organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1128-o1129

(2E,25E)-11,14,17,33,36,39,42-Hepta­oxa­penta­cyclo­[41.4.0.05,10.018,23.027,32]hepta­tetra­conta-1(43),2,5(10),6,8,18,20,22,25,27,29,31,44,46-tetra­deca­ene-4,24-dione

aDepartment of Chemistry, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bOrganic Chemistry Department, Russian Peoples Friendship University, Miklukho-Maklaya St 6, Moscow, 117198, Russian Federation, and cX-Ray Structural Centre, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, Moscow 119991, Russian Federation
*Correspondence e-mail: vkh@xray.ineos.ac.ru

(Received 3 April 2011; accepted 8 April 2011; online 13 April 2011)

The title compound, C40H40O9, is a product of the double crotonic condensation of bis­(2-acetyl­phen­oxy)-3-oxapentane with bis­(2-formyl­phen­oxy)-3,6-dioxaoctane. The title macromolecule includes the 31-crown-7-ether skeletal unit and adopts a saddle-like conformation. The two ethyl­ene fragments have E configurations. The volume of the inter­nal cavity of the macrocycle is approximately 125 Å3. In the crystal, the mol­ecules are arranged at van der Waals distances.

Related literature

For general background to the design, synthesis and applications of macrocyclic ligands for coordination and supra­molecular chemistry, see: Hiraoka (1978[Hiraoka, M. (1978). In Crown Compounds: Their Characteristics and Application. Tokyo: Kodansha.]); Pedersen (1988[Pedersen, C. J. (1988). Angew. Chem. Int. Ed. Engl. 27, 1053-1083.]); Bradshaw & Izatt (1997)[Bradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338-345.]; Gokel & Murillo (1996[Gokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425-432.]). For related compounds, see: Levov et al. (2006[Levov, A. N., Strokina, V. M., Komarova, A. I., Anh, L. T., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35-37.], 2008[Levov, A. N., Komarova, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 1665-1670.]); Anh et al. (2008[Anh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463-465.])

[Scheme 1]

Experimental

Crystal data
  • C40H40O9

  • Mr = 664.72

  • Monoclinic, P 21

  • a = 12.3268 (6) Å

  • b = 11.0271 (6) Å

  • c = 13.1142 (7) Å

  • β = 106.933 (1)°

  • V = 1705.32 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.]) Tmin = 0.973, Tmax = 0.982

  • 19455 measured reflections

  • 5222 independent reflections

  • 4511 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.128

  • S = 1.01

  • 5222 reflections

  • 442 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Design, synthesis and applications of macrocyclic ligands for coordination and supramolecular chemistry draw very great attention of investigators during the last forty years (Hiraoka, 1978; Pedersen, 1988; Gokel & Murillo, 1996; Bradshaw & Izatt, 1997). Recently, we have developed an effective method of synthesis of 14- and 17-membered azacrown (Levov et al., 2006; 2008) and crown (Anh et al., 2008) ethers. This method is based on domino reaction of three components - dialkyl ketone, bis(2-formylphenoxy)-3-oxapentane and ammonium acetate, i.e., the modified Petrenko–Kritchenko reaction (Levov, 2008).

In attempts to apply this chemistry for obtaining of a ditopic ligand, in which two azacrown units are connected to each other by polyether chain, we studied the similar condensation of bis(2-formylphenoxy)-3,6-dioxaoctane with bis(2-acetylphenoxy)-3-oxapentane and ammonium acetate, the latter being both a source of nitrogen and a template agent. However, instead of the expected azacrown system, tetrakis(benzo)-31-crown-7-ether (I) was formed.

The obtained compound I, C40H40O9, includes the 31–crown–7–ether skeletal moiety and adopts a saddle-like conformation (Fig. 1). The two ethylene fragments have Econfigurations. The dihedral angles between the benzene planes of C1,C43–C47/C5–C10, C5–C10/C18–C23, C18–C23/C27–C32 and C27–C32/C1,C43–C47 are 64.91 (8), 65.14 (8), 61.64 (8) and 56.67 (9)°, respectively. The volume of the internal cavity of macrocycle I is approximately equal to 125 Å3. The distances from the center of macrocycle cavity, defined as centroid of O11/O14/O17/O33/O36/O39/O42 oxygen donor atoms, to the O11, O14, O17, O33, O36, O39 and O42 oxygen atoms are 3.286 (3), 3.638 (3), 3.460 (3), 3.308 (3), 3.486 (3), 3.524 (3) and 2.533 (3) Å, respectively.

In the crystal, the molecules of I are arranged at van der Waals distances.

Related literature top

For general background to the design, synthesis and applications of macrocyclic ligands for coordination and supramolecular chemistry, see: Hiraoka (1978); Pedersen (1988); Bradshaw & Izatt (1997); Gokel & Murillo (1996). For related compounds, see: Levov et al. (2006); Anh et al. (2008); Levov et al. (2008).

Experimental top

Ammonium acetate (2.0 g, 26 mmol) was added to a solution of bis(2-formylphenoxy)-3,6-dioxaoctane (1.38 g, 4.40 mmol) with bis(2-acetylphenoxy)-3-oxapentane (1.50 g, 4.40 mmol) in ethanol (50 ml). The reaction mixture was stirred at 323 K for 2 h (monitoring by TLC until disappearance of the starting organic compounds spots). At the end of the reaction, the formed wax-like precipitate was separated, washed with cold ethanol (50 ml) and re-crystallized from ethanol to give 0.82 g of light-yellow crystals of I (Fig. 2). Yield is 28%. M.p. = 400–402 K. IR (KBr), ν/cm-1: 1618, 1682. 1H NMR (CDCl3 , 400 MHz, 300 K): δ = 3.54, 3.62, 3.85 and 4.11 (all m, 6H, 5H, 5H and 4H, respectively, OCH2CH2O), 6.70–7.23 and 7.28–7.55 (both m, 10H and 6H, respectively, Harom), 7.27 and 7.87 (both d, 2H each, OC—CHtransCH, J = 16.0). Anal. Calcd for C40H40O9: C, 72.29; H, 6.03. Found: C, 72.31; H, 6.12.

Refinement top

The 4537 Friedel pairs were merged in the refinement procedure. The hydrogen atoms were placed in calculated positions with C—H = 0.95–0.99Å and refined in the riding model with fixed isotropic displacement parameters Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of I with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Domino cyclocondensation of bis(2-acetylphenoxy)-3-oxapentane with bis(2-formylphenoxy)-3,6-dioxaoctane.
(2E,25E)-11,14,17,33,36,39,42- Heptaoxapentacyclo[41.4.0.05,10.018,23.027,32]heptatetraconta- 1(43),2,5(10),6,8,18,20,22,25,27,29,31,44,46-tetradecaene-4,24-dione top
Crystal data top
C40H40O9F(000) = 704
Mr = 664.72Dx = 1.294 Mg m3
Monoclinic, P21Melting point = 400–402 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 12.3268 (6) ÅCell parameters from 7007 reflections
b = 11.0271 (6) Åθ = 2.5–29.6°
c = 13.1142 (7) ŵ = 0.09 mm1
β = 106.933 (1)°T = 120 K
V = 1705.32 (15) Å3Prism, light–yellow
Z = 20.30 × 0.30 × 0.20 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
5222 independent reflections
Radiation source: fine-focus sealed tube4511 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1617
Tmin = 0.973, Tmax = 0.982k = 1515
19455 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.06P)2 + 0.86P]
where P = (Fo2 + 2Fc2)/3
5222 reflections(Δ/σ)max < 0.001
442 parametersΔρmax = 0.33 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C40H40O9V = 1705.32 (15) Å3
Mr = 664.72Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.3268 (6) ŵ = 0.09 mm1
b = 11.0271 (6) ÅT = 120 K
c = 13.1142 (7) Å0.30 × 0.30 × 0.20 mm
β = 106.933 (1)°
Data collection top
Bruker SMART 1K CCD
diffractometer
5222 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
4511 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.027
19455 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0511 restraint
wR(F2) = 0.128H-atom parameters constrained
S = 1.01Δρmax = 0.33 e Å3
5222 reflectionsΔρmin = 0.20 e Å3
442 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4588 (2)0.6322 (2)0.41234 (19)0.0280 (5)
C20.3718 (2)0.6146 (3)0.46784 (18)0.0280 (5)
H20.33470.53810.46030.034*
C30.3411 (2)0.6979 (3)0.5280 (2)0.0330 (5)
H30.37860.77420.53750.040*
C40.2520 (2)0.6771 (3)0.5802 (2)0.0325 (5)
O40.2392 (2)0.7497 (3)0.64613 (19)0.0559 (7)
C50.1818 (2)0.5638 (3)0.55711 (19)0.0290 (5)
C60.1917 (2)0.4805 (3)0.6388 (2)0.0359 (6)
H60.24160.49750.70750.043*
C70.1304 (3)0.3732 (3)0.6222 (3)0.0422 (7)
H70.13920.31650.67860.051*
C80.0566 (3)0.3495 (3)0.5232 (3)0.0438 (7)
H80.01490.27590.51120.053*
C90.0426 (3)0.4326 (3)0.4402 (2)0.0371 (6)
H90.00990.41630.37260.044*
C100.1056 (2)0.5392 (2)0.4565 (2)0.0295 (5)
O110.09816 (16)0.62631 (18)0.38125 (13)0.0306 (4)
C120.0157 (2)0.6097 (3)0.2789 (2)0.0321 (5)
H12A0.06070.59920.28790.039*
H12B0.03420.53630.24380.039*
C130.0177 (2)0.7199 (3)0.2117 (2)0.0309 (5)
H13A0.05820.72980.15980.037*
H13B0.03220.79230.25850.037*
O140.10022 (15)0.71629 (19)0.15489 (13)0.0313 (4)
C150.2133 (2)0.7259 (3)0.22173 (19)0.0305 (5)
H15A0.23410.65200.26600.037*
H15B0.22040.79650.26980.037*
C160.2910 (2)0.7410 (2)0.15298 (19)0.0294 (5)
H16A0.26470.80820.10160.035*
H16B0.36920.75890.19740.035*
O170.28744 (16)0.62817 (17)0.09792 (14)0.0308 (4)
C180.34907 (19)0.6155 (2)0.02800 (18)0.0257 (4)
C190.4309 (2)0.6979 (3)0.0181 (2)0.0314 (5)
H190.44290.77090.05830.038*
C200.4949 (2)0.6732 (3)0.0504 (2)0.0369 (6)
H200.55070.72980.05670.044*
C210.4791 (2)0.5674 (3)0.1099 (2)0.0368 (6)
H210.52340.55150.15680.044*
C220.3976 (2)0.4848 (3)0.1002 (2)0.0305 (5)
H220.38810.41100.13920.037*
C230.32910 (19)0.5088 (2)0.03355 (18)0.0248 (4)
C240.2399 (2)0.4172 (2)0.03145 (19)0.0266 (5)
O240.25237 (16)0.31193 (18)0.05580 (17)0.0365 (4)
C250.1368 (2)0.4551 (2)0.00417 (19)0.0258 (4)
H250.11640.53840.00790.031*
C260.07174 (19)0.3731 (2)0.02578 (18)0.0246 (4)
H260.09630.29100.03140.030*
C270.03407 (19)0.4002 (2)0.05046 (18)0.0238 (4)
C280.0994 (2)0.5025 (2)0.0089 (2)0.0275 (5)
H280.07360.55710.03510.033*
C290.2012 (2)0.5259 (2)0.0307 (2)0.0310 (5)
H290.24470.59550.00160.037*
C300.2387 (2)0.4466 (3)0.0954 (2)0.0328 (5)
H300.30850.46200.11000.039*
C310.1751 (2)0.3444 (3)0.13935 (19)0.0298 (5)
H310.20120.29090.18390.036*
C320.0731 (2)0.3219 (2)0.11732 (18)0.0263 (5)
O330.00317 (15)0.22654 (18)0.15923 (14)0.0312 (4)
C340.0337 (2)0.1520 (2)0.2361 (2)0.0304 (5)
H34A0.10300.10490.20130.036*
H34B0.04890.20310.29250.036*
C350.0637 (2)0.0675 (3)0.2836 (2)0.0346 (5)
H35A0.03970.00260.32460.042*
H35B0.08970.02940.22650.042*
O360.15233 (17)0.1363 (2)0.35162 (16)0.0397 (5)
C370.2517 (2)0.0645 (3)0.3974 (2)0.0430 (7)
H37A0.22800.01890.40910.052*
H37B0.29290.09870.46790.052*
C380.3315 (3)0.0587 (3)0.3289 (3)0.0433 (7)
H38A0.38750.00660.35610.052*
H38B0.28730.03700.25520.052*
O390.39042 (17)0.1687 (2)0.32615 (17)0.0398 (5)
C400.3283 (2)0.2565 (3)0.2534 (2)0.0355 (6)
H40A0.26390.28670.27700.043*
H40B0.29780.22020.18170.043*
C410.4075 (2)0.3590 (3)0.2498 (2)0.0335 (5)
H41A0.48250.32650.25030.040*
H41B0.37690.40660.18360.040*
O420.41902 (17)0.43507 (18)0.34075 (15)0.0338 (4)
C430.4779 (2)0.5409 (2)0.3452 (2)0.0291 (5)
C440.5554 (2)0.5598 (3)0.2867 (2)0.0375 (6)
H440.56870.49780.24160.045*
C450.6126 (2)0.6697 (3)0.2950 (2)0.0399 (6)
H450.66400.68310.25440.048*
C460.5952 (2)0.7595 (3)0.3620 (2)0.0402 (6)
H460.63540.83400.36810.048*
C470.5192 (2)0.7412 (3)0.4201 (2)0.0339 (5)
H470.50770.80350.46590.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0239 (10)0.0335 (13)0.0271 (10)0.0007 (10)0.0083 (8)0.0022 (10)
C20.0250 (10)0.0333 (12)0.0254 (10)0.0011 (9)0.0068 (8)0.0013 (10)
C30.0306 (12)0.0400 (15)0.0298 (11)0.0059 (11)0.0110 (9)0.0065 (11)
C40.0299 (11)0.0424 (15)0.0266 (11)0.0012 (11)0.0106 (9)0.0046 (11)
O40.0670 (15)0.0603 (16)0.0529 (13)0.0158 (13)0.0372 (12)0.0260 (12)
C50.0264 (10)0.0362 (13)0.0286 (11)0.0054 (10)0.0148 (9)0.0008 (10)
C60.0312 (12)0.0477 (16)0.0329 (12)0.0137 (12)0.0156 (10)0.0084 (12)
C70.0428 (15)0.0457 (17)0.0458 (16)0.0144 (13)0.0252 (13)0.0179 (13)
C80.0499 (17)0.0360 (15)0.0527 (17)0.0003 (13)0.0264 (14)0.0066 (13)
C90.0418 (14)0.0332 (14)0.0385 (14)0.0047 (12)0.0154 (11)0.0005 (11)
C100.0324 (11)0.0319 (12)0.0275 (11)0.0007 (10)0.0137 (9)0.0015 (10)
O110.0372 (9)0.0307 (9)0.0228 (7)0.0078 (8)0.0071 (7)0.0014 (7)
C120.0358 (12)0.0325 (13)0.0257 (11)0.0056 (10)0.0051 (9)0.0024 (10)
C130.0315 (12)0.0341 (13)0.0291 (11)0.0037 (10)0.0118 (9)0.0036 (10)
O140.0298 (8)0.0393 (10)0.0261 (8)0.0015 (8)0.0101 (6)0.0012 (8)
C150.0306 (12)0.0336 (12)0.0275 (11)0.0016 (10)0.0087 (9)0.0029 (10)
C160.0322 (12)0.0271 (12)0.0291 (11)0.0037 (10)0.0095 (9)0.0045 (9)
O170.0362 (9)0.0279 (9)0.0334 (9)0.0060 (8)0.0184 (7)0.0049 (7)
C180.0238 (10)0.0283 (11)0.0254 (10)0.0002 (9)0.0076 (8)0.0027 (9)
C190.0294 (11)0.0316 (13)0.0334 (12)0.0070 (10)0.0096 (9)0.0020 (10)
C200.0267 (11)0.0442 (15)0.0403 (13)0.0087 (11)0.0108 (10)0.0056 (12)
C210.0284 (12)0.0488 (17)0.0373 (13)0.0010 (12)0.0158 (10)0.0035 (13)
C220.0254 (11)0.0375 (13)0.0301 (11)0.0028 (10)0.0103 (9)0.0036 (10)
C230.0205 (9)0.0283 (11)0.0260 (10)0.0010 (9)0.0076 (8)0.0027 (9)
C240.0239 (10)0.0280 (11)0.0286 (11)0.0001 (9)0.0087 (8)0.0029 (9)
O240.0329 (9)0.0272 (9)0.0522 (12)0.0004 (8)0.0169 (8)0.0042 (8)
C250.0266 (10)0.0236 (11)0.0281 (11)0.0014 (9)0.0093 (8)0.0020 (9)
C260.0254 (10)0.0237 (11)0.0261 (10)0.0018 (9)0.0098 (8)0.0005 (8)
C270.0244 (10)0.0241 (11)0.0240 (10)0.0031 (9)0.0089 (8)0.0016 (8)
C280.0287 (11)0.0249 (11)0.0302 (11)0.0022 (9)0.0105 (9)0.0012 (9)
C290.0293 (11)0.0277 (12)0.0364 (13)0.0014 (10)0.0105 (9)0.0012 (10)
C300.0288 (11)0.0361 (14)0.0363 (13)0.0003 (10)0.0140 (10)0.0044 (11)
C310.0295 (11)0.0331 (13)0.0300 (11)0.0038 (10)0.0137 (9)0.0012 (10)
C320.0293 (11)0.0255 (11)0.0261 (10)0.0036 (9)0.0111 (9)0.0015 (9)
O330.0317 (9)0.0336 (9)0.0317 (9)0.0023 (8)0.0145 (7)0.0088 (8)
C340.0329 (12)0.0295 (12)0.0316 (12)0.0031 (10)0.0139 (9)0.0046 (10)
C350.0382 (13)0.0329 (13)0.0336 (12)0.0050 (11)0.0118 (10)0.0026 (11)
O360.0379 (10)0.0381 (11)0.0405 (10)0.0052 (9)0.0074 (8)0.0026 (9)
C370.0390 (14)0.0422 (16)0.0427 (15)0.0061 (13)0.0042 (12)0.0122 (13)
C380.0405 (15)0.0318 (14)0.0543 (17)0.0010 (12)0.0088 (13)0.0054 (13)
O390.0334 (9)0.0371 (11)0.0448 (11)0.0034 (8)0.0051 (8)0.0071 (9)
C400.0351 (13)0.0358 (14)0.0324 (12)0.0018 (11)0.0048 (10)0.0008 (11)
C410.0403 (13)0.0349 (13)0.0270 (11)0.0023 (11)0.0126 (10)0.0025 (10)
O420.0402 (10)0.0333 (10)0.0333 (9)0.0066 (8)0.0190 (8)0.0048 (8)
C430.0260 (11)0.0337 (13)0.0305 (11)0.0014 (10)0.0126 (9)0.0002 (10)
C440.0354 (13)0.0450 (16)0.0385 (13)0.0044 (12)0.0208 (11)0.0052 (12)
C450.0312 (12)0.0495 (17)0.0437 (14)0.0076 (12)0.0182 (11)0.0005 (13)
C460.0343 (13)0.0412 (16)0.0471 (15)0.0120 (12)0.0149 (12)0.0015 (13)
C470.0313 (12)0.0373 (14)0.0333 (12)0.0032 (11)0.0097 (10)0.0012 (11)
Geometric parameters (Å, º) top
C1—C471.401 (4)C24—C251.477 (3)
C1—C431.402 (4)C25—C261.341 (3)
C1—C21.474 (3)C25—H250.9500
C2—C31.335 (4)C26—C271.463 (3)
C2—H20.9500C26—H260.9500
C3—C41.472 (3)C27—C281.402 (3)
C3—H30.9500C27—C321.411 (3)
C4—O41.222 (3)C28—C291.389 (3)
C4—C51.500 (4)C28—H280.9500
C5—C61.389 (4)C29—C301.389 (4)
C5—C101.405 (3)C29—H290.9500
C6—C71.387 (5)C30—C311.397 (4)
C6—H60.9500C30—H300.9500
C7—C81.376 (5)C31—C321.392 (3)
C7—H70.9500C31—H310.9500
C8—C91.394 (4)C32—O331.369 (3)
C8—H80.9500O33—C341.433 (3)
C9—C101.391 (4)C34—C351.504 (4)
C9—H90.9500C34—H34A0.9900
C10—O111.361 (3)C34—H34B0.9900
O11—C121.440 (3)C35—O361.413 (3)
C12—C131.505 (4)C35—H35A0.9900
C12—H12A0.9900C35—H35B0.9900
C12—H12B0.9900O36—C371.435 (4)
C13—O141.426 (3)C37—C381.515 (5)
C13—H13A0.9900C37—H37A0.9900
C13—H13B0.9900C37—H37B0.9900
O14—C151.418 (3)C38—O391.420 (4)
C15—C161.504 (3)C38—H38A0.9900
C15—H15A0.9900C38—H38B0.9900
C15—H15B0.9900O39—C401.417 (3)
C16—O171.433 (3)C40—C411.504 (4)
C16—H16A0.9900C40—H40A0.9900
C16—H16B0.9900C40—H40B0.9900
O17—C181.358 (3)C41—O421.431 (3)
C18—C191.391 (3)C41—H41A0.9900
C18—C231.407 (3)C41—H41B0.9900
C19—C201.384 (4)O42—C431.366 (3)
C19—H190.9500C43—C441.405 (3)
C20—C211.386 (4)C44—C451.390 (4)
C20—H200.9500C44—H440.9500
C21—C221.388 (4)C45—C461.382 (4)
C21—H210.9500C45—H450.9500
C22—C231.407 (3)C46—C471.384 (4)
C22—H220.9500C46—H460.9500
C23—C241.499 (3)C47—H470.9500
C24—O241.226 (3)
C47—C1—C43118.6 (2)C26—C25—H25119.7
C47—C1—C2121.7 (2)C24—C25—H25119.7
C43—C1—C2119.6 (2)C25—C26—C27125.1 (2)
C3—C2—C1124.9 (2)C25—C26—H26117.5
C3—C2—H2117.5C27—C26—H26117.5
C1—C2—H2117.5C28—C27—C32118.2 (2)
C2—C3—C4123.1 (3)C28—C27—C26121.8 (2)
C2—C3—H3118.5C32—C27—C26120.0 (2)
C4—C3—H3118.5C29—C28—C27121.3 (2)
O4—C4—C3119.7 (3)C29—C28—H28119.3
O4—C4—C5120.2 (2)C27—C28—H28119.3
C3—C4—C5120.0 (2)C30—C29—C28119.4 (2)
C6—C5—C10118.7 (3)C30—C29—H29120.3
C6—C5—C4118.6 (2)C28—C29—H29120.3
C10—C5—C4122.6 (2)C29—C30—C31120.8 (2)
C7—C6—C5121.5 (3)C29—C30—H30119.6
C7—C6—H6119.3C31—C30—H30119.6
C5—C6—H6119.3C32—C31—C30119.4 (2)
C8—C7—C6119.3 (3)C32—C31—H31120.3
C8—C7—H7120.3C30—C31—H31120.3
C6—C7—H7120.3O33—C32—C31123.7 (2)
C7—C8—C9120.7 (3)O33—C32—C27115.5 (2)
C7—C8—H8119.7C31—C32—C27120.8 (2)
C9—C8—H8119.7C32—O33—C34117.32 (19)
C10—C9—C8119.9 (3)O33—C34—C35107.8 (2)
C10—C9—H9120.1O33—C34—H34A110.2
C8—C9—H9120.1C35—C34—H34A110.2
O11—C10—C9124.6 (2)O33—C34—H34B110.2
O11—C10—C5115.5 (2)C35—C34—H34B110.2
C9—C10—C5119.9 (2)H34A—C34—H34B108.5
C10—O11—C12117.8 (2)O36—C35—C34107.8 (2)
O11—C12—C13108.4 (2)O36—C35—H35A110.1
O11—C12—H12A110.0C34—C35—H35A110.1
C13—C12—H12A110.0O36—C35—H35B110.1
O11—C12—H12B110.0C34—C35—H35B110.1
C13—C12—H12B110.0H35A—C35—H35B108.5
H12A—C12—H12B108.4C35—O36—C37112.1 (2)
O14—C13—C12114.8 (2)O36—C37—C38113.4 (2)
O14—C13—H13A108.6O36—C37—H37A108.9
C12—C13—H13A108.6C38—C37—H37A108.9
O14—C13—H13B108.6O36—C37—H37B108.9
C12—C13—H13B108.6C38—C37—H37B108.9
H13A—C13—H13B107.6H37A—C37—H37B107.7
C15—O14—C13113.40 (18)O39—C38—C37113.9 (3)
O14—C15—C16108.72 (19)O39—C38—H38A108.8
O14—C15—H15A109.9C37—C38—H38A108.8
C16—C15—H15A109.9O39—C38—H38B108.8
O14—C15—H15B109.9C37—C38—H38B108.8
C16—C15—H15B109.9H38A—C38—H38B107.7
H15A—C15—H15B108.3C40—O39—C38114.8 (2)
O17—C16—C15105.9 (2)O39—C40—C41107.8 (2)
O17—C16—H16A110.6O39—C40—H40A110.1
C15—C16—H16A110.6C41—C40—H40A110.1
O17—C16—H16B110.6O39—C40—H40B110.1
C15—C16—H16B110.6C41—C40—H40B110.1
H16A—C16—H16B108.7H40A—C40—H40B108.5
C18—O17—C16119.23 (19)O42—C41—C40108.8 (2)
O17—C18—C19124.0 (2)O42—C41—H41A109.9
O17—C18—C23115.7 (2)C40—C41—H41A109.9
C19—C18—C23120.2 (2)O42—C41—H41B109.9
C20—C19—C18119.8 (3)C40—C41—H41B109.9
C20—C19—H19120.1H41A—C41—H41B108.3
C18—C19—H19120.1C43—O42—C41117.28 (19)
C19—C20—C21121.2 (3)O42—C43—C1117.1 (2)
C19—C20—H20119.4O42—C43—C44122.8 (2)
C21—C20—H20119.4C1—C43—C44120.1 (2)
C20—C21—C22119.1 (2)C45—C44—C43119.8 (3)
C20—C21—H21120.4C45—C44—H44120.1
C22—C21—H21120.4C43—C44—H44120.1
C21—C22—C23121.0 (3)C46—C45—C44120.3 (3)
C21—C22—H22119.5C46—C45—H45119.8
C23—C22—H22119.5C44—C45—H45119.8
C22—C23—C18118.5 (2)C45—C46—C47120.1 (3)
C22—C23—C24117.5 (2)C45—C46—H46120.0
C18—C23—C24124.0 (2)C47—C46—H46120.0
O24—C24—C25120.9 (2)C46—C47—C1121.1 (3)
O24—C24—C23119.0 (2)C46—C47—H47119.5
C25—C24—C23120.1 (2)C1—C47—H47119.5
C26—C25—C24120.7 (2)
C47—C1—C2—C31.0 (4)C22—C23—C24—C25153.5 (2)
C43—C1—C2—C3175.4 (3)C18—C23—C24—C2527.4 (3)
C1—C2—C3—C4178.7 (2)O24—C24—C25—C2620.1 (4)
C2—C3—C4—O4169.5 (3)C23—C24—C25—C26162.1 (2)
C2—C3—C4—C57.0 (4)C24—C25—C26—C27177.5 (2)
O4—C4—C5—C662.2 (4)C25—C26—C27—C2824.2 (4)
C3—C4—C5—C6114.2 (3)C25—C26—C27—C32156.2 (2)
O4—C4—C5—C10117.0 (3)C32—C27—C28—C291.2 (4)
C3—C4—C5—C1066.5 (3)C26—C27—C28—C29178.4 (2)
C10—C5—C6—C71.7 (4)C27—C28—C29—C300.3 (4)
C4—C5—C6—C7179.1 (2)C28—C29—C30—C310.5 (4)
C5—C6—C7—C81.1 (4)C29—C30—C31—C320.3 (4)
C6—C7—C8—C90.5 (4)C30—C31—C32—O33177.9 (2)
C7—C8—C9—C101.6 (5)C30—C31—C32—C270.6 (4)
C8—C9—C10—O11179.8 (3)C28—C27—C32—O33177.2 (2)
C8—C9—C10—C51.0 (4)C26—C27—C32—O333.1 (3)
C6—C5—C10—O11178.3 (2)C28—C27—C32—C311.4 (3)
C4—C5—C10—O110.9 (3)C26—C27—C32—C31178.3 (2)
C6—C5—C10—C90.6 (4)C31—C32—O33—C344.8 (3)
C4—C5—C10—C9179.8 (2)C27—C32—O33—C34173.7 (2)
C9—C10—O11—C123.0 (4)C32—O33—C34—C35170.8 (2)
C5—C10—O11—C12175.9 (2)O33—C34—C35—O3672.6 (3)
C10—O11—C12—C13176.5 (2)C34—C35—O36—C37177.4 (2)
O11—C12—C13—O1486.1 (3)C35—O36—C37—C3888.0 (3)
C12—C13—O14—C1569.8 (3)O36—C37—C38—O3971.8 (3)
C13—O14—C15—C16171.1 (2)C37—C38—O39—C4081.9 (3)
O14—C15—C16—O1767.8 (3)C38—O39—C40—C41172.4 (2)
C15—C16—O17—C18179.1 (2)O39—C40—C41—O4279.6 (3)
C16—O17—C18—C1911.0 (3)C40—C41—O42—C43172.9 (2)
C16—O17—C18—C23171.5 (2)C41—O42—C43—C1159.6 (2)
O17—C18—C19—C20175.6 (2)C41—O42—C43—C4420.9 (4)
C23—C18—C19—C201.7 (4)C47—C1—C43—O42179.0 (2)
C18—C19—C20—C210.0 (4)C2—C1—C43—O424.5 (3)
C19—C20—C21—C220.2 (4)C47—C1—C43—C440.6 (4)
C20—C21—C22—C231.9 (4)C2—C1—C43—C44175.9 (2)
C21—C22—C23—C183.5 (4)O42—C43—C44—C45179.9 (3)
C21—C22—C23—C24177.4 (2)C1—C43—C44—C450.4 (4)
O17—C18—C23—C22174.1 (2)C43—C44—C45—C461.2 (5)
C19—C18—C23—C223.4 (3)C44—C45—C46—C471.0 (5)
O17—C18—C23—C244.9 (3)C45—C46—C47—C10.0 (4)
C19—C18—C23—C24177.6 (2)C43—C1—C47—C460.8 (4)
C22—C23—C24—O2424.2 (3)C2—C1—C47—C46175.7 (3)
C18—C23—C24—O24154.8 (2)

Experimental details

Crystal data
Chemical formulaC40H40O9
Mr664.72
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)12.3268 (6), 11.0271 (6), 13.1142 (7)
β (°) 106.933 (1)
V3)1705.32 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
19455, 5222, 4511
Rint0.027
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.128, 1.01
No. of reflections5222
No. of parameters442
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.20

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).

 

References

First citationAnh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463–465.  Google Scholar
First citationBradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338–345.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425–432.  CrossRef CAS Web of Science Google Scholar
First citationHiraoka, M. (1978). In Crown Compounds: Their Characteristics and Application. Tokyo: Kodansha.  Google Scholar
First citationLevov, A. N., Komarova, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 1665–1670.  Web of Science CrossRef CAS Google Scholar
First citationLevov, A. N., Strokina, V. M., Komarova, A. I., Anh, L. T., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35–37.  Web of Science CSD CrossRef Google Scholar
First citationPedersen, C. J. (1988). Angew. Chem. Int. Ed. Engl. 27, 1053–1083.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1128-o1129
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds