organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1125-o1126

2-(N-Phenyl­methane­sulfonamido)­ethyl 1H-pyrrole-2-carboxyl­ate

aPharmaceutical Research Centre, PCSIR Labs Complex, Karachi 75280, Pakistan, bDepartment of Pharmaceutical Engineering, Biotechnology College, Tianjin University of Science & Technology (TUST), Tianjin 300457, People's Republic of China, cFaculty of Sciences, Department of Home and Health Sciences, Allama Iqbal Open University, H-8, Islamabad, Pakistan, and dCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: salmankhann@hotmail.com

(Received 24 March 2011; accepted 5 April 2011; online 13 April 2011)

In the title compound, C14H16N2O4S, the eth­oxy­carbonyl group is nearly planar, with an r.m.s. deviation of 0.0067 Å, and is almost coplanar with the pyrrole ring [dihedral angle = 5.81 (15)°], whereas it is inclined at a dihedral angle of 61.90 (13)° to the phenyl ring. The dihedral angle between the pyrrole and phenyl rings is 56.15 (13)°. In the crystal, centrosymmetrically related mol­ecules are linked into dimers by pairs of N—H⋯O hydrogen bonds, forming rings of R22(10) graph-set motif. The dimers are further connected by weak inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming layers parallel to the bc plane.

Related literature

For the pharmacological and biological activity of pyrrole-2-carboxyl­ate derivatives and sulfonamides, see: Brienne et al. (1987[Brienne, M., Varech, D., Leclercq, M., Jacques, J., Radembino, N., Dessalles, M., Mahuzier, G., Gueyouche, C., Bories, C., Loiseau, P. & Gayral, P. (1987). J. Med. Chem. 30, 2232-2239.]); Burnham et al. (1998[Burnham, B. S., Gupton, J. T., Krumpe, K., Webb, T., Shuford, J., Bowers, B., Warren, A. E., Barnes, C. & Hall, I. H. (1998). Arch. Pharm. Pharm. Med. Chem. 331, 337-341.]); Fan et al. (2008[Fan, H., Peng, J., Hamann, M. T. & Hu, J. F. (2008). Chem. Rev. 108, 264-287.]); Fu et al. (2002[Fu, D. C., Yu, H. & Zhang, S. F. (2002). Chin. Chem. Lett. 13, 1051-1054.]); Gupton et al. (1999[Gupton, J. T., Burham, B. S., Byrd, B. D., Krumpe, K. E., Stokes, C., Shuford, J., Winkle, S., Webb, T., Warren, A. E., Barnes, C. R., Henry, J. & Hall, I. H. (1999). Pharmazie, 54, 691-697.]); Manzanaro et al. (2006[Manzanaro, S., Salva, J. & de la Fuente, J. A. (2006). J. Nat. Prod. 69, 1485-1487.]); Mayer et al. (2009[Mayer, A. M. S., Rodríguez, A. D., Berlinck, R. G. S. & Hamann, M. T. (2009). Biochim. Biophys. Acta, 1790, 283-308.]); Yoshikawa et al. (1993[Yoshikawa, Y., Saito, H., Ochi, Y. & Hatayama, K. (1993). Chem. Abstr. 119, 117119n.], 1998[Yoshikawa, K., Hasegawa, M., Suzuki, M., Shimazaki, Y., Ohtani, M., Saito, S. & Goi, M. (1998). Chem. Abstr. 128, 61428d.]). For a related structure, see: Khan et al. (2010[Khan, S. T., Yu, P., Chantrapromma, S., Afza, N. & Nelofar, A. (2010). Acta Cryst. E66, o1957.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O4S

  • Mr = 308.36

  • Monoclinic, P 21 /c

  • a = 12.186 (2) Å

  • b = 5.6516 (11) Å

  • c = 22.160 (4) Å

  • β = 104.47 (3)°

  • V = 1477.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 153 K

  • 0.32 × 0.08 × 0.06 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.928, Tmax = 0.986

  • 12044 measured reflections

  • 3499 independent reflections

  • 2726 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.152

  • S = 1.06

  • 3499 reflections

  • 196 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C5/N1 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.92 (4) 1.99 (4) 2.894 (3) 167 (3)
C6—H6B⋯O4ii 0.99 2.53 3.415 (3) 148
C7—H7A⋯O4iii 0.99 2.55 3.406 (3) 145
C7—H7B⋯O1iv 0.99 2.54 3.431 (3) 150
C6—H6ACg1v 0.99 2.91 3.899 (3) 173
Symmetry codes: (i) -x, -y+2, -z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y-1, z; (v) -x, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrrole-2-carboxylate based heterocyclic compounds, either naturally occurring or synthetic, have shown various pharmacological and biological activities such as anticancer (Burnham et al., 1998; Gupton et al., 1999; Fan et al., 2008), antidiabetic, aldose reductase inhibition (Mayer et al., 2009; Manzanaro et al., 2006) anti-inflammatory and analgesic activities (Fu et al., 2002). Likewise, compounds containing the sulfonamide moiety have their own biological importance as antifilarial (Brienne et al., 1987) anti-inflammatory, antipyretic, analgesic and antiallergy agents (Yoshikawa et al., 1993; Yoshikawa et al., 1998) The title compound was synthesized as an intermediate which will be used in search of new potent anti-inflammatory and/or analgesic agents. Its crystal structure analysis was undertaken in order to establish the conformation of the various groups.

Fig. 1 shows the molecular structure of the title compound, in which the ethylcarboxylate unit (C1/C2/O1/O2/C6/C7) is planar with r.m.s. of 0.0067 (2) Å. This unit is almost co-planar with the pyrrole ring whereas is inclined to the benzene ring with dihedral angles of 5.81 (15) and 61.90 (13)°, respectively. The dihedral angle between the pyrrole and benzene rings is 56.15 (13)°. The orientation of the methylsulfonamide group (C14/S1/O3/O3/N2) with respect to the ethylcarboxylate unit can be indicated by the torsion angles S1–N2–C7–C6 = 121.87 (18)° and C14–S1–N2–C7 = 72.67 (18)°. The bond lengths are in normal ranges (Allen et al., 1987) and comparable to those reported for a related structure (Khan et al., 2010).

In the crystal structure (Fig. 2), N—H···O hydrogen interactions (Table 1) link centrosymmetrically related molecules into dimers forming rings of R22(10) graph-set motif. The dimers are further arranged into layers parallel to the bc plane by weak intermolecular C—H···O hydrogen bonds and C—H···π interactions (Table 1).

Related literature top

For the pharmacological and biological activity of pyrrole-2-carboxylate derivatives and sulfonamides, see: Brienne et al. (1987); Burnham et al. (1998); Fan et al. (2008); Fu et al. (2002); Gupton et al. (1999); Manzanaro et al. (2006); Mayer et al. (2009); Yoshikawa et al. (1993, 1998). For a related structure, see: Khan et al. (2010). For standard bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by mixing 2-(phenylamino)ethyl-1H-pyrrole-2-carboxylate (1.0 g, 1.8 mmol), triethylamine (0.88 g, 8.8 mmol) and methanesulfonyl chloride (0.1 g, 8.8 mmol) in dichloromethane (6 ml) under nitrogen in sealed tube. The reaction mixture was stirred for 4 h at 273 K. The mixture was poured onto ice, and then sodium bicarbonate (10 ml, 10%) was added and the solution stirred for 10 minutes. The organic layer was separated and the aqueous layer was extracted with dichloromethane. The combined organic layers were dried over MgSO4, filtered and concentrated, yielding the a white precipitate of the title compound. Colourless needle-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from dichloromethane by the slow evaporation of the solvent at room temperature after several days.

Refinement top

H atom attached to N1 was located in the difference Fourier map and refined isotropically. All other H atoms were placed in calculated positions with d(C—H) = 0.95 Å for aromatic, 0.99 for CH2 and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.13 Å from S1 and the deepest hole is located at 0.75 Å from S1.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewd along the b axis. C—H···O weak interactions are drawn as dashed lines.
2-(N-Phenylmethanesulfonamido)ethyl 1H-pyrrole-2-carboxylate top
Crystal data top
C14H16N2O4SF(000) = 648
Mr = 308.36Dx = 1.386 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3499 reflections
a = 12.186 (2) Åθ = 1.7–27.8°
b = 5.6516 (11) ŵ = 0.24 mm1
c = 22.160 (4) ÅT = 153 K
β = 104.47 (3)°Needle, colourless
V = 1477.8 (5) Å30.32 × 0.08 × 0.06 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3499 independent reflections
Radiation source: rotating anode2726 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.050
Detector resolution: 14.63 pixels mm-1θmax = 27.8°, θmin = 1.7°
ω and ϕ scansh = 1614
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 67
Tmin = 0.928, Tmax = 0.986l = 2829
12044 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0745P)2 + 0.5129P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3499 reflectionsΔρmax = 0.43 e Å3
196 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (3)
Crystal data top
C14H16N2O4SV = 1477.8 (5) Å3
Mr = 308.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.186 (2) ŵ = 0.24 mm1
b = 5.6516 (11) ÅT = 153 K
c = 22.160 (4) Å0.32 × 0.08 × 0.06 mm
β = 104.47 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3499 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2726 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.986Rint = 0.050
12044 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.43 e Å3
3499 reflectionsΔρmin = 0.50 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19337 (5)0.19937 (10)0.28338 (2)0.02406 (19)
N10.1780 (2)0.9013 (4)0.01667 (10)0.0354 (5)
N20.19052 (16)0.2462 (3)0.21007 (9)0.0252 (4)
O10.01281 (16)0.7777 (3)0.04865 (9)0.0394 (5)
O20.12012 (14)0.4664 (3)0.08930 (7)0.0325 (4)
O30.29861 (14)0.2895 (3)0.32044 (7)0.0301 (4)
O40.08904 (14)0.2914 (3)0.29278 (8)0.0314 (4)
C10.0969 (2)0.6576 (4)0.05242 (10)0.0295 (5)
C20.1832 (2)0.7006 (4)0.01917 (10)0.0299 (5)
C30.2777 (2)0.5733 (5)0.01512 (11)0.0371 (6)
H30.30240.42710.03510.045*
C40.3301 (3)0.7006 (5)0.02406 (13)0.0449 (7)
H40.39720.65620.03560.054*
C50.2671 (2)0.9020 (5)0.04295 (12)0.0423 (7)
H50.28341.02080.06980.051*
C60.0391 (2)0.4147 (4)0.12552 (11)0.0304 (5)
H6A0.03680.38420.09770.036*
H6B0.03330.54950.15310.036*
C70.08226 (19)0.1984 (4)0.16350 (11)0.0280 (5)
H7A0.02490.14470.18520.034*
H7B0.09370.06960.13540.034*
C80.29508 (19)0.2205 (4)0.19055 (10)0.0231 (5)
C90.37363 (19)0.4032 (4)0.20276 (10)0.0263 (5)
H90.35990.53920.22500.032*
C100.4723 (2)0.3868 (4)0.18253 (11)0.0308 (5)
H100.52670.51070.19130.037*
C110.4913 (2)0.1904 (4)0.14962 (11)0.0329 (6)
H110.55830.18060.13520.040*
C120.4133 (2)0.0074 (5)0.13752 (11)0.0341 (6)
H120.42700.12770.11500.041*
C130.3151 (2)0.0214 (4)0.15835 (10)0.0295 (5)
H130.26190.10480.15060.035*
C140.1928 (2)0.1101 (4)0.29289 (11)0.0316 (5)
H14A0.25860.17860.28140.047*
H14B0.12310.17590.26600.047*
H14C0.19620.14780.33650.047*
H10.121 (3)1.012 (6)0.0206 (16)0.065 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0248 (3)0.0244 (3)0.0239 (3)0.0005 (2)0.0077 (2)0.0002 (2)
N10.0445 (14)0.0324 (12)0.0288 (10)0.0029 (10)0.0081 (10)0.0032 (9)
N20.0218 (10)0.0319 (10)0.0218 (9)0.0014 (8)0.0049 (7)0.0011 (8)
O10.0375 (11)0.0365 (10)0.0439 (11)0.0065 (8)0.0097 (8)0.0104 (8)
O20.0333 (10)0.0382 (10)0.0274 (8)0.0055 (7)0.0099 (7)0.0094 (7)
O30.0290 (9)0.0368 (10)0.0237 (8)0.0073 (7)0.0049 (7)0.0051 (7)
O40.0298 (9)0.0341 (10)0.0338 (9)0.0056 (7)0.0146 (7)0.0006 (7)
C10.0337 (13)0.0299 (13)0.0222 (11)0.0022 (10)0.0016 (9)0.0010 (9)
C20.0358 (13)0.0310 (13)0.0208 (11)0.0030 (10)0.0031 (9)0.0015 (9)
C30.0432 (15)0.0391 (15)0.0300 (12)0.0058 (11)0.0109 (11)0.0060 (11)
C40.0486 (17)0.0525 (18)0.0385 (15)0.0028 (13)0.0202 (13)0.0049 (13)
C50.0499 (17)0.0450 (16)0.0353 (14)0.0049 (13)0.0168 (13)0.0042 (12)
C60.0265 (12)0.0386 (14)0.0264 (11)0.0009 (10)0.0074 (9)0.0034 (10)
C70.0253 (12)0.0307 (13)0.0266 (11)0.0040 (9)0.0034 (9)0.0004 (9)
C80.0249 (11)0.0241 (11)0.0204 (10)0.0007 (8)0.0057 (8)0.0026 (8)
C90.0283 (12)0.0226 (12)0.0284 (11)0.0008 (9)0.0079 (9)0.0006 (9)
C100.0266 (12)0.0324 (13)0.0343 (12)0.0013 (9)0.0093 (10)0.0061 (10)
C110.0306 (13)0.0407 (15)0.0301 (12)0.0070 (10)0.0125 (10)0.0082 (11)
C120.0395 (14)0.0352 (14)0.0295 (12)0.0060 (11)0.0124 (10)0.0014 (10)
C130.0346 (13)0.0259 (12)0.0282 (11)0.0022 (9)0.0084 (10)0.0012 (9)
C140.0322 (13)0.0274 (12)0.0352 (13)0.0017 (9)0.0085 (10)0.0053 (10)
Geometric parameters (Å, º) top
S1—O31.4325 (17)C6—C71.503 (3)
S1—O41.4363 (17)C6—H6A0.9900
S1—N21.6376 (19)C6—H6B0.9900
S1—C141.762 (3)C7—H7A0.9900
N1—C51.354 (3)C7—H7B0.9900
N1—C21.377 (3)C8—C131.386 (3)
N1—H10.92 (3)C8—C91.388 (3)
N2—C81.452 (3)C9—C101.387 (3)
N2—C71.483 (3)C9—H90.9500
O1—C11.215 (3)C10—C111.379 (4)
O2—C11.342 (3)C10—H100.9500
O2—C61.450 (3)C11—C121.384 (4)
C1—C21.447 (3)C11—H110.9500
C2—C31.379 (3)C12—C131.389 (3)
C3—C41.399 (4)C12—H120.9500
C3—H30.9500C13—H130.9500
C4—C51.378 (4)C14—H14A0.9800
C4—H40.9500C14—H14B0.9800
C5—H50.9500C14—H14C0.9800
O3—S1—O4119.10 (11)C7—C6—H6B110.4
O3—S1—N2107.77 (10)H6A—C6—H6B108.6
O4—S1—N2106.58 (10)N2—C7—C6111.57 (19)
O3—S1—C14108.31 (11)N2—C7—H7A109.3
O4—S1—C14108.16 (11)C6—C7—H7A109.3
N2—S1—C14106.23 (11)N2—C7—H7B109.3
C5—N1—C2108.9 (2)C6—C7—H7B109.3
C5—N1—H1129 (2)H7A—C7—H7B108.0
C2—N1—H1122 (2)C13—C8—C9120.2 (2)
C8—N2—C7117.97 (18)C13—C8—N2121.0 (2)
C8—N2—S1118.48 (15)C9—C8—N2118.8 (2)
C7—N2—S1117.10 (15)C10—C9—C8119.9 (2)
C1—O2—C6115.53 (18)C10—C9—H9120.0
O1—C1—O2122.5 (2)C8—C9—H9120.0
O1—C1—C2125.4 (2)C11—C10—C9119.9 (2)
O2—C1—C2112.1 (2)C11—C10—H10120.1
N1—C2—C3108.1 (2)C9—C10—H10120.1
N1—C2—C1119.8 (2)C10—C11—C12120.4 (2)
C3—C2—C1132.1 (2)C10—C11—H11119.8
C2—C3—C4106.8 (2)C12—C11—H11119.8
C2—C3—H3126.6C11—C12—C13120.0 (2)
C4—C3—H3126.6C11—C12—H12120.0
C5—C4—C3107.9 (2)C13—C12—H12120.0
C5—C4—H4126.0C8—C13—C12119.6 (2)
C3—C4—H4126.0C8—C13—H13120.2
N1—C5—C4108.2 (2)C12—C13—H13120.2
N1—C5—H5125.9S1—C14—H14A109.5
C4—C5—H5125.9S1—C14—H14B109.5
O2—C6—C7106.41 (18)H14A—C14—H14B109.5
O2—C6—H6A110.4S1—C14—H14C109.5
C7—C6—H6A110.4H14A—C14—H14C109.5
O2—C6—H6B110.4H14B—C14—H14C109.5
O3—S1—N2—C837.3 (2)C3—C4—C5—N10.1 (3)
O4—S1—N2—C8166.21 (16)C1—O2—C6—C7179.25 (19)
C14—S1—N2—C878.62 (19)C8—N2—C7—C686.7 (2)
O3—S1—N2—C7171.42 (16)S1—N2—C7—C6121.87 (18)
O4—S1—N2—C742.50 (19)O2—C6—C7—N265.8 (2)
C14—S1—N2—C772.67 (18)C7—N2—C8—C1347.9 (3)
C6—O2—C1—O11.2 (3)S1—N2—C8—C13103.1 (2)
C6—O2—C1—C2178.48 (19)C7—N2—C8—C9129.8 (2)
C5—N1—C2—C30.0 (3)S1—N2—C8—C979.1 (2)
C5—N1—C2—C1179.9 (2)C13—C8—C9—C100.2 (3)
O1—C1—C2—N15.3 (4)N2—C8—C9—C10177.6 (2)
O2—C1—C2—N1174.4 (2)C8—C9—C10—C110.8 (3)
O1—C1—C2—C3174.7 (3)C9—C10—C11—C121.1 (4)
O2—C1—C2—C35.7 (4)C10—C11—C12—C130.2 (4)
N1—C2—C3—C40.0 (3)C9—C8—C13—C121.0 (3)
C1—C2—C3—C4179.9 (3)N2—C8—C13—C12176.7 (2)
C2—C3—C4—C50.1 (3)C11—C12—C13—C80.8 (4)
C2—N1—C5—C40.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C5/N1 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.92 (4)1.99 (4)2.894 (3)167 (3)
C6—H6B···O4ii0.992.533.415 (3)148
C7—H7A···O4iii0.992.553.406 (3)145
C7—H7B···O1iv0.992.543.431 (3)150
C6—H6A···Cg1v0.992.913.899 (3)173
Symmetry codes: (i) x, y+2, z; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y1, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H16N2O4S
Mr308.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)12.186 (2), 5.6516 (11), 22.160 (4)
β (°) 104.47 (3)
V3)1477.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.32 × 0.08 × 0.06
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.928, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
12044, 3499, 2726
Rint0.050
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.152, 1.06
No. of reflections3499
No. of parameters196
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.50

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C5/N1 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.92 (4)1.99 (4)2.894 (3)167 (3)
C6—H6B···O4ii0.992.533.415 (3)148
C7—H7A···O4iii0.992.553.406 (3)145
C7—H7B···O1iv0.992.543.431 (3)150
C6—H6A···Cg1v0.992.913.899 (3)173
Symmetry codes: (i) x, y+2, z; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y1, z; (v) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

STK acknowledges funding from the Industrial Linkage Programme of the Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories. PY is grateful to Tianjin University of Science & Technology for a research grant (No. 2009 0431). SC thanks the Prince of Songkla University for generous support through the CMRU. STK also thanks Dr Song Haibin (State Key Laboratory of Elemento-Organic Chemistry, Nankai University) for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrienne, M., Varech, D., Leclercq, M., Jacques, J., Radembino, N., Dessalles, M., Mahuzier, G., Gueyouche, C., Bories, C., Loiseau, P. & Gayral, P. (1987). J. Med. Chem. 30, 2232–2239.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBurnham, B. S., Gupton, J. T., Krumpe, K., Webb, T., Shuford, J., Bowers, B., Warren, A. E., Barnes, C. & Hall, I. H. (1998). Arch. Pharm. Pharm. Med. Chem. 331, 337–341.  CrossRef CAS Google Scholar
First citationFan, H., Peng, J., Hamann, M. T. & Hu, J. F. (2008). Chem. Rev. 108, 264–287.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFu, D. C., Yu, H. & Zhang, S. F. (2002). Chin. Chem. Lett. 13, 1051–1054.  CAS Google Scholar
First citationGupton, J. T., Burham, B. S., Byrd, B. D., Krumpe, K. E., Stokes, C., Shuford, J., Winkle, S., Webb, T., Warren, A. E., Barnes, C. R., Henry, J. & Hall, I. H. (1999). Pharmazie, 54, 691–697.  Web of Science PubMed CAS Google Scholar
First citationKhan, S. T., Yu, P., Chantrapromma, S., Afza, N. & Nelofar, A. (2010). Acta Cryst. E66, o1957.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationManzanaro, S., Salva, J. & de la Fuente, J. A. (2006). J. Nat. Prod. 69, 1485–1487.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMayer, A. M. S., Rodríguez, A. D., Berlinck, R. G. S. & Hamann, M. T. (2009). Biochim. Biophys. Acta, 1790, 283–308.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshikawa, K., Hasegawa, M., Suzuki, M., Shimazaki, Y., Ohtani, M., Saito, S. & Goi, M. (1998). Chem. Abstr. 128, 61428d.  Google Scholar
First citationYoshikawa, Y., Saito, H., Ochi, Y. & Hatayama, K. (1993). Chem. Abstr. 119, 117119n.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1125-o1126
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds