organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1175-o1176

4-{2-[2-(4-Chloro­benzyl­­idene)hydrazinyl­­idene]-3,6-di­hydro-2H-1,3,4-thia­diazin-5-yl}-3-(4-meth­­oxy­phen­yl)sydnone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 1 April 2011; accepted 13 April 2011; online 22 April 2011)

The title compound, C19H15ClN6O3S, exists in trans and cis configurations with respect to the acyclic C=N bonds. The 3,6-dihydro-2H-1,3,4-thia­diazine ring adopts a half-boat conformation. The sydnone ring is approximately planar [maximum deviation = 0.013 (1) Å] and forms dihedral angles of 34.76 (4) and 48.67 (4)° with the benzene rings. An intra­molecular C—H⋯O hydrogen bond stabilizes the mol­ecular structure and forms an S(6) ring motif. In the crystal packing, inter­molecular N—H⋯N hydrogen bonds link centrosymmetrically related mol­ecules into dimers, generating R22(8) ring motifs. The dimers are then linked into a three-dimensional network by inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonds, and by C—H⋯π inter­actions. Further stabilization is provided by ππ inter­actions involving the sydnone rings, with centroid–centroid separations of 3.4198 (5) Å.

Related literature

For background to and the biological activity of sydnones, see: Baker et al. (1949[Baker, W., Ollis, W. D. & Poole, V. D. (1949). J. Chem. Soc. pp. 307-314.]); Hedge et al. (2008[Hedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831-2834.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Kalluraya et al. (2003[Kalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355-356.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Loh, W.-S., Nithinchandra,, Kalluraya, B. & Nayak, S. P. (2010). Acta Cryst. E66, o2367-o2368.], 2011[Fun, H.-K., Quah, C. K., Nithinchandra, & Kalluraya, B. (2011). Acta Cryst. E67, o977-o978.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15ClN6O3S

  • Mr = 442.88

  • Monoclinic, P 21 /c

  • a = 7.2322 (2) Å

  • b = 22.7311 (6) Å

  • c = 12.9299 (3) Å

  • β = 114.426 (1)°

  • V = 1935.37 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 100 K

  • 0.56 × 0.33 × 0.19 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.832, Tmax = 0.937

  • 38523 measured reflections

  • 10172 independent reflections

  • 8764 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.088

  • S = 1.03

  • 10172 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N3/N4/C10/C9/S1 thia­diazine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯N2i 0.88 2.00 2.8841 (9) 174
C1—H1A⋯O2ii 0.93 2.59 3.4898 (10) 162
C9—H9B⋯O2 0.97 2.41 3.0433 (10) 123
C18—H18A⋯Cl1iii 0.93 2.77 3.6978 (7) 173
C19—H19BCg2iv 0.96 2.79 3.5792 (11) 140
Symmetry codes: (i) -x, -y+2, -z; (ii) x-1, y, z-1; (iii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sydnones constitute a well defined class of mesoionic compounds consisting of the 1,2,3-oxadiazole ring system. The introduction of the concept of mesoionic structure for certain heterocyclic compounds in the year 1949 has proved to be a fruitful development in heterocyclic chemistry (Baker et al., 1949). The study of sydnones still remains a field of interest because of their electronic structures and also because of the various types of biological activities displayed by some of them. Interest in sydnone derivatives has also been encouraged by the discovery that they exhibit various pharmacological activities (Hedge et al., 2008; Rai et al., 2008).

Encouraged by these reports and in continuation of our research for biologically active nitrogen containing heterocycles, a thiadiazine moiety at the 4-position of the phenylsydnone was introduced. The title compound was synthesized by the condensation of 4-bromoacetyl-3-arylsydnones with N'-[(4-chlorohlorophenyl)methylidene]thiocarbonohydrazide. 4-Bromoacetyl-3-arylsydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-arylsydnones (Kalluraya et al., 2003).

The title compound (Fig. 1) exists in trans and cis configurations with respect to the acyclic C7N1 and C8N2 bonds [C7N1 = 1.2842 (9) Å and C8N2 = 1.3061 (9) Å], respectively. The 3,6-dihydro-2H-1,3,4-thiadiazine ring (N3/N4/C10/C9/S1) adopts a half-boat conformation with the puckering parameters (Cremer & Pople, 1975), Q = 0.5322 (7) Å, Θ = 108.60 (8)°, ϕ = 136.74 (8)°. The sydnone ring (N5/N6/O1/C12/C11) is approximately planar with a maximum deviation of 0.013 (1) Å at atom C12 and forms dihedral angles of 34.76 (4) and 48.67 (4)° with the benzene rings (C1–C6 and C13–C18), respectively. An intramolecular C9—H9B···O2 hydrogen bond (Table 1) stabilizes the molecular structure and forms an S(6) ring motif (Bernstein et al., 1995). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structures (Fun et al., 2010; Fun et al., 2011).

In the crystal packing (Fig. 2), intermolecular N3—H1···N2 hydrogen bonds (Table 1) link centrosymmetrically related molecules to form dimers, generating R22(8) ring motifs (Bernstein et al., 1995). The dimers are then linked into a three-dimensional network by intermolecular C1—H1A···O2 and C18—H18A···Cl1 hydrogen bonds (Table 1) and stabilized by C—H···π interactions. The crystal structure is further consolidated by ππ interactions (Table 1), involving the sydnone rings (Cg1) with centroid-to-centroid separations Cg1···Cg1v = 3.4198 (5) Å [symmetry code: (v) 2 - x,2 - y,1 - z].

Related literature top

For background to and the biological activity of sydnones, see: Baker et al. (1949); Hedge et al. (2008); Rai et al. (2008); Kalluraya et al. (2003). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Fun et al. (2010, 2011). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a solution of 4-bromoacetyl-3-(4-anisyl)sydnone (0.01 mol) and N'-(4-chlorophenyl)methylidene]thiocarbonohydrazide (0.01 mol) in ethanol, a catalytic amount of anhydrous sodium acetate was added. The solution was stirred at room temperature for 2 to 3 h. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained by slow evaporation of a DMF/ethanol solution (1:2 v/v).

Refinement top

H1 was located from the difference Fourier map and was fixed at its found position with Uiso(H) = 1.2 Ueq(N) [N–H = 0.88 Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93–0.97 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating group model was applied to the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates the intramolecular bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
4-{2-[2-(4-Chlorobenzylidene)hydrazinylidene]-3,6-dihydro-2H- 1,3,4-thiadiazin-5-yl}-3-(4-methoxyphenyl)-1,2,3-oxadiazol-3-ium-5-olate top
Crystal data top
C19H15ClN6O3SF(000) = 912
Mr = 442.88Dx = 1.520 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9060 reflections
a = 7.2322 (2) Åθ = 3.5–37.6°
b = 22.7311 (6) ŵ = 0.34 mm1
c = 12.9299 (3) ÅT = 100 K
β = 114.426 (1)°Block, red
V = 1935.37 (9) Å30.56 × 0.33 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
10172 independent reflections
Radiation source: fine-focus sealed tube8764 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 37.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.832, Tmax = 0.937k = 3738
38523 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.4618P]
where P = (Fo2 + 2Fc2)/3
10172 reflections(Δ/σ)max = 0.003
272 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C19H15ClN6O3SV = 1935.37 (9) Å3
Mr = 442.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2322 (2) ŵ = 0.34 mm1
b = 22.7311 (6) ÅT = 100 K
c = 12.9299 (3) Å0.56 × 0.33 × 0.19 mm
β = 114.426 (1)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
10172 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
8764 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.937Rint = 0.023
38523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.03Δρmax = 0.61 e Å3
10172 reflectionsΔρmin = 0.31 e Å3
272 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20673 (3)0.599009 (8)0.296760 (19)0.02044 (4)
S10.27993 (3)0.865504 (7)0.177439 (15)0.01416 (4)
O10.86209 (8)0.99555 (2)0.58612 (4)0.01533 (9)
O20.69250 (10)0.90827 (3)0.56018 (5)0.01973 (10)
O30.62847 (10)1.19710 (2)0.08415 (5)0.01920 (10)
N10.02123 (10)0.86024 (3)0.03458 (5)0.01436 (10)
N20.00267 (10)0.91926 (3)0.00409 (5)0.01412 (10)
N30.16911 (9)0.98004 (3)0.14755 (5)0.01379 (9)
H10.10981.00930.10060.017*
N40.34093 (9)0.99876 (3)0.23756 (5)0.01274 (9)
N50.72206 (9)1.03311 (3)0.42028 (5)0.01207 (9)
N60.86571 (10)1.04359 (3)0.52215 (5)0.01467 (10)
C10.20026 (12)0.77461 (3)0.29399 (6)0.01656 (12)
H1A0.22710.80500.34640.020*
C20.22174 (12)0.71639 (3)0.33105 (6)0.01765 (12)
H2A0.26140.70770.40750.021*
C30.18281 (11)0.67161 (3)0.25156 (6)0.01502 (11)
C40.12243 (11)0.68343 (3)0.13639 (6)0.01594 (11)
H4A0.09790.65290.08450.019*
C50.09958 (11)0.74165 (3)0.10043 (6)0.01524 (11)
H5A0.05790.75010.02370.018*
C60.13877 (11)0.78790 (3)0.17873 (6)0.01341 (10)
C70.11200 (11)0.84940 (3)0.14139 (6)0.01443 (11)
H7A0.15970.87990.19380.017*
C80.13666 (10)0.92500 (3)0.10070 (6)0.01224 (10)
C90.37326 (12)0.89915 (3)0.31690 (6)0.01527 (11)
H9A0.26630.89900.34370.018*
H9B0.48570.87610.36960.018*
C100.44244 (10)0.96112 (3)0.31486 (6)0.01225 (10)
C110.62297 (10)0.98132 (3)0.41035 (6)0.01216 (10)
C120.71662 (11)0.95431 (3)0.51973 (6)0.01398 (11)
C130.69885 (10)1.07654 (3)0.33459 (6)0.01235 (10)
C140.68466 (12)1.13502 (3)0.35876 (6)0.01581 (11)
H14A0.68831.14600.42890.019*
C150.66483 (12)1.17767 (3)0.27707 (7)0.01669 (12)
H15A0.65811.21730.29280.020*
C160.65519 (11)1.16009 (3)0.17168 (6)0.01458 (11)
C170.67298 (12)1.10052 (3)0.14935 (6)0.01655 (12)
H17A0.66901.08920.07930.020*
C180.69642 (12)1.05866 (3)0.23103 (6)0.01542 (11)
H18A0.71041.01910.21720.019*
C190.61977 (13)1.25837 (3)0.10431 (8)0.02065 (13)
H19A0.59681.27980.03610.031*
H19B0.74591.27070.16380.031*
H19C0.51081.26590.12660.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02240 (8)0.01084 (7)0.03075 (9)0.00245 (5)0.01366 (7)0.00500 (6)
S10.01632 (7)0.00916 (6)0.01430 (7)0.00094 (5)0.00364 (6)0.00035 (5)
O10.0158 (2)0.0165 (2)0.01175 (19)0.00025 (17)0.00369 (17)0.00065 (16)
O20.0252 (3)0.0156 (2)0.0162 (2)0.00022 (19)0.0064 (2)0.00420 (18)
O30.0257 (3)0.0128 (2)0.0186 (2)0.00033 (19)0.0087 (2)0.00338 (18)
N10.0161 (2)0.0102 (2)0.0146 (2)0.00112 (18)0.00425 (19)0.00205 (17)
N20.0163 (2)0.0099 (2)0.0132 (2)0.00053 (18)0.00306 (19)0.00127 (17)
N30.0150 (2)0.0094 (2)0.0127 (2)0.00004 (17)0.00144 (18)0.00074 (17)
N40.0135 (2)0.0108 (2)0.0118 (2)0.00057 (17)0.00305 (18)0.00070 (17)
N50.0124 (2)0.0115 (2)0.0114 (2)0.00024 (17)0.00396 (17)0.00076 (17)
N60.0152 (2)0.0152 (2)0.0117 (2)0.00103 (19)0.00366 (19)0.00106 (18)
C10.0208 (3)0.0119 (3)0.0134 (3)0.0007 (2)0.0035 (2)0.0005 (2)
C20.0218 (3)0.0133 (3)0.0156 (3)0.0015 (2)0.0056 (2)0.0025 (2)
C30.0144 (3)0.0103 (2)0.0202 (3)0.0011 (2)0.0071 (2)0.0021 (2)
C40.0176 (3)0.0116 (2)0.0188 (3)0.0002 (2)0.0077 (2)0.0014 (2)
C50.0175 (3)0.0125 (2)0.0146 (3)0.0001 (2)0.0056 (2)0.0005 (2)
C60.0137 (3)0.0105 (2)0.0137 (2)0.00017 (19)0.0034 (2)0.00092 (19)
C70.0159 (3)0.0108 (2)0.0137 (2)0.0004 (2)0.0032 (2)0.00090 (19)
C80.0131 (2)0.0100 (2)0.0127 (2)0.00038 (19)0.0044 (2)0.00029 (18)
C90.0185 (3)0.0112 (2)0.0134 (2)0.0021 (2)0.0039 (2)0.0007 (2)
C100.0132 (2)0.0105 (2)0.0120 (2)0.00038 (19)0.0041 (2)0.00019 (18)
C110.0130 (2)0.0108 (2)0.0116 (2)0.00004 (19)0.00400 (19)0.00039 (18)
C120.0148 (3)0.0137 (3)0.0122 (2)0.0012 (2)0.0045 (2)0.00047 (19)
C130.0139 (2)0.0103 (2)0.0126 (2)0.00055 (19)0.0052 (2)0.00006 (19)
C140.0207 (3)0.0117 (2)0.0157 (3)0.0002 (2)0.0082 (2)0.0019 (2)
C150.0216 (3)0.0106 (2)0.0184 (3)0.0005 (2)0.0088 (2)0.0007 (2)
C160.0156 (3)0.0116 (2)0.0162 (3)0.0006 (2)0.0061 (2)0.0010 (2)
C170.0238 (3)0.0123 (3)0.0157 (3)0.0014 (2)0.0103 (2)0.0010 (2)
C180.0219 (3)0.0107 (2)0.0153 (3)0.0008 (2)0.0094 (2)0.0013 (2)
C190.0221 (3)0.0127 (3)0.0274 (4)0.0001 (2)0.0105 (3)0.0042 (2)
Geometric parameters (Å, º) top
Cl1—C31.7353 (7)C4—C51.3897 (10)
S1—C81.7426 (7)C4—H4A0.9300
S1—C91.8125 (7)C5—C61.4047 (10)
O1—N61.3767 (8)C5—H5A0.9300
O1—C121.4055 (9)C6—C71.4653 (9)
O2—C121.2145 (9)C7—H7A0.9300
O3—C161.3582 (9)C9—C101.4988 (9)
O3—C191.4231 (10)C9—H9A0.9700
N1—C71.2842 (9)C9—H9B0.9700
N1—N21.3887 (8)C10—C111.4514 (10)
N2—C81.3061 (9)C11—C121.4295 (9)
N3—C81.3675 (9)C13—C141.3790 (9)
N3—N41.3724 (8)C13—C181.3924 (9)
N3—H10.8830C14—C151.3968 (10)
N4—C101.2896 (9)C14—H14A0.9300
N5—N61.3188 (8)C15—C161.3939 (10)
N5—C111.3564 (9)C15—H15A0.9300
N5—C131.4411 (9)C16—C171.4017 (10)
C1—C21.3942 (10)C17—C181.3788 (10)
C1—C61.4007 (10)C17—H17A0.9300
C1—H1A0.9300C18—H18A0.9300
C2—C31.3902 (11)C19—H19A0.9600
C2—H2A0.9300C19—H19B0.9600
C3—C41.3938 (11)C19—H19C0.9600
C8—S1—C997.36 (3)C10—C9—H9A109.3
N6—O1—C12110.94 (5)S1—C9—H9A109.3
C16—O3—C19117.09 (6)C10—C9—H9B109.3
C7—N1—N2116.04 (6)S1—C9—H9B109.3
C8—N2—N1110.05 (6)H9A—C9—H9B108.0
C8—N3—N4126.06 (6)N4—C10—C11118.23 (6)
C8—N3—H1116.0N4—C10—C9123.36 (6)
N4—N3—H1111.2C11—C10—C9118.15 (6)
C10—N4—N3118.51 (6)N5—C11—C12105.27 (6)
N6—N5—C11114.74 (6)N5—C11—C10127.54 (6)
N6—N5—C13115.93 (6)C12—C11—C10126.68 (6)
C11—N5—C13129.25 (6)O2—C12—O1121.08 (6)
N5—N6—O1104.71 (5)O2—C12—C11134.63 (7)
C2—C1—C6120.77 (7)O1—C12—C11104.28 (6)
C2—C1—H1A119.6C14—C13—C18121.78 (6)
C6—C1—H1A119.6C14—C13—N5118.81 (6)
C3—C2—C1118.77 (7)C18—C13—N5119.38 (6)
C3—C2—H2A120.6C13—C14—C15119.45 (6)
C1—C2—H2A120.6C13—C14—H14A120.3
C2—C3—C4121.79 (6)C15—C14—H14A120.3
C2—C3—Cl1119.07 (6)C16—C15—C14119.24 (6)
C4—C3—Cl1119.13 (5)C16—C15—H15A120.4
C5—C4—C3118.85 (6)C14—C15—H15A120.4
C5—C4—H4A120.6O3—C16—C15124.71 (6)
C3—C4—H4A120.6O3—C16—C17114.86 (6)
C4—C5—C6120.73 (7)C15—C16—C17120.43 (6)
C4—C5—H5A119.6C18—C17—C16120.11 (6)
C6—C5—H5A119.6C18—C17—H17A119.9
C1—C6—C5119.08 (6)C16—C17—H17A119.9
C1—C6—C7119.79 (6)C17—C18—C13118.94 (6)
C5—C6—C7121.11 (6)C17—C18—H18A120.5
N1—C7—C6118.46 (6)C13—C18—H18A120.5
N1—C7—H7A120.8O3—C19—H19A109.5
C6—C7—H7A120.8O3—C19—H19B109.5
N2—C8—N3117.95 (6)H19A—C19—H19B109.5
N2—C8—S1121.64 (5)O3—C19—H19C109.5
N3—C8—S1120.34 (5)H19A—C19—H19C109.5
C10—C9—S1111.64 (5)H19B—C19—H19C109.5
C7—N1—N2—C8164.75 (7)C13—N5—C11—C12175.91 (6)
C8—N3—N4—C1031.43 (10)N6—N5—C11—C10171.22 (6)
C11—N5—N6—O10.60 (8)C13—N5—C11—C1011.96 (11)
C13—N5—N6—O1177.86 (5)N4—C10—C11—N512.74 (10)
C12—O1—N6—N51.94 (7)C9—C10—C11—N5172.88 (6)
C6—C1—C2—C30.59 (12)N4—C10—C11—C12157.77 (7)
C1—C2—C3—C40.26 (11)C9—C10—C11—C1216.60 (10)
C1—C2—C3—Cl1179.36 (6)N6—O1—C12—O2178.68 (7)
C2—C3—C4—C50.40 (11)N6—O1—C12—C112.46 (7)
Cl1—C3—C4—C5178.71 (6)N5—C11—C12—O2179.41 (8)
C3—C4—C5—C60.72 (11)C10—C11—C12—O28.38 (13)
C2—C1—C6—C50.27 (11)N5—C11—C12—O11.97 (7)
C2—C1—C6—C7178.37 (7)C10—C11—C12—O1170.25 (6)
C4—C5—C6—C10.40 (11)N6—N5—C13—C1449.70 (9)
C4—C5—C6—C7179.03 (7)C11—N5—C13—C14133.51 (8)
N2—N1—C7—C6179.07 (6)N6—N5—C13—C18128.71 (7)
C1—C6—C7—N1167.55 (7)C11—N5—C13—C1848.07 (10)
C5—C6—C7—N111.07 (11)C18—C13—C14—C150.78 (11)
N1—N2—C8—N3175.58 (6)N5—C13—C14—C15179.15 (7)
N1—N2—C8—S17.51 (8)C13—C14—C15—C161.44 (11)
N4—N3—C8—N2157.12 (7)C19—O3—C16—C153.20 (11)
N4—N3—C8—S119.84 (9)C19—O3—C16—C17176.93 (7)
C9—S1—C8—N2165.71 (6)C14—C15—C16—O3177.44 (7)
C9—S1—C8—N317.44 (6)C14—C15—C16—C172.43 (11)
C8—S1—C9—C1044.06 (6)O3—C16—C17—C18178.67 (7)
N3—N4—C10—C11179.45 (6)C15—C16—C17—C181.21 (12)
N3—N4—C10—C95.39 (10)C16—C17—C18—C130.99 (12)
S1—C9—C10—N444.63 (9)C14—C13—C18—C172.00 (11)
S1—C9—C10—C11141.30 (5)N5—C13—C18—C17179.63 (7)
N6—N5—C11—C120.91 (8)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N3/N4/C10/C9/S1 thiadiazine ring.
D—H···AD—HH···AD···AD—H···A
N3—H1···N2i0.882.002.8841 (9)174
C1—H1A···O2ii0.932.593.4898 (10)162
C9—H9B···O20.972.413.0433 (10)123
C18—H18A···Cl1iii0.932.773.6978 (7)173
C19—H19B···Cg2iv0.962.793.5792 (11)140
Symmetry codes: (i) x, y+2, z; (ii) x1, y, z1; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC19H15ClN6O3S
Mr442.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.2322 (2), 22.7311 (6), 12.9299 (3)
β (°) 114.426 (1)
V3)1935.37 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.56 × 0.33 × 0.19
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.832, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
38523, 10172, 8764
Rint0.023
(sin θ/λ)max1)0.858
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.03
No. of reflections10172
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N3/N4/C10/C9/S1 thiadiazine ring.
D—H···AD—HH···AD···AD—H···A
N3—H1···N2i0.882.002.8841 (9)174
C1—H1A···O2ii0.932.593.4898 (10)162
C9—H9B···O20.972.413.0433 (10)123
C18—H18A···Cl1iii0.932.773.6978 (7)173
C19—H19B···Cg2iv0.962.793.5792 (11)140
Symmetry codes: (i) x, y+2, z; (ii) x1, y, z1; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y+2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBaker, W., Ollis, W. D. & Poole, V. D. (1949). J. Chem. Soc. pp. 307–314.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Loh, W.-S., Nithinchandra,, Kalluraya, B. & Nayak, S. P. (2010). Acta Cryst. E66, o2367–o2368.  Google Scholar
First citationFun, H.-K., Quah, C. K., Nithinchandra, & Kalluraya, B. (2011). Acta Cryst. E67, o977–o978.  Google Scholar
First citationHedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834.  Web of Science PubMed Google Scholar
First citationKalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355–356.  CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1175-o1176
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds