organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1204-o1205

(E)-1-(4-Amino­phen­yl)-3-(naphthalen-2-yl)prop-2-en-1-one

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bSchool of Cosmetic Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 29 March 2011; accepted 13 April 2011; online 22 April 2011)

The mol­ecule of the title chalcone derivative, C19H15NO, exists in a trans configuration with respect to the C=C double bond. The mol­ecule is slightly twisted with a dihedral angle of 6.12 (12)° between the benzene ring and the naphthalene ring system. The prop-2-en-1-one bridge is nearly planar, with an r.m.s. deviation of 0.0194 (2), and makes dihedral angles of 8.05 (19) and 11.47 (18)° with the benzene ring and the naphthalene ring system, respectively. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into chains along the b axis. Weak N—H⋯π and C—H⋯π inter­actions and a short N⋯O contact [2.974 (4) Å] are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2008). Acta Cryst. E64, o1540-o1541.]); Horkaew et al. (2010[Horkaew, J., Chantrapromma, S., Saewan, N. & Fun, H.-K. (2010). Acta Cryst. E66, o2346-o2347.]). For background to and applications of chalcones, see: Bandgar & Gawande (2010[Bandgar, B. P. & Gawande, S. S. (2010). J. Bioorg. Med. Chem. 18, 2060-2065.]); Cheng et al. (2008)[Cheng, J. H., Hung, C.-F., Yang, S. C., Wang, J.-P., Won, S.-J. & Lin, S.-J. (2008). J. Bioorg. Med. Chem. 16, 7270-7276.]; Gaber et al. (2008[Gaber, M., El-Daly, S. A., Fayed, T. A. & El-Sayed, Y. S. (2008). J. Opt. Laser Techol. 40, 528-537.]); Nerya et al. (2004[Nerya, O., Musa, R., Khatib, S., Tamir, S. & Vaya, J. (2004). Phytochemistry, 65, 1389-1395.]); Nowakowska et al. (2008[Nowakowska, Z., Kedzia, B. & Schroeder, G. (2008). Eur. J. Med. Chem. 43, 707-713.]); Patil et al. (2007[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Kumar, R. S. S. & Narayana Rao, D. (2007). J. Cryst. Growth. 303, 520-524.]); Svetlichny et al. (2007[Svetlichny, V. Y., Merola, F., Dobretsov, G. E., Gularyan, S. K. & Syrejshchikova, T. I. (2007). J. Chem. Phys. Lipids, 145, 13-26.]); Tewtrakul et al. (2003[Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503-508.]); Xu et al. (2005[Xu, Z., Bai, G. & Dong, C. (2005). J. Bioorg. Med. Chem. 13, 5694-5699.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15NO

  • Mr = 273.32

  • Orthorhombic, P 21 21 21

  • a = 5.7422 (6) Å

  • b = 9.8022 (10) Å

  • c = 25.504 (3) Å

  • V = 1435.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.32 × 0.28 × 0.07 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.994

  • 8109 measured reflections

  • 1940 independent reflections

  • 1633 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.119

  • S = 1.14

  • 1940 reflections

  • 198 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C10–C12/C17–C19 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.90 (4) 2.12 (4) 2.974 (4) 159 (4)
N1—H2N1⋯Cg1ii 0.86 (4) 2.99 (4) 3.475 (3) 118 (3)
C5—H5ACg3iii 0.93 2.82 3.513 (3) 132
C11—H11ACg3iv 0.93 2.92 3.631 (3) 135
C13—H13ACg2iv 0.93 2.86 3.551 (3) 132
C16—H16ACg1iii 0.93 2.87 3.603 (4) 136
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x-1, y+{\script{3\over 2}}, -z+{\script{5\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are the precursors of flavonoids and antiflavonoids which are available in plenty in ferns and higher plants. Their derivatives are known to display a variety of biological properties such as analgesic, anti-inflammatory, antibacterial and antifungal activities (Bandgar & Gawande, 2010; Cheng et al., 2008; Nowakowska et al., 2008), HIV-1 protease inhibitory (Tewtrakul et al., 2003) and tyrosinase inhibitory (Nerya et al., 2004) activities. Moreover, some of them have also been studied for fluorescent property (Gaber et al., 2008) and used for sensor, liquid crystal display and fluorescence probe for sensing of DNA or proteins (Svetlichny et al., 2007; Xu et al., 2005). In addition, some of them exhibit second harmonic generation (SHG), and hence are used in non-linear optical (NLO) applications (Patil et al., 2007). These interesting properties of chalcones have lead us to synthesize the title compound, (I), which contains the amino and fluorophore (naphthalene) groups in order to study its NLO and fluorescent properties. Compound (I) crystallizes in the chiral orthorhombic P212121 space group and should therefore exhibit second-order nonlinear optical properties. (I) also shows fluorescent emission at 440 nm when excited at 380 nm. Our results also showed that (I) was inactive for tyrosinase inhibitory. Herein the crystal structure of (I) is reported.

The molecule of the title chalcone derivative (Fig. 1), C19H15NO, exists in an E configuration with respect to the C8C9 ethenyl bond [1.330 (4) Å], as indicated by the torsion angle C7–C8–C9–C10 = 179.1 (3)°. The molecule is slightly twisted with the dihedral angle between the benzene and naphthalene rings of 6.12 (12)°. The prop-2-en-1-one unit (C7—C9/O1) is nearly planar [r.m.s. of 0.0194 (2) Å] and the torsion angle O1–C7–C8–C9 is 6.4 (5)°. This middle bridge makes dihedral angles of 8.05 (19) and 11.47 (18) ° with the benzene and naphthalene rings, respectively. The bond distances are of normal values (Allen et al., 1987) and are comparable with those found in related structures (Fun et al., 2008; Horkaew et al., 2010).

In the crystal packing, the molecules are linked by N—H···O hydrogen bonds (Table 1) into chains along the b axis (Fig. 2). N—H···π and C—H···π weak interactions (Table 1) are present in the crystal. In addition, a N···O short contact [2.974 (4) Å; symmetry code 2 - x, 1/2 + y, 3/2 - z] is also observed.

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2008); Horkaew et al. (2010). For background to and applications of chalcones, see: Bandgar & Gawande (2010); Cheng et al. (2008); Gaber et al. (2008); Nerya et al. (2004); Nowakowska et al. (2008); Patil et al. (2007); Svetlichny et al. (2007); Tewtrakul et al. (2003); Xu et al. (2005). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

The title compound was synthesized by condensation of 4-aminoacetophenone (0.40 g, 3 mmol) with 2-naphthaldehyde (0.46 g, 3 mmol) in ethanol (25 ml) in the presence of 20% NaOH(aq) (5 ml). After stirring for 6 h at room temperature, the resulting yellow solid was collected by filtration, washed with distilled diethylether, dried and purified by repeated recrysallization from acetone. Yellow plate-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from acetone by slow evaporation of the solvent at room temperature after several days. M.p. 416–417 K.

Refinement top

Anime H atoms were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å and Uiso = 1.2Ueq(C). The highest residual electron density peak is located at 0.73 Å from C11 and the deepest hole is located at 1.23 Å from C5. A total of 1345 Friedel pairs were merged as there is no significant anomalous dispersion to determine the absolute cofiguration.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis, showing chains running along the [010] direction.
(E)-1-(4-Aminophenyl)-3-(naphthalen-2-yl)prop-2-en-1-one top
Crystal data top
C19H15NODx = 1.265 Mg m3
Mr = 273.32Melting point = 416–417 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1940 reflections
a = 5.7422 (6) Åθ = 2.2–27.5°
b = 9.8022 (10) ŵ = 0.08 mm1
c = 25.504 (3) ÅT = 100 K
V = 1435.5 (3) Å3Plate, yellow
Z = 40.32 × 0.28 × 0.07 mm
F(000) = 576
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
1940 independent reflections
Radiation source: sealed tube1633 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 67
Tmin = 0.976, Tmax = 0.994k = 912
8109 measured reflectionsl = 3233
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0233P)2 + 1.3561P]
where P = (Fo2 + 2Fc2)/3
1940 reflections(Δ/σ)max = 0.001
198 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C19H15NOV = 1435.5 (3) Å3
Mr = 273.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.7422 (6) ŵ = 0.08 mm1
b = 9.8022 (10) ÅT = 100 K
c = 25.504 (3) Å0.32 × 0.28 × 0.07 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
1940 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1633 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.994Rint = 0.042
8109 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.29 e Å3
1940 reflectionsΔρmin = 0.24 e Å3
198 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1598 (4)0.7032 (2)0.85128 (9)0.0266 (5)
N10.5373 (7)1.1585 (3)0.74175 (13)0.0339 (8)
H2N10.409 (8)1.195 (4)0.7515 (15)0.045 (13)*
H1N10.599 (7)1.187 (4)0.7112 (14)0.033 (11)*
C10.8419 (6)0.8481 (3)0.83133 (11)0.0201 (7)
C20.9516 (6)0.9000 (3)0.78648 (12)0.0224 (7)
H2A1.09450.86410.77630.027*
C30.8535 (6)1.0026 (3)0.75714 (12)0.0230 (7)
H3A0.93141.03560.72780.028*
C40.6354 (6)1.0583 (3)0.77112 (12)0.0233 (7)
C50.5252 (6)1.0072 (3)0.81610 (12)0.0232 (7)
H5A0.38271.04340.82640.028*
C60.6244 (6)0.9045 (3)0.84519 (12)0.0219 (7)
H6A0.54660.87150.87460.026*
C70.9597 (6)0.7405 (3)0.86224 (13)0.0222 (7)
C80.8373 (6)0.6782 (3)0.90735 (12)0.0221 (7)
H8A0.68180.70000.91330.027*
C90.9441 (6)0.5920 (3)0.93962 (11)0.0198 (7)
H9A1.09880.57180.93210.024*
C100.8433 (6)0.5257 (3)0.98562 (12)0.0187 (7)
C110.9577 (6)0.4164 (3)1.00866 (11)0.0204 (7)
H11A1.10210.39000.99560.025*
C120.8612 (6)0.3438 (3)1.05134 (12)0.0199 (7)
C130.9733 (6)0.2294 (3)1.07446 (12)0.0234 (7)
H13A1.11710.20101.06170.028*
C140.8731 (7)0.1609 (3)1.11511 (13)0.0275 (8)
H14A0.94900.08641.12990.033*
C150.6544 (7)0.2022 (3)1.13492 (13)0.0276 (8)
H15A0.58640.15401.16240.033*
C160.5423 (7)0.3123 (3)1.11405 (12)0.0263 (7)
H16A0.39980.33951.12790.032*
C170.6402 (6)0.3855 (3)1.07164 (11)0.0196 (7)
C180.5282 (6)0.4987 (3)1.04803 (12)0.0220 (7)
H18A0.38530.52771.06110.026*
C190.6240 (6)0.5658 (3)1.00685 (12)0.0211 (7)
H19A0.54530.63950.99220.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0249 (13)0.0254 (11)0.0297 (12)0.0044 (12)0.0068 (11)0.0020 (10)
N10.0305 (19)0.0385 (18)0.0326 (17)0.0104 (17)0.0064 (16)0.0122 (15)
C10.0240 (18)0.0180 (15)0.0185 (14)0.0039 (15)0.0014 (14)0.0037 (12)
C20.0215 (17)0.0213 (15)0.0244 (16)0.0025 (15)0.0041 (14)0.0062 (13)
C30.0257 (18)0.0216 (15)0.0216 (15)0.0037 (17)0.0047 (15)0.0005 (13)
C40.0236 (17)0.0226 (15)0.0237 (15)0.0024 (16)0.0032 (15)0.0039 (13)
C50.0183 (17)0.0272 (16)0.0242 (15)0.0003 (15)0.0017 (14)0.0039 (14)
C60.0196 (17)0.0233 (15)0.0229 (15)0.0050 (15)0.0028 (14)0.0033 (13)
C70.0227 (17)0.0184 (15)0.0256 (16)0.0021 (15)0.0001 (15)0.0051 (13)
C80.0242 (18)0.0152 (14)0.0269 (15)0.0016 (15)0.0052 (15)0.0045 (13)
C90.0203 (16)0.0113 (13)0.0278 (16)0.0040 (13)0.0037 (14)0.0071 (12)
C100.0207 (16)0.0121 (14)0.0234 (15)0.0012 (13)0.0001 (14)0.0065 (11)
C110.0153 (15)0.0220 (15)0.0240 (15)0.0012 (15)0.0005 (14)0.0075 (13)
C120.0202 (17)0.0171 (14)0.0225 (14)0.0037 (15)0.0026 (14)0.0074 (12)
C130.0234 (17)0.0188 (15)0.0281 (16)0.0019 (15)0.0033 (15)0.0065 (13)
C140.035 (2)0.0181 (15)0.0297 (17)0.0039 (16)0.0075 (17)0.0003 (14)
C150.035 (2)0.0226 (16)0.0255 (16)0.0092 (17)0.0008 (17)0.0016 (13)
C160.0245 (18)0.0296 (17)0.0249 (16)0.0078 (17)0.0015 (15)0.0075 (14)
C170.0198 (16)0.0196 (14)0.0196 (14)0.0024 (14)0.0009 (14)0.0085 (12)
C180.0188 (16)0.0220 (15)0.0251 (15)0.0022 (15)0.0027 (14)0.0069 (13)
C190.0221 (17)0.0152 (14)0.0261 (15)0.0084 (15)0.0014 (14)0.0020 (13)
Geometric parameters (Å, º) top
O1—C71.238 (4)C9—H9A0.9300
N1—C41.358 (4)C10—C111.388 (4)
N1—H2N10.86 (4)C10—C191.426 (5)
N1—H1N10.90 (4)C11—C121.413 (4)
C1—C21.402 (4)C11—H11A0.9300
C1—C61.411 (5)C12—C131.421 (4)
C1—C71.480 (4)C12—C171.430 (5)
C2—C31.374 (4)C13—C141.363 (5)
C2—H2A0.9300C13—H13A0.9300
C3—C41.412 (5)C14—C151.413 (5)
C3—H3A0.9300C14—H14A0.9300
C4—C51.403 (4)C15—C161.364 (5)
C5—C61.374 (4)C15—H15A0.9300
C5—H5A0.9300C16—C171.415 (4)
C6—H6A0.9300C16—H16A0.9300
C7—C81.480 (4)C17—C181.417 (4)
C8—C91.330 (4)C18—C191.356 (4)
C8—H8A0.9300C18—H18A0.9300
C9—C101.461 (4)C19—H19A0.9300
C4—N1—H2N1120 (3)C11—C10—C19118.1 (3)
C4—N1—H1N1123 (2)C11—C10—C9119.7 (3)
H2N1—N1—H1N1117 (4)C19—C10—C9122.1 (3)
C2—C1—C6117.4 (3)C10—C11—C12121.9 (3)
C2—C1—C7119.2 (3)C10—C11—H11A119.0
C6—C1—C7123.4 (3)C12—C11—H11A119.0
C3—C2—C1121.7 (3)C11—C12—C13122.6 (3)
C3—C2—H2A119.1C11—C12—C17118.9 (3)
C1—C2—H2A119.1C13—C12—C17118.5 (3)
C2—C3—C4120.6 (3)C14—C13—C12120.9 (3)
C2—C3—H3A119.7C14—C13—H13A119.6
C4—C3—H3A119.7C12—C13—H13A119.6
N1—C4—C5121.5 (3)C13—C14—C15120.4 (3)
N1—C4—C3120.6 (3)C13—C14—H14A119.8
C5—C4—C3117.9 (3)C15—C14—H14A119.8
C6—C5—C4121.1 (3)C16—C15—C14120.4 (3)
C6—C5—H5A119.4C16—C15—H15A119.8
C4—C5—H5A119.4C14—C15—H15A119.8
C5—C6—C1121.2 (3)C15—C16—C17120.8 (3)
C5—C6—H6A119.4C15—C16—H16A119.6
C1—C6—H6A119.4C17—C16—H16A119.6
O1—C7—C8119.6 (3)C16—C17—C18122.8 (3)
O1—C7—C1121.0 (3)C16—C17—C12118.9 (3)
C8—C7—C1119.4 (3)C18—C17—C12118.2 (3)
C9—C8—C7121.6 (3)C19—C18—C17121.7 (3)
C9—C8—H8A119.2C19—C18—H18A119.2
C7—C8—H8A119.2C17—C18—H18A119.2
C8—C9—C10126.7 (3)C18—C19—C10121.2 (3)
C8—C9—H9A116.7C18—C19—H19A119.4
C10—C9—H9A116.7C10—C19—H19A119.4
C6—C1—C2—C30.5 (4)C9—C10—C11—C12176.3 (3)
C7—C1—C2—C3178.1 (3)C10—C11—C12—C13178.3 (3)
C1—C2—C3—C40.7 (5)C10—C11—C12—C170.7 (4)
C2—C3—C4—N1179.2 (3)C11—C12—C13—C14179.0 (3)
C2—C3—C4—C51.0 (5)C17—C12—C13—C140.0 (4)
N1—C4—C5—C6179.1 (3)C12—C13—C14—C150.2 (5)
C3—C4—C5—C61.0 (5)C13—C14—C15—C160.8 (5)
C4—C5—C6—C10.9 (5)C14—C15—C16—C171.2 (5)
C2—C1—C6—C50.6 (4)C15—C16—C17—C18178.7 (3)
C7—C1—C6—C5178.0 (3)C15—C16—C17—C121.0 (5)
C2—C1—C7—O15.3 (4)C11—C12—C17—C16179.4 (3)
C6—C1—C7—O1173.3 (3)C13—C12—C17—C160.4 (4)
C2—C1—C7—C8175.6 (3)C11—C12—C17—C180.3 (4)
C6—C1—C7—C85.8 (4)C13—C12—C17—C18179.3 (3)
O1—C7—C8—C96.4 (5)C16—C17—C18—C19178.9 (3)
C1—C7—C8—C9172.7 (3)C12—C17—C18—C190.8 (4)
C7—C8—C9—C10179.1 (3)C17—C18—C19—C100.3 (5)
C8—C9—C10—C11165.8 (3)C11—C10—C19—C180.6 (4)
C8—C9—C10—C1911.5 (5)C9—C10—C19—C18176.8 (3)
C19—C10—C11—C121.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C10–C12/C17–C19 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.90 (4)2.12 (4)2.974 (4)159 (4)
N1—H2N1···Cg1ii0.86 (4)2.99 (4)3.475 (3)118 (3)
C5—H5A···Cg3iii0.932.823.513 (3)132
C11—H11A···Cg3iv0.932.923.631 (3)135
C13—H13A···Cg2iv0.932.863.551 (3)132
C16—H16A···Cg1iii0.932.873.603 (4)136
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+3/2, y+1/2, z+1; (iii) x1, y+3/2, z+5/2; (iv) x, y+1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC19H15NO
Mr273.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.7422 (6), 9.8022 (10), 25.504 (3)
V3)1435.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.28 × 0.07
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.976, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
8109, 1940, 1633
Rint0.042
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.119, 1.14
No. of reflections1940
No. of parameters198
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C10–C12/C17–C19 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.90 (4)2.12 (4)2.974 (4)159 (4)
N1—H2N1···Cg1ii0.86 (4)2.99 (4)3.475 (3)118 (3)
C5—H5A···Cg3iii0.932.823.513 (3)132
C11—H11A···Cg3iv0.932.923.631 (3)135
C13—H13A···Cg2iv0.932.863.551 (3)132
C16—H16A···Cg1iii0.932.873.603 (4)136
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+3/2, y+1/2, z+1; (iii) x1, y+3/2, z+5/2; (iv) x, y+1/2, z+5/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Thailand Research Fund (TRF) for the research grant (RSA 5280033) and the Prince of Songkla University for financial support. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBandgar, B. P. & Gawande, S. S. (2010). J. Bioorg. Med. Chem. 18, 2060–2065.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J. H., Hung, C.-F., Yang, S. C., Wang, J.-P., Won, S.-J. & Lin, S.-J. (2008). J. Bioorg. Med. Chem. 16, 7270–7276.  CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2008). Acta Cryst. E64, o1540–o1541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGaber, M., El-Daly, S. A., Fayed, T. A. & El-Sayed, Y. S. (2008). J. Opt. Laser Techol. 40, 528–537.  CrossRef CAS Google Scholar
First citationHorkaew, J., Chantrapromma, S., Saewan, N. & Fun, H.-K. (2010). Acta Cryst. E66, o2346–o2347.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNerya, O., Musa, R., Khatib, S., Tamir, S. & Vaya, J. (2004). Phytochemistry, 65, 1389–1395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNowakowska, Z., Kedzia, B. & Schroeder, G. (2008). Eur. J. Med. Chem. 43, 707–713.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Kumar, R. S. S. & Narayana Rao, D. (2007). J. Cryst. Growth. 303, 520–524.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSvetlichny, V. Y., Merola, F., Dobretsov, G. E., Gularyan, S. K. & Syrejshchikova, T. I. (2007). J. Chem. Phys. Lipids, 145, 13–26.  Web of Science CrossRef CAS Google Scholar
First citationTewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503–508.  CAS Google Scholar
First citationXu, Z., Bai, G. & Dong, C. (2005). J. Bioorg. Med. Chem. 13, 5694–5699.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1204-o1205
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds