metal-organic compounds
Tris(allylthiourea-κS)bromidozinc(II) bromide
aSchool of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266510, People's Republic of China, and bState Key Laboratory of Crystal Materials, (Shandong University), Jinan 250100, People's Republic of China
*Correspondence e-mail: sunhaiqing@sina.com
In the title compound, [ZnBr(C4H8N2S)3]Br, the ZnII atom is coordinated by one Br atom and the S atoms of three N-allylthiourea ligands in a distorted tetrahedral geometry. The ZnII atom and the two Br atoms are located on a threefold axis.
Related literature
For transition metal complexes containing allylthiourea ligands, see: Gambino et al. (2002); Olijnyk et al. (2003). For similar structures of N-allylthiourea coordination compounds, see: Zhang et al. (1990); Yuan et al. (1990); Hou et al. (1993); Sun et al. (2004). For compounds that have similar Zn—Br bond lengths, see: Bermejo et al. (2000, 2001); Castineiras et al. (2000).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811011809/rn2081sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811011809/rn2081Isup2.hkl
To 2.252 g ZnBr2 (0.01 mol) in 5 ml water, 3.486 g ATU (0.03 mol) in 10 ml water was slowly added with stirring. After standing for 1 h, the lower layer of oily solid was separated and dissolved in small volume of ethanol. Small single crystals of Zn[Br(ATU)3]Br were obtained by slow evaporation of this solution.
H atoms were placed geometrically (C—H = 0.93 - 0.97 Å, N—H = 0.86 Å) and refined using the riding model approximation, with Uiso = 1.2Ueq.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecule structure of ATZB with 30% displacement ellipsoids. H atoms are omitted for clarity. [Symmetry codes: (A)-y + 1, x-y, z; (B)-x + y+1, -x + 1, z] |
[ZnBr(C4H8N2S)3]Br | Dx = 1.762 Mg m−3 |
Mr = 573.74 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3 | Cell parameters from 2071 reflections |
a = 11.3591 (2) Å | θ = 2.5–27.5° |
c = 14.5172 (4) Å | µ = 5.13 mm−1 |
V = 1622.19 (6) Å3 | T = 296 K |
Z = 3 | Block, colourless |
F(000) = 858 | 0.35 × 0.32 × 0.32 mm |
Bruker APEXII CCD area-detector diffractometer | 1359 independent reflections |
Radiation source: fine-focus sealed tube | 1305 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −13→14 |
Tmin = 0.265, Tmax = 0.294 | k = −14→10 |
2605 measured reflections | l = −15→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.019 | H-atom parameters constrained |
wR(F2) = 0.045 | w = 1/[σ2(Fo2) + (0.P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.95 | (Δ/σ)max = 0.001 |
1359 reflections | Δρmax = 0.25 e Å−3 |
73 parameters | Δρmin = −0.33 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 522 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.047 (8) |
[ZnBr(C4H8N2S)3]Br | Z = 3 |
Mr = 573.74 | Mo Kα radiation |
Trigonal, R3 | µ = 5.13 mm−1 |
a = 11.3591 (2) Å | T = 296 K |
c = 14.5172 (4) Å | 0.35 × 0.32 × 0.32 mm |
V = 1622.19 (6) Å3 |
Bruker APEXII CCD area-detector diffractometer | 1359 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1305 reflections with I > 2σ(I) |
Tmin = 0.265, Tmax = 0.294 | Rint = 0.018 |
2605 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | H-atom parameters constrained |
wR(F2) = 0.045 | Δρmax = 0.25 e Å−3 |
S = 0.95 | Δρmin = −0.33 e Å−3 |
1359 reflections | Absolute structure: Flack (1983), 522 Friedel pairs |
73 parameters | Absolute structure parameter: 0.047 (8) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.3333 | 0.6667 | 0.59387 (3) | 0.02676 (12) | |
Br2 | 0.3333 | 0.6667 | 0.33457 (3) | 0.03334 (12) | |
Br1 | 0.3333 | 0.6667 | 0.76360 (3) | 0.04428 (15) | |
S1 | 0.19315 (8) | 0.43514 (7) | 0.56132 (5) | 0.03569 (18) | |
N2 | 0.2489 (3) | 0.2409 (2) | 0.53827 (17) | 0.0356 (5) | |
H2 | 0.1781 | 0.1993 | 0.5727 | 0.043* | |
N1 | 0.3941 (3) | 0.4382 (2) | 0.46202 (16) | 0.0380 (6) | |
H1A | 0.4379 | 0.4009 | 0.4402 | 0.046* | |
H1B | 0.4190 | 0.5211 | 0.4483 | 0.046* | |
C2 | 0.3134 (3) | 0.1641 (3) | 0.5097 (2) | 0.0397 (7) | |
H2A | 0.2822 | 0.0861 | 0.5501 | 0.048* | |
H2B | 0.4107 | 0.2207 | 0.5188 | 0.048* | |
C1 | 0.2880 (3) | 0.3680 (3) | 0.51681 (16) | 0.0280 (5) | |
C3 | 0.2890 (4) | 0.1143 (4) | 0.4121 (2) | 0.0526 (9) | |
H3 | 0.3323 | 0.0673 | 0.3931 | 0.063* | |
C4 | 0.2152 (5) | 0.1295 (4) | 0.3523 (3) | 0.0690 (11) | |
H4A | 0.1697 | 0.1757 | 0.3677 | 0.083* | |
H4B | 0.2069 | 0.0943 | 0.2932 | 0.083* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.02154 (17) | 0.02154 (17) | 0.0372 (3) | 0.01077 (8) | 0.000 | 0.000 |
Br2 | 0.03343 (18) | 0.03343 (18) | 0.0332 (2) | 0.01672 (9) | 0.000 | 0.000 |
Br1 | 0.0489 (2) | 0.0489 (2) | 0.0351 (2) | 0.02443 (11) | 0.000 | 0.000 |
S1 | 0.0256 (4) | 0.0211 (3) | 0.0567 (4) | 0.0089 (3) | 0.0086 (3) | −0.0029 (3) |
N2 | 0.0387 (14) | 0.0236 (12) | 0.0457 (11) | 0.0164 (11) | 0.0132 (11) | 0.0082 (10) |
N1 | 0.0420 (15) | 0.0247 (12) | 0.0473 (12) | 0.0166 (12) | 0.0169 (11) | 0.0073 (10) |
C2 | 0.0461 (19) | 0.0288 (15) | 0.0507 (15) | 0.0236 (14) | 0.0055 (14) | 0.0045 (13) |
C1 | 0.0317 (15) | 0.0225 (14) | 0.0312 (11) | 0.0146 (12) | −0.0006 (11) | −0.0038 (10) |
C3 | 0.061 (2) | 0.0367 (18) | 0.063 (2) | 0.0268 (18) | 0.0123 (18) | −0.0036 (16) |
C4 | 0.079 (3) | 0.058 (2) | 0.059 (2) | 0.026 (2) | −0.005 (2) | −0.0069 (18) |
Zn1—S1i | 2.3426 (7) | N1—H1A | 0.8600 |
Zn1—S1 | 2.3426 (7) | N1—H1B | 0.8600 |
Zn1—S1ii | 2.3426 (7) | C2—C3 | 1.499 (5) |
Zn1—Br1 | 2.4640 (6) | C2—H2A | 0.9700 |
S1—C1 | 1.727 (3) | C2—H2B | 0.9700 |
N2—C1 | 1.318 (4) | C3—C4 | 1.278 (6) |
N2—C2 | 1.452 (4) | C3—H3 | 0.9300 |
N2—H2 | 0.8600 | C4—H4A | 0.9300 |
N1—C1 | 1.327 (3) | C4—H4B | 0.9300 |
S1i—Zn1—S1 | 116.038 (14) | N2—C2—H2A | 108.2 |
S1i—Zn1—S1ii | 116.038 (14) | C3—C2—H2A | 108.2 |
S1—Zn1—S1ii | 116.038 (13) | N2—C2—H2B | 108.2 |
S1i—Zn1—Br1 | 101.64 (2) | C3—C2—H2B | 108.2 |
S1—Zn1—Br1 | 101.64 (2) | H2A—C2—H2B | 107.4 |
S1ii—Zn1—Br1 | 101.64 (2) | N2—C1—N1 | 120.5 (3) |
C1—S1—Zn1 | 110.33 (10) | N2—C1—S1 | 116.9 (2) |
C1—N2—C2 | 126.6 (3) | N1—C1—S1 | 122.6 (2) |
C1—N2—H2 | 116.7 | C4—C3—C2 | 127.0 (4) |
C2—N2—H2 | 116.7 | C4—C3—H3 | 116.5 |
C1—N1—H1A | 120.0 | C2—C3—H3 | 116.5 |
C1—N1—H1B | 120.0 | C3—C4—H4A | 120.0 |
H1A—N1—H1B | 120.0 | C3—C4—H4B | 120.0 |
N2—C2—C3 | 116.3 (3) | H4A—C4—H4B | 120.0 |
S1i—Zn1—S1—C1 | 141.40 (9) | C2—N2—C1—S1 | −179.4 (2) |
S1ii—Zn1—S1—C1 | −0.08 (10) | Zn1—S1—C1—N2 | 145.88 (19) |
Br1—Zn1—S1—C1 | −109.34 (9) | Zn1—S1—C1—N1 | −35.4 (2) |
C1—N2—C2—C3 | −75.8 (4) | N2—C2—C3—C4 | −1.8 (6) |
C2—N2—C1—N1 | 1.8 (4) |
Symmetry codes: (i) −x+y, −x+1, z; (ii) −y+1, x−y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [ZnBr(C4H8N2S)3]Br |
Mr | 573.74 |
Crystal system, space group | Trigonal, R3 |
Temperature (K) | 296 |
a, c (Å) | 11.3591 (2), 14.5172 (4) |
V (Å3) | 1622.19 (6) |
Z | 3 |
Radiation type | Mo Kα |
µ (mm−1) | 5.13 |
Crystal size (mm) | 0.35 × 0.32 × 0.32 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.265, 0.294 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2605, 1359, 1305 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.045, 0.95 |
No. of reflections | 1359 |
No. of parameters | 73 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.33 |
Absolute structure | Flack (1983), 522 Friedel pairs |
Absolute structure parameter | 0.047 (8) |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).
Acknowledgements
The authors thank the State Key Laboratory of Crystal Materials Open Project (KF0804) for financial support.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bermejo, E., Castineiras, A., Dominguez, R., Carballo, R., Maichle-Mossmer, C., Strähle, J., Liberta, A. E. & West, D. X. (2000). Z. Anorg. Allg. Chem. 626, 878–884. CrossRef CAS Google Scholar
Bermejo, E., Castineiras, A., Fostiak, L. M., Garcia, I., Llamas-Saiz, A. L., Swearingen, J. K. & West, D. X. (2001). Z. Naturforsch. Teil B, 56, 1297–1305. CAS Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Castineiras, A., Garcia, I., Bermejo, E. & West, D. X. (2000). Z. Naturforsch. Teil B, 55, 511–518. CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gambino, D., Kremer, E. & Baran, E. J. (2002). Spectrochim. Acta, A58, 3085–3092. CrossRef Google Scholar
Hou, W. B., Yuan, D. R., Xu, D., Zhang, N., Yu, W. T., Liu, M. G., Tao, X. T., Sun, S. Y. & Jiang, M. H. (1993). J. Cryst. Growth, 133, 71–74. CAS Google Scholar
Olijnyk, V. V., Filinchuk, Ya. E. & Pandiak, N. L. (2003). Z. Anorg. Allg. Chem. 629, 1904–1905. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, H.-Q., Yu, W.-T., Yuan, D.-R., Wang, X.-Q. & Gang, X. (2004). Acta Cryst. E60, m1431–m1433. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yuan, D. R., Zhang, N., Tao, X. T., Xu, D. & Jiang, M. H. (1990). Chin. Phys. Lett. 7, 334–336. CAS Google Scholar
Zhang, N., Jiang, M. H., Yuan, D. R., Xu, D., Yu, W. T. & Tao, X. T. (1990). Chin. Sci. Bull. 35, 646–649. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coordination compounds with N-allylthiourea (abbreviated as ATU) ligands have many kinds of applications, such as electroplating (Gambino et al., 2002), radiotherapeutic (Olijnyk et al., 2003) and nonlinear optical materials(Zhang et al., 1990; Yuan et al., 1990; Hou et al., 1993; Sun et al., 2004).
The title compound consists of [ZnBr(ATU)3]+ and Br- ions. The ZnII atom is coordinated to a Br atom and three ATU ligands through their S atoms in a distorted tetrahedral arrangement. The bond angles around the Zn atom range from 101.64 (2)° to 116.038 (14)°, which show an obvious deviation from the ideal tetrahedral value of 109.5°. Zn and Br1 atoms lie on the threefold axis which is perpendicular to the plane of the three S atoms. The Br2 atom also lies on the axis(Fig.1). The Zn—Br1 distance [2.4640 (6) Å] is comparable with the average values reported in other complexes containing Zn—Br bonds, e.g. 2.4367 (9) and 2.445 (1)Å (Bermejo et al., 2001), 2.4394 (8) and 2.4457 (7)Å (Castineiras et al., 2000), 2.4207 (7) and 2.4654 (8)Å (Bermejo et al., 2000).