organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1034-o1035

(E)-1-(2,4-Di­nitro­phen­yl)-2-[1-(thio­phen-2-yl)ethyl­­idene]hydrazine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 14 March 2011; accepted 25 March 2011; online 7 April 2011)

The mol­ecule of the title compound, C12H10N4O4S, is slightly twisted, with a dihedral angle of 8.23 (9)° between the benzene and thio­phene rings. One nitro group is co-planar [O—N—C—C torsion angles = −0.5 (3) and −1.9 (3)°] whereas the other is slightly twisted with respect to the benzene ring [O—N—C—C torsion angles = −5.1 (3) and −5.7 (3)°]. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions into screw chains along the b axis. The mol­ecular conformation is consolidated by an intra­molecular N—H⋯O hydrogen bond.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Chantrapromma et al. (2010[Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2010). Acta Cryst. E66, o2994-o2995.]); Fun et al. (2010[Fun, H.-K., Jansrisewangwong, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o2401-o2402.]); Jansrisewangwong et al. (2010[Jansrisewangwong, P., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2170.]); Shan et al. (2008[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1153.]). For background to and the biological activity of hydrazones, see: Baughman et al. (2004[Baughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103-o106.]); Bedia et al. (2006[Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); El-Tabl et al. (2008)[El-Tabl, A. S., El-Saied, F. A., Plass, W. & Al-Hakimi, A. N. (2008). Spectrochim. Acta Part A, 71, 90-99.]; Ramamohan et al. (1995[Ramamohan, L., Shikkaragol, R. K., Angadi, S. D. & Kulkarni, V. H. (1995). Asian J. Pure Appl. Chem. 1, 86. ]); Rollas & Küçükgüzel (2007[Rollas, S. & Küçükgüzel, Ş. G. (2007). Molecules 12, 1910-1939.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N4O4S

  • Mr = 306.30

  • Monoclinic, P 21 /c

  • a = 9.4868 (5) Å

  • b = 15.3912 (8) Å

  • c = 8.9756 (4) Å

  • β = 91.672 (2)°

  • V = 1310.00 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.60 × 0.19 × 0.16 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.854, Tmax = 0.959

  • 10366 measured reflections

  • 2414 independent reflections

  • 2176 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.109

  • S = 1.08

  • 2414 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1 0.79 (3) 2.00 (3) 2.618 (3) 134 (2)
C6—H6A⋯O2i 0.93 2.45 3.099 (3) 127
C9—H9A⋯O4ii 0.93 2.47 3.147 (2) 129
C11—H11A⋯O3i 0.93 2.57 3.240 (3) 129
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazones are an important class of compounds which are used in numerous biological and pharmacological applications as insecticidal, antitumor, antioxidant, antifungal, antibacterial, antiviral and antituberculosis compounds (Bedia et al., 2006; El-Tabl et al., 2008; Ramamohan et al., 1995; Rollas & Küçükgüzel, 2007). Several of them also exhibit good nonlinear optical properties (Baughman et al., 2004). In our previous studies we reported the syntheses and crystal structures of some hydrazone derivatives (Chantrapromma et al., 2010; Fun et al., 2010; Jansrisewangwong et al., 2010). The title compound (I) was synthesized as part of our on going research on biological activities of hydrazones.

The molecule of (I), (Fig. 1), is slightly twisted with the dihedral angle between the benzene and thiophene rings of 8.23 (9)°. The middle ethylidinehydrazine unit (N1/N2/C7/C12) is planar with the r.m.s. 0.0033 (2) Å and the torsion angle N2–N1–C7–C12 = -1.1 (3)°. This N—N=C—C bridge makes dihedral angles of 6.62 (11) and 2.14 (12)° with the benzene and thiophene rings, respectively. The nitro group at atom C2 is co-planar [torsion angles O1–N3–C2–C1 = -0.5 (3)° and O2–N3–C2–C3 = -1.9 (3)°] whereby that at atom C4 is slightly twisted with respect to the benzene ring [torsion angles O3–N4–C4–C3 = -5.1 (3)° and O4–N4–C4–C5 = -5.7 (3)°]. The bond distances are of normal values (Allen et al., 1987) and comparable with those found in related structures (Jansrisewangwong et al., 2010; Shan et al., 2008).

In the crystal structure (Fig. 2), the molecules are linked by C—H···O weak interactions (Table 1) into screw chains along the b axis. The molecular conformation is consolidated by an intramolecular N—H···O hydrogen bonding interaction (Table 1). C···Niii, iv[3.219 (3)–3.232 (3) Å], C···Oiii, v,vi[3.099 (3)–3.187 (2) Å] and N···Ovii[2.971 (2) Å] short contacts are also observed [symmetry codes: (iii) x, 1/2 - y, -1/2 + z; (iv) 1 + x, 1/2 - y, -1/2 + z; (v) 1 - x, 1/2 + y, 3/2 - z; (vi) 1 + x, y, -1 + z and (vii) 1 - x, 1 - y, 2 - z].

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Chantrapromma et al. (2010); Fun et al. (2010); Jansrisewangwong et al. (2010); Shan et al. (2008). For background to and the biological activity of hydrazones, see: Baughman et al. (2004); Bedia et al. (2006); El-Tabl et al. (2008); Ramamohan et al. (1995); Rollas & Küçükgüzel (2007). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by dissolving 2,4-dinitrophenylhydrazine (0.40 g, 2 mmol) in ethanol (10 ml) and H2SO4 (conc.) (98%, 0.5 ml) was slowly added with stirring. Then 2-acetylthiophene (0.20 ml, 2 mmol) was added to the solution with continuous stirring. The solution was refluxed for 30 min yielding an orange-red solid, which was filtered off and washed with methanol. Orange block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from ethanol by slow evaporation of the solvent at room temperature over several days. Mp. 516–518 K.

Refinement top

The H atom attached to N2 was located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.97 Å from S1 and the deepest hole is located at 0.67 Å from S1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. The intramolecular hydrogen bond is drawn as dash line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis. Hydrogen bonds are drawn as dashed lines.
(E)-1-(2,4-Dinitrophenyl)-2-[1-(thiophen-2-yl)ethylidene]hydrazine top
Crystal data top
C12H10N4O4SF(000) = 632
Mr = 306.30Dx = 1.553 Mg m3
Monoclinic, P21/cMelting point = 516–518 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.4868 (5) ÅCell parameters from 2414 reflections
b = 15.3912 (8) Åθ = 2.2–25.5°
c = 8.9756 (4) ŵ = 0.27 mm1
β = 91.672 (2)°T = 100 K
V = 1310.00 (11) Å3Block, orange
Z = 40.60 × 0.19 × 0.16 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
2414 independent reflections
Radiation source: sealed tube2176 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1011
Tmin = 0.854, Tmax = 0.959k = 1814
10366 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0504P)2 + 1.3252P]
where P = (Fo2 + 2Fc2)/3
2414 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C12H10N4O4SV = 1310.00 (11) Å3
Mr = 306.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4868 (5) ŵ = 0.27 mm1
b = 15.3912 (8) ÅT = 100 K
c = 8.9756 (4) Å0.60 × 0.19 × 0.16 mm
β = 91.672 (2)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
2414 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2176 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.959Rint = 0.027
10366 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.38 e Å3
2414 reflectionsΔρmin = 0.44 e Å3
195 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18528 (6)0.07603 (4)1.08312 (6)0.02114 (18)
O10.38055 (16)0.48642 (10)0.89817 (17)0.0234 (4)
O20.5358 (2)0.53354 (10)0.7464 (2)0.0367 (5)
O30.82477 (16)0.34691 (11)0.46978 (17)0.0263 (4)
O40.82742 (17)0.20890 (11)0.51711 (18)0.0295 (4)
N10.29668 (17)0.24567 (11)1.00495 (18)0.0165 (4)
N20.35684 (18)0.31993 (13)0.9518 (2)0.0169 (4)
H1N20.328 (2)0.3673 (18)0.967 (3)0.018 (6)*
N30.47704 (19)0.47362 (12)0.8097 (2)0.0219 (4)
N40.78273 (18)0.28269 (13)0.53639 (19)0.0212 (4)
C10.4601 (2)0.31302 (13)0.8510 (2)0.0150 (4)
C20.5214 (2)0.38567 (13)0.7812 (2)0.0165 (4)
C30.6272 (2)0.37572 (14)0.6779 (2)0.0185 (5)
H3A0.66620.42390.63220.022*
C40.6724 (2)0.29369 (14)0.6451 (2)0.0170 (4)
C50.6148 (2)0.22010 (14)0.7110 (2)0.0169 (4)
H5A0.64690.16490.68660.020*
C60.5112 (2)0.23004 (13)0.8115 (2)0.0158 (4)
H6A0.47310.18100.85530.019*
C70.2011 (2)0.25572 (14)1.1041 (2)0.0166 (4)
C80.1380 (2)0.17563 (14)1.1560 (2)0.0173 (4)
C90.0380 (2)0.16528 (15)1.2632 (2)0.0202 (5)
H9A0.00170.21131.31440.024*
C100.0020 (2)0.07644 (14)1.2874 (2)0.0188 (5)
H10A0.06280.05811.35650.023*
C110.0736 (2)0.02170 (16)1.1973 (2)0.0237 (5)
H11A0.06300.03841.19770.028*
C120.1551 (2)0.34159 (14)1.1648 (2)0.0211 (5)
H12A0.23640.37401.19860.032*
H12B0.09410.33211.24680.032*
H12C0.10540.37361.08800.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0239 (3)0.0203 (3)0.0198 (3)0.0021 (2)0.0103 (2)0.0022 (2)
O10.0255 (8)0.0191 (8)0.0262 (8)0.0024 (6)0.0095 (7)0.0037 (6)
O20.0487 (11)0.0151 (9)0.0478 (11)0.0032 (8)0.0247 (9)0.0050 (8)
O30.0254 (8)0.0333 (10)0.0206 (8)0.0092 (7)0.0095 (6)0.0043 (7)
O40.0300 (9)0.0300 (10)0.0297 (9)0.0039 (7)0.0190 (7)0.0033 (7)
N10.0174 (8)0.0171 (9)0.0152 (8)0.0018 (7)0.0052 (7)0.0004 (7)
N20.0190 (9)0.0125 (10)0.0194 (9)0.0006 (8)0.0072 (7)0.0015 (7)
N30.0272 (10)0.0163 (10)0.0225 (9)0.0019 (8)0.0058 (8)0.0020 (8)
N40.0188 (9)0.0277 (11)0.0174 (9)0.0020 (8)0.0063 (7)0.0013 (8)
C10.0150 (9)0.0188 (11)0.0113 (9)0.0003 (8)0.0024 (7)0.0001 (8)
C20.0181 (10)0.0142 (10)0.0173 (10)0.0011 (8)0.0035 (8)0.0003 (8)
C30.0205 (10)0.0188 (11)0.0162 (10)0.0045 (9)0.0026 (8)0.0037 (8)
C40.0160 (10)0.0234 (12)0.0120 (9)0.0024 (9)0.0075 (8)0.0008 (8)
C50.0182 (10)0.0173 (11)0.0152 (10)0.0023 (8)0.0029 (8)0.0026 (8)
C60.0182 (10)0.0147 (10)0.0148 (9)0.0012 (8)0.0048 (8)0.0009 (8)
C70.0172 (10)0.0199 (11)0.0127 (9)0.0008 (8)0.0020 (8)0.0018 (8)
C80.0160 (10)0.0216 (12)0.0143 (10)0.0004 (8)0.0031 (8)0.0027 (8)
C90.0187 (10)0.0261 (12)0.0163 (10)0.0004 (9)0.0065 (8)0.0025 (9)
C100.0168 (10)0.0256 (12)0.0146 (10)0.0032 (9)0.0094 (8)0.0001 (9)
C110.0251 (11)0.0236 (12)0.0229 (11)0.0064 (9)0.0076 (9)0.0018 (9)
C120.0228 (11)0.0219 (12)0.0191 (11)0.0001 (9)0.0093 (9)0.0025 (9)
Geometric parameters (Å, º) top
S1—C111.714 (2)C3—H3A0.9300
S1—C81.731 (2)C4—C51.396 (3)
O1—N31.245 (2)C5—C61.362 (3)
O2—N31.226 (2)C5—H5A0.9300
O3—N41.228 (2)C6—H6A0.9300
O4—N41.226 (2)C7—C81.453 (3)
N1—C71.298 (3)C7—C121.499 (3)
N1—N21.370 (3)C8—C91.380 (3)
N2—C11.357 (3)C9—C101.428 (3)
N2—H1N20.79 (3)C9—H9A0.9300
N3—C21.443 (3)C10—C111.363 (3)
N4—C41.462 (3)C10—H10A0.9300
C1—C21.415 (3)C11—H11A0.9300
C1—C61.415 (3)C12—H12A0.9600
C2—C31.394 (3)C12—H12B0.9600
C3—C41.368 (3)C12—H12C0.9600
C11—S1—C891.98 (11)C4—C5—H5A120.4
C7—N1—N2116.47 (18)C5—C6—C1121.80 (19)
C1—N2—N1118.89 (18)C5—C6—H6A119.1
C1—N2—H1N2116.4 (18)C1—C6—H6A119.1
N1—N2—H1N2124.2 (18)N1—C7—C8114.90 (19)
O2—N3—O1121.94 (18)N1—C7—C12124.81 (19)
O2—N3—C2119.03 (18)C8—C7—C12120.30 (18)
O1—N3—C2119.03 (17)C9—C8—C7128.3 (2)
O4—N4—O3123.94 (18)C9—C8—S1110.63 (16)
O4—N4—C4117.31 (18)C7—C8—S1121.11 (15)
O3—N4—C4118.75 (18)C8—C9—C10112.89 (19)
N2—C1—C2123.19 (19)C8—C9—H9A123.6
N2—C1—C6119.84 (18)C10—C9—H9A123.6
C2—C1—C6116.98 (18)C11—C10—C9112.11 (19)
C3—C2—C1121.38 (19)C11—C10—H10A123.9
C3—C2—N3116.11 (18)C9—C10—H10A123.9
C1—C2—N3122.50 (18)C10—C11—S1112.39 (18)
C4—C3—C2118.73 (19)C10—C11—H11A123.8
C4—C3—H3A120.6S1—C11—H11A123.8
C2—C3—H3A120.6C7—C12—H12A109.5
C3—C4—C5121.90 (19)C7—C12—H12B109.5
C3—C4—N4119.07 (19)H12A—C12—H12B109.5
C5—C4—N4119.03 (19)C7—C12—H12C109.5
C6—C5—C4119.21 (19)H12A—C12—H12C109.5
C6—C5—H5A120.4H12B—C12—H12C109.5
C7—N1—N2—C1178.22 (17)C3—C4—C5—C60.4 (3)
N1—N2—C1—C2175.14 (17)N4—C4—C5—C6179.49 (17)
N1—N2—C1—C64.9 (3)C4—C5—C6—C10.0 (3)
N2—C1—C2—C3179.90 (18)N2—C1—C6—C5179.89 (18)
C6—C1—C2—C30.2 (3)C2—C1—C6—C50.1 (3)
N2—C1—C2—N31.2 (3)N2—N1—C7—C8178.99 (16)
C6—C1—C2—N3178.88 (17)N2—N1—C7—C121.1 (3)
O2—N3—C2—C31.9 (3)N1—C7—C8—C9177.69 (19)
O1—N3—C2—C3178.29 (17)C12—C7—C8—C92.2 (3)
O2—N3—C2—C1179.28 (19)N1—C7—C8—S12.2 (2)
O1—N3—C2—C10.5 (3)C12—C7—C8—S1177.89 (15)
C1—C2—C3—C40.5 (3)C11—S1—C8—C90.67 (16)
N3—C2—C3—C4179.26 (17)C11—S1—C8—C7179.21 (17)
C2—C3—C4—C50.6 (3)C7—C8—C9—C10178.97 (19)
C2—C3—C4—N4179.69 (17)S1—C8—C9—C100.9 (2)
O4—N4—C4—C3175.19 (18)C8—C9—C10—C110.7 (3)
O3—N4—C4—C35.1 (3)C9—C10—C11—S10.2 (2)
O4—N4—C4—C55.7 (3)C8—S1—C11—C100.27 (17)
O3—N4—C4—C5174.08 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O10.79 (3)2.00 (3)2.618 (3)134 (2)
C6—H6A···O2i0.932.453.099 (3)127
C9—H9A···O4ii0.932.473.147 (2)129
C11—H11A···O3i0.932.573.240 (3)129
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H10N4O4S
Mr306.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.4868 (5), 15.3912 (8), 8.9756 (4)
β (°) 91.672 (2)
V3)1310.00 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.60 × 0.19 × 0.16
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.854, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
10366, 2414, 2176
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.08
No. of reflections2414
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.44

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O10.79 (3)2.00 (3)2.618 (3)134 (2)
C6—H6A···O2i0.932.453.099 (3)127
C9—H9A···O4ii0.932.473.147 (2)129
C11—H11A···O3i0.932.573.240 (3)129
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th, Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

PJ thanks the Graduate School, Prince of Songkla University, for partial financial support. The authors thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit (CMRU), and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBaughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103–o106.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2010). Acta Cryst. E66, o2994–o2995.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEl-Tabl, A. S., El-Saied, F. A., Plass, W. & Al-Hakimi, A. N. (2008). Spectrochim. Acta Part A, 71, 90–99.  Google Scholar
First citationFun, H.-K., Jansrisewangwong, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o2401–o2402.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJansrisewangwong, P., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamamohan, L., Shikkaragol, R. K., Angadi, S. D. & Kulkarni, V. H. (1995). Asian J. Pure Appl. Chem. 1, 86.  Google Scholar
First citationRollas, S. & Küçükgüzel, Ş. G. (2007). Molecules 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1034-o1035
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds