organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1051

Penta­decyl­ammonium methyl sulfate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: diyouying@126.com

(Received 28 February 2011; accepted 25 March 2011; online 7 April 2011)

In the crystal of the title compound, C15H34N+·CH3SO4, the cations and anions are joined together via strong N—H⋯O hydrogen bonds into layers parallel to (001).

Related literature

Long-chain n-alkyl­ammonium halides are widely used as surfacta­nts (Aratono et al., 1998[Aratono, M., Villeneuve, M., Takiue, T., Ikeda, N. & Iyota, H. (1998). J. Colloid Interface Sci. 200, 161-171.]; Tornblom et al., 2000[Tornblom, M., Sitnikov, R. & Henriksson, U. (2000). J. Phys. Chem. B, 104, 1529-1538.]) and as models for biological membranes (Ringsdorf et al., 1988[Ringsdorf, H., Schlarb, B. & Venzmer, J. (1988). Angew. Chem. Int. Ed. Engl. 27, 113-158.]). For solid-solid phase transitions in n-alkyl­ammonium chlorides, see: Terreros et al. (2000[Terreros, A., Galera-Gomez, P. J. & Lopez-Cabarcos, E. (2000). J. Therm. Anal. Calorim. 61, 341-350.]).

[Scheme 1]

Experimental

Crystal data
  • C15H34N+·CH3O4S

  • Mr = 339.53

  • Monoclinic, P 21 /m

  • a = 5.4260 (5) Å

  • b = 7.4981 (6) Å

  • c = 24.376 (2) Å

  • β = 93.557 (1)°

  • V = 989.83 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 298 K

  • 0.31 × 0.30 × 0.28 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.946, Tmax = 0.951

  • 5243 measured reflections

  • 1880 independent reflections

  • 1025 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.228

  • S = 1.06

  • 1880 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.89 2.03 2.857 (6) 155
N1—H1B⋯O3ii 0.89 2.03 2.911 (3) 169
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Systems, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Systems, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Long-chain n–alkylammonium halides are widely used as surfactants (Aratono et al., 1998; Tornblom et al., 2000) and as models for biological membranes (Ringsdorf et al., 1988). They exhibit polymorphism at room temperature; solid-solid phase transitions occurred in n–alkylammonium chlorides (Terreros et al., 2000). As a part of the studies on novel potential phase transition materials with the thermochemical properties such as n–alkylammonium chlorides, we report the crystal structure of the title compound (Fig. 1).

Atoms N1–C15 are coplanar in the title compound. The Space group of the title compound is P2(1)/m, however, the space group is P2(1)/c (Melanie Rademeyer,2009). The title compound has a symmetry plane, similarly, the n-pentadecylammonium bromide monohydrates has a symmetry axis. Furthermore, the S, O1, O2 and C16 are coplanar in the title compound.

The crystal packing (Fig. 2) is stabilized by one intermolecular N—H···O hydrogen bonds forming ionic pairs, and two other intramolecular N—H···O hydrogen bonds (Table 1).

Related literature top

Long-chain n-alkylammonium halides are widely used as surfactants (Aratono et al., 1998; Tornblom et al., 2000) and as models for biological membranes (Ringsdorf et al., 1988). For solid-solid phase transitions in n-alkylammonium chlorides, see: Terreros et al. (2000).

Experimental top

n–Pentadecylammonium methyl sulfate was prepared by the addition of sulfuric acid to an methanol solution of n–pentadecylamine. The mixture was heated and stirred under reflux for 6 h. Single crystals suitable for X–ray diffraction were prepared by evaporation of the resulting solutionat room temperature. Analysis, calculated for C16H37NSO4 (Mr =339.53): C 56.60, H 10.98, N 4.13%; found: C 56.59, H 10.99, N 4.12%.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with methylene C—H distances of 0.97 Å, methyl C—H distances of 0.96 Å, N—H 0.89 Å and refined as riding on their parent atoms. TheUiso(H) values were set at 1.2Ueq for the methylene H atoms and at 1.5Ueq for other H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. N—H···O interactions and intramolecular (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x + 1, y, z]
Pentadecylammonium methyl sulfate top
Crystal data top
C15H34N+·CH3O4SF(000) = 376
Mr = 339.53Dx = 1.139 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 823 reflections
a = 5.4260 (5) Åθ = 2.5–26.3°
b = 7.4981 (6) ŵ = 0.18 mm1
c = 24.376 (2) ÅT = 298 K
β = 93.557 (1)°Acicular, colourless
V = 989.83 (15) Å30.31 × 0.30 × 0.28 mm
Z = 2
Data collection top
Siemens SMART CCD area-detector
diffractometer
1880 independent reflections
Radiation source: fine-focus sealed tube1025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 10 pixels mm-1θmax = 25.0°, θmin = 2.5°
phi and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 88
Tmin = 0.946, Tmax = 0.951l = 2628
5243 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1131P)2]
where P = (Fo2 + 2Fc2)/3
1880 reflections(Δ/σ)max = 0.001
130 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H34N+·CH3O4SV = 989.83 (15) Å3
Mr = 339.53Z = 2
Monoclinic, P21/mMo Kα radiation
a = 5.4260 (5) ŵ = 0.18 mm1
b = 7.4981 (6) ÅT = 298 K
c = 24.376 (2) Å0.31 × 0.30 × 0.28 mm
β = 93.557 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
1880 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1025 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.951Rint = 0.062
5243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.228H-atom parameters constrained
S = 1.06Δρmax = 0.43 e Å3
1880 reflectionsΔρmin = 0.24 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.3365 (3)0.75000.07723 (6)0.0623 (6)
O10.3834 (8)0.75000.14136 (16)0.0806 (13)
O20.0747 (8)0.75000.07105 (18)0.1042 (16)
O30.4507 (5)0.5923 (3)0.05732 (12)0.0784 (10)
N11.2215 (8)0.25000.03004 (18)0.0562 (12)
H1A1.17490.25000.00560.084*
H1B1.31130.34690.03810.084*
C10.9998 (10)0.25000.0626 (2)0.0559 (14)
H10.90120.35440.05270.067*
C21.0542 (10)0.25000.1226 (2)0.0582 (14)
H21.15210.35450.13270.070*
C30.8258 (10)0.25000.1545 (2)0.0601 (14)
H30.72850.35430.14370.072*
C40.8663 (11)0.25000.2159 (2)0.0702 (16)
H40.96410.35420.22650.084*
C50.6433 (11)0.25000.2481 (2)0.0720 (17)
H50.54580.35410.23740.086*
C60.6793 (13)0.25000.3087 (3)0.087 (2)
H60.77820.35390.31900.104*
C70.4670 (12)0.25000.3429 (2)0.0811 (19)
H70.36820.35380.33250.097*
C80.5000 (14)0.25000.4025 (3)0.098 (2)
H80.59950.35370.41270.117*
C90.2936 (12)0.25000.4378 (2)0.085 (2)
H90.19410.35380.42770.102*
C100.3271 (14)0.25000.4972 (3)0.101 (2)
H100.42690.35370.50720.122*
C110.1238 (13)0.25000.5329 (3)0.089 (2)
H110.02410.35370.52280.106*
C120.1563 (14)0.25000.5919 (3)0.106 (2)
H120.25650.35360.60180.127*
C130.0447 (14)0.25000.6282 (3)0.092 (2)
H130.14490.35360.61840.111*
C140.0117 (16)0.25000.6873 (3)0.116 (3)
H140.08820.35370.69730.139*
C150.2143 (16)0.25000.7228 (3)0.113 (3)
H15C0.15140.25000.76050.169*
H15D0.31340.35450.71570.169*
C160.6344 (14)0.75000.1633 (3)0.096 (2)
H16A0.63790.75000.20280.144*
H16B0.71680.85450.15100.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0630 (10)0.0772 (11)0.0489 (9)0.0000.0208 (7)0.000
O10.077 (3)0.116 (3)0.050 (3)0.0000.015 (2)0.000
O20.066 (3)0.177 (5)0.071 (3)0.0000.021 (2)0.000
O30.096 (2)0.0590 (16)0.083 (2)0.0101 (15)0.0296 (18)0.0184 (14)
N10.054 (3)0.056 (3)0.060 (3)0.0000.017 (2)0.000
C10.052 (3)0.063 (3)0.054 (4)0.0000.017 (3)0.000
C20.057 (3)0.065 (3)0.054 (4)0.0000.012 (3)0.000
C30.060 (3)0.065 (3)0.057 (4)0.0000.018 (3)0.000
C40.072 (4)0.081 (4)0.060 (4)0.0000.020 (3)0.000
C50.074 (4)0.087 (4)0.056 (4)0.0000.023 (3)0.000
C60.083 (5)0.112 (5)0.067 (4)0.0000.026 (3)0.000
C70.080 (5)0.104 (5)0.063 (4)0.0000.028 (3)0.000
C80.089 (5)0.136 (6)0.071 (5)0.0000.027 (4)0.000
C90.082 (5)0.111 (5)0.064 (5)0.0000.027 (4)0.000
C100.095 (6)0.139 (6)0.073 (5)0.0000.030 (4)0.000
C110.090 (5)0.115 (5)0.064 (5)0.0000.026 (4)0.000
C120.104 (6)0.143 (7)0.074 (5)0.0000.034 (4)0.000
C130.100 (5)0.116 (6)0.064 (5)0.0000.029 (4)0.000
C140.121 (7)0.152 (7)0.077 (6)0.0000.041 (5)0.000
C150.128 (7)0.135 (7)0.081 (6)0.0000.043 (5)0.000
C160.110 (6)0.106 (5)0.072 (5)0.0000.013 (4)0.000
Geometric parameters (Å, º) top
S1—O21.419 (5)C7—C81.453 (8)
S1—O3i1.434 (3)C7—H70.9700
S1—O31.434 (3)C8—C91.454 (8)
S1—O11.568 (4)C8—H80.9700
O1—C161.432 (8)C9—C101.450 (8)
N1—C11.481 (6)C9—H90.9700
N1—H1A0.8900C10—C111.445 (8)
N1—H1B0.8900C10—H100.9700
C1—C21.474 (7)C11—C121.439 (9)
C1—H10.9700C11—H110.9700
C2—C31.503 (7)C12—C131.447 (9)
C2—H20.9700C12—H120.9700
C3—C41.500 (7)C13—C141.440 (8)
C3—H30.9700C13—H130.9700
C4—C51.483 (7)C14—C151.441 (9)
C4—H40.9700C14—H140.9700
C5—C61.478 (8)C15—H15C0.9600
C5—H50.9700C15—H15D0.9600
C6—C71.462 (8)C16—H16A0.9600
C6—H60.9700C16—H16B0.9600
O2—S1—O3i114.50 (15)C8—C7—H7107.0
O2—S1—O3114.50 (15)C6—C7—H7107.1
O3i—S1—O3111.2 (2)C7—C8—C9122.7 (7)
O2—S1—O1101.8 (3)C7—C8—H8106.7
O3i—S1—O1106.91 (15)C9—C8—H8106.6
O3—S1—O1106.91 (15)C10—C9—C8122.6 (6)
C16—O1—S1117.7 (4)C10—C9—H9106.7
C1—N1—H1A109.4C8—C9—H9106.7
C1—N1—H1B109.5C11—C10—C9123.2 (7)
H1A—N1—H1B109.5C11—C10—H10106.5
C2—C1—N1114.3 (4)C9—C10—H10106.5
C2—C1—H1108.6C12—C11—C10123.4 (7)
N1—C1—H1108.7C12—C11—H11106.5
C1—C2—C3113.1 (4)C10—C11—H11106.4
C1—C2—H2109.0C11—C12—C13124.2 (7)
C3—C2—H2108.9C11—C12—H12106.3
C4—C3—C2116.2 (5)C13—C12—H12106.3
C4—C3—H3108.3C14—C13—C12124.1 (7)
C2—C3—H3108.2C14—C13—H13106.3
C5—C4—C3117.0 (5)C12—C13—H13106.3
C5—C4—H4108.0C13—C14—C15123.2 (8)
C3—C4—H4108.0C13—C14—H14106.5
C6—C5—C4117.9 (5)C15—C14—H14106.5
C6—C5—H5107.8C14—C15—H15C109.6
C4—C5—H5107.8C14—C15—H15D109.4
C7—C6—C5120.6 (6)H15C—C15—H15D109.5
C7—C6—H6107.2O1—C16—H16A109.5
C5—C6—H6107.2O1—C16—H16B109.5
C8—C7—C6121.1 (6)H16A—C16—H16B109.5
O2—S1—O1—C16180.000 (1)C5—C6—C7—C8180.000 (3)
O3i—S1—O1—C1659.57 (14)C6—C7—C8—C9180.000 (3)
O3—S1—O1—C1659.57 (14)C7—C8—C9—C10180.000 (4)
N1—C1—C2—C3180.0C8—C9—C10—C11180.000 (3)
C1—C2—C3—C4180.000 (1)C9—C10—C11—C12180.000 (4)
C2—C3—C4—C5180.000 (1)C10—C11—C12—C13180.000 (5)
C3—C4—C5—C6180.000 (2)C11—C12—C13—C14180.000 (6)
C4—C5—C6—C7180.000 (2)C12—C13—C14—C15180.000 (6)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.892.032.857 (6)155
N1—H1B···O3iii0.892.032.911 (3)169
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H34N+·CH3O4S
Mr339.53
Crystal system, space groupMonoclinic, P21/m
Temperature (K)298
a, b, c (Å)5.4260 (5), 7.4981 (6), 24.376 (2)
β (°) 93.557 (1)
V3)989.83 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.31 × 0.30 × 0.28
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.946, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
5243, 1880, 1025
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.228, 1.06
No. of reflections1880
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.24

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.892.032.857 (6)154.7
N1—H1B···O3ii0.892.032.911 (3)168.7
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

We acknowledge the National Natural Science Foundation of China (20973089) for financial support.

References

First citationAratono, M., Villeneuve, M., Takiue, T., Ikeda, N. & Iyota, H. (1998). J. Colloid Interface Sci. 200, 161–171.  Web of Science CrossRef CAS Google Scholar
First citationRingsdorf, H., Schlarb, B. & Venzmer, J. (1988). Angew. Chem. Int. Ed. Engl. 27, 113–158.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-Ray Systems, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTerreros, A., Galera-Gomez, P. J. & Lopez-Cabarcos, E. (2000). J. Therm. Anal. Calorim. 61, 341–350.  Web of Science CrossRef CAS Google Scholar
First citationTornblom, M., Sitnikov, R. & Henriksson, U. (2000). J. Phys. Chem. B, 104, 1529–1538.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1051
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds