measured, independent and
observed [I > 2σ(I)] reflections
8594, 3382, 1427
Rint0.117
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.133, 0.94
No. of reflections3382
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.71

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O1i0.932.413.267 (9)153
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

Financial support from the Fundamental Research Funds for the Central Universities in NWSUAF (QN2009048) and the Excellent Young Funds 211020712 is greatly appreciated.

References

First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFujii, I., Ohtani, J., Kodama, K., Kunimoto, K. & Hirayama, N. (2001). Anal. Sci. A17, 1471–1472.  CrossRef Google Scholar
First citationOnimura, K., Matsushima, M., Yamabuki, K. & Oishi, T. (2010). Polym. J. 42, 290–297.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShorunov, S. V., Krayushkin, M. M., Stoyanovich, F. M. & Irie, M. (2006). Russ. J. Org. Chem. 42, 1490–1497.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1198
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds