organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1206

4-(2-{2-[2-(2-Nitro-1H-imidazol-1-yl)eth­oxy]eth­­oxy}eth­­oxy)benzaldehyde

aDepartment of Chemistry, Handan College, Handan, Hebei Province 056005, People's Republic of China, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 11 April 2011; accepted 16 April 2011; online 22 April 2011)

In the mol­ecule of the title compound, C16H19N3O6, the imidazole ring is essentially planar [maximum deviation = 0.002 (2) Å] and forms a dihedral angle of 5.08 (14)° with the nitro group. In the crystal structure, adjacent mol­ecules are connected via inter­molecular C—H⋯O hydrogen bonds into columns parallel to the a axis.

Related literature

For details and applications of nitro­imidazole, see: Abdel-Jalil et al. (2006[Abdel-Jalil, R. J. M., Übele, M., Ehrlichmann, W., Voelter, W. & Machulla, H. J. (2006). J. Radioanal. Nucl. Chem. 267, 557-560.]); Kennedy et al. (2006[Kennedy, D. C., Wu, A., Patrick, B. O. & James, B. R. (2006). J. Inorg. Biochem. 100, 1974-1982.]); Nagasawa et al. (2006[Nagasawa, H., Uto, Y., Kirk, K. L. & Hori, H. (2006). Biol. Pharm. Bull. 29, 2335-2342.]); Nunn et al. (1995[Nunn, A., Linder, K. & Strauss, W. H. (1995). J. Nucl. Med. pp. 264-280.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19N3O6

  • Mr = 349.34

  • Orthorhombic, P 21 21 21

  • a = 4.4403 (3) Å

  • b = 11.4686 (8) Å

  • c = 31.2763 (19) Å

  • V = 1592.72 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 1.00 × 0.10 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.895, Tmax = 0.990

  • 11825 measured reflections

  • 2763 independent reflections

  • 2243 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.094

  • S = 1.03

  • 2763 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O4i 0.97 2.56 3.335 (3) 137
C10—H10A⋯O4ii 0.97 2.57 3.461 (3) 152
Symmetry codes: (i) [x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitroimidazole is an important building block in the design and synthesis of hypoxia makers (Abdel-Jalil et al. 2006; Kennedy et al. 2006, Nagasawa et al., 2006). In a normal cell, the nitroimidazole moiety undergoes reduction to become a potentially reactive species and can be reoxidized in the presence of normal oxygen levels. However in hypoxic tissues, the low oxygen concentration is not able to effectively reoxidize the molecule and this results in more reactive intermediates that bind with the components of hypoxic tissues (Nunn et al., 1995). In an attempt to develop new hypoxic cell radiosensitizers, we present herein the crystal structure of 4-(2-(2-(2-(2-nitro-1H-imidazol-1-yl) ethoxy)-ethoxy)ethoxy)benzaldehyde (I).

In (I), (Fig. 1), the imidazole group is essentially planar, with a maximum deviation of 0.002 (2) Å for atom N2. The nitro group is twisted from the mean plane of imidazole ring with torsion angles O5—N3—C15—N1 = -3.7 (3)° and O6—N3—C15—N1 = 176.7 (2)°. The conformation of the 1-(2-(2-ethoxy)ethoxy)ethyl)propane group is (-)-syn-clinal with respect to the imidazole ring, which is reflected by the torsion angle N1—C12—C11—O3 = -105.5 (2)°. The dihedral angle between the imidazole (N1–N2/C13–C15) ring and the benzene (C1–C6) ring is 38.60 (13)°. Bond distances and angles have normal values (Allen et al., 1987).

The crystal packing (Fig. 2) shows that the molecules are linked by weak intermolecular C9—H9B···O4 and C10—H10A···O4 (Table 1) hydrogen interactions into columns parallel to the a axis.

Related literature top

For details and applications of nitroimidazole, see: Abdel-Jalil et al. (2006); Kennedy et al. (2006); Nagasawa et al. (2006); Nunn et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a solution of the 4-(2-(2-(2-(2-nitro-1H-imidazol-1-yl)ethoxy) ethoxy)ethyl-4-methylbenzenesulfonate (0.600 g, 1.5 mmol) and potassium carbonate (0.569 g, 4.1 mmol) in DMF (20 mL) was added a solution of 4-hydroxybenzaldehyde (0.166 g, 1.4 mmol) in DMF (10 ml) under argon atmosphere. The mixture was stirred at 120°C for 20 h. After concentration on the rotary evaporator under reduced pressure, ethyl acetate (80 ml) was then added to the reaction residue. The content was then washed with water (20 ml × 3), dried (Na2SO4) and the organic layer was evaporated to dryness and subjected to chromatography on silica with EtOAc–hexane (3:1 v/v) to afford the desired compound (I) (0.435 g, yield 89%). Analysis Calcd for C16H19N3O6: C 55.01, H 5.48, N 12.03%; found: C 55.31, H 4.91, N 12.43%. 1H NMR (500 MHz, CDCl3) δ: 3.66 (m, 4H), 3.86 (m, 4H), 4.22 (t, J = 4.5 Hz, 2H), 4.64 (t, J = 4.5 Hz, 2H), 7.04 (d, J = 9.0, 2H), 7.10 (s, 1H), 7.23 (s, 1H), 7.87 (d, J = 9.0 Hz, 2H), 9.91 (s, 1H). Single crystals of X-ray diffraction quality were prepared by the slow diffusion of hexane into a dichloromethane solution of the title compound.

Refinement top

All H atoms were positioned geometrically [C—H = 0.93 or 0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering effects, 1735 Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. H atoms non involved in hydrogen bonds are omitted.
4-(2-{2-[2-(2-Nitro-1H-imidazol-1-yl)ethoxy]ethoxy}ethoxy)benzaldehyde top
Crystal data top
C16H19N3O6F(000) = 736
Mr = 349.34Dx = 1.457 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3196 reflections
a = 4.4403 (3) Åθ = 2.6–27.4°
b = 11.4686 (8) ŵ = 0.11 mm1
c = 31.2763 (19) ÅT = 100 K
V = 1592.72 (18) Å3Needle, colourless
Z = 41.00 × 0.10 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2763 independent reflections
Radiation source: fine-focus sealed tube2243 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 30.2°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 65
Tmin = 0.895, Tmax = 0.990k = 1216
11825 measured reflectionsl = 3743
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0349P)2 + 0.4321P]
where P = (Fo2 + 2Fc2)/3
2763 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H19N3O6V = 1592.72 (18) Å3
Mr = 349.34Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.4403 (3) ŵ = 0.11 mm1
b = 11.4686 (8) ÅT = 100 K
c = 31.2763 (19) Å1.00 × 0.10 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2763 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2243 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.990Rint = 0.045
11825 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
2763 reflectionsΔρmin = 0.22 e Å3
226 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9164 (4)0.80126 (13)0.06764 (4)0.0200 (4)
O21.0360 (4)0.59396 (12)0.11489 (4)0.0195 (3)
O30.9292 (4)0.36579 (13)0.15473 (4)0.0219 (4)
O40.0201 (4)1.14948 (13)0.02814 (5)0.0258 (4)
O50.3451 (4)0.06021 (15)0.17441 (5)0.0295 (4)
O60.5051 (5)0.10825 (14)0.19678 (5)0.0339 (5)
N10.7409 (5)0.17301 (15)0.22943 (5)0.0195 (4)
N20.8668 (5)0.00344 (17)0.25495 (6)0.0243 (5)
N30.5073 (5)0.00129 (17)0.19754 (5)0.0243 (4)
C10.6176 (6)0.87874 (18)0.01331 (7)0.0193 (5)
H1A0.67780.81690.00390.023*
C20.4203 (6)0.96061 (18)0.00235 (7)0.0193 (5)
H2A0.34710.95360.03010.023*
C30.3288 (5)1.05450 (19)0.02312 (7)0.0190 (5)
C40.4436 (6)1.06324 (19)0.06456 (7)0.0210 (5)
H4A0.38401.12520.08180.025*
C50.6446 (6)0.98164 (19)0.08066 (7)0.0201 (5)
H5A0.72220.98930.10810.024*
C60.7279 (5)0.88797 (18)0.05488 (7)0.0178 (5)
C71.0208 (6)0.80108 (18)0.11112 (6)0.0202 (5)
H7A0.85150.79730.13070.024*
H7B1.13390.87160.11710.024*
C81.2175 (6)0.69626 (19)0.11638 (7)0.0207 (5)
H8A1.36650.69400.09370.025*
H8B1.32260.70020.14350.025*
C91.2191 (6)0.4924 (2)0.11083 (7)0.0214 (5)
H9A1.36310.48930.13410.026*
H9B1.32990.49520.08410.026*
C101.0220 (6)0.38626 (18)0.11178 (6)0.0202 (5)
H10A0.84710.39820.09370.024*
H10B1.13220.31930.10110.024*
C110.7292 (6)0.27044 (19)0.15794 (7)0.0224 (5)
H11A0.83360.19840.15140.027*
H11B0.56440.27970.13780.027*
C120.6082 (7)0.26698 (19)0.20368 (7)0.0243 (6)
H12A0.64930.34110.21740.029*
H12B0.39140.25680.20280.029*
C130.9408 (6)0.1895 (2)0.26212 (7)0.0242 (5)
H13A1.01290.26050.27210.029*
C141.0146 (7)0.0807 (2)0.27736 (7)0.0264 (5)
H14A1.14690.06660.29980.032*
C150.7066 (6)0.05487 (19)0.22695 (6)0.0204 (5)
C160.1127 (6)1.14220 (19)0.00810 (7)0.0213 (5)
H16A0.04181.19610.02790.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0253 (9)0.0186 (7)0.0161 (7)0.0025 (8)0.0000 (7)0.0003 (6)
O20.0184 (8)0.0159 (7)0.0243 (7)0.0011 (7)0.0010 (8)0.0014 (6)
O30.0291 (10)0.0198 (7)0.0168 (7)0.0051 (8)0.0008 (7)0.0001 (6)
O40.0266 (10)0.0266 (8)0.0242 (8)0.0009 (8)0.0027 (8)0.0016 (6)
O50.0294 (10)0.0345 (9)0.0245 (8)0.0009 (9)0.0035 (8)0.0016 (7)
O60.0496 (13)0.0188 (8)0.0333 (9)0.0068 (9)0.0004 (11)0.0028 (7)
N10.0239 (11)0.0163 (9)0.0184 (9)0.0011 (8)0.0026 (9)0.0005 (7)
N20.0337 (12)0.0194 (9)0.0200 (9)0.0019 (10)0.0030 (9)0.0025 (7)
N30.0303 (12)0.0233 (9)0.0193 (8)0.0045 (10)0.0044 (10)0.0002 (8)
C10.0225 (12)0.0159 (10)0.0195 (10)0.0018 (10)0.0037 (10)0.0024 (8)
C20.0185 (12)0.0220 (10)0.0174 (9)0.0025 (10)0.0001 (9)0.0003 (8)
C30.0175 (11)0.0182 (10)0.0214 (10)0.0024 (10)0.0023 (10)0.0005 (8)
C40.0235 (12)0.0179 (10)0.0216 (10)0.0008 (11)0.0004 (10)0.0033 (8)
C50.0243 (13)0.0197 (10)0.0165 (9)0.0024 (10)0.0008 (10)0.0018 (8)
C60.0182 (11)0.0148 (10)0.0205 (10)0.0016 (10)0.0034 (10)0.0027 (8)
C70.0245 (13)0.0191 (10)0.0170 (9)0.0026 (11)0.0000 (11)0.0004 (8)
C80.0198 (12)0.0200 (10)0.0222 (10)0.0042 (10)0.0006 (11)0.0005 (9)
C90.0224 (12)0.0190 (10)0.0227 (10)0.0035 (11)0.0003 (11)0.0009 (9)
C100.0251 (13)0.0157 (10)0.0199 (10)0.0021 (10)0.0012 (11)0.0002 (8)
C110.0300 (14)0.0151 (10)0.0220 (11)0.0005 (10)0.0028 (12)0.0028 (9)
C120.0314 (15)0.0157 (10)0.0258 (11)0.0037 (11)0.0012 (11)0.0029 (9)
C130.0268 (13)0.0272 (11)0.0185 (10)0.0019 (12)0.0027 (11)0.0034 (9)
C140.0333 (14)0.0273 (11)0.0185 (10)0.0009 (12)0.0006 (12)0.0000 (9)
C150.0270 (13)0.0169 (10)0.0174 (10)0.0017 (10)0.0027 (10)0.0010 (8)
C160.0193 (12)0.0172 (10)0.0274 (11)0.0024 (10)0.0010 (11)0.0005 (9)
Geometric parameters (Å, º) top
O1—C61.360 (3)C4—H4A0.9300
O1—C71.437 (2)C5—C61.393 (3)
O2—C81.424 (3)C5—H5A0.9300
O2—C91.426 (3)C7—C81.495 (3)
O3—C111.412 (3)C7—H7A0.9700
O3—C101.425 (2)C7—H7B0.9700
O4—C161.209 (3)C8—H8A0.9700
O5—N31.241 (3)C8—H8B0.9700
O6—N31.227 (2)C9—C101.500 (3)
N1—C151.366 (3)C9—H9A0.9700
N1—C131.367 (3)C9—H9B0.9700
N1—C121.469 (3)C10—H10A0.9700
N2—C151.312 (3)C10—H10B0.9700
N2—C141.361 (3)C11—C121.529 (3)
N3—C151.429 (3)C11—H11A0.9700
C1—C21.374 (3)C11—H11B0.9700
C1—C61.393 (3)C12—H12A0.9700
C1—H1A0.9300C12—H12B0.9700
C2—C31.400 (3)C13—C141.375 (3)
C2—H2A0.9300C13—H13A0.9300
C3—C41.396 (3)C14—H14A0.9300
C3—C161.467 (3)C16—H16A0.9300
C4—C51.388 (3)
C6—O1—C7118.52 (17)C7—C8—H8B109.8
C8—O2—C9110.66 (17)H8A—C8—H8B108.3
C11—O3—C10112.10 (16)O2—C9—C10109.2 (2)
C15—N1—C13104.60 (19)O2—C9—H9A109.8
C15—N1—C12130.7 (2)C10—C9—H9A109.8
C13—N1—C12124.70 (19)O2—C9—H9B109.8
C15—N2—C14104.12 (19)C10—C9—H9B109.8
O6—N3—O5123.5 (2)H9A—C9—H9B108.3
O6—N3—C15117.9 (2)O3—C10—C9108.74 (17)
O5—N3—C15118.57 (18)O3—C10—H10A109.9
C2—C1—C6120.3 (2)C9—C10—H10A109.9
C2—C1—H1A119.8O3—C10—H10B109.9
C6—C1—H1A119.8C9—C10—H10B109.9
C1—C2—C3120.5 (2)H10A—C10—H10B108.3
C1—C2—H2A119.7O3—C11—C12107.91 (18)
C3—C2—H2A119.7O3—C11—H11A110.1
C4—C3—C2118.5 (2)C12—C11—H11A110.1
C4—C3—C16119.1 (2)O3—C11—H11B110.1
C2—C3—C16122.4 (2)C12—C11—H11B110.1
C5—C4—C3121.5 (2)H11A—C11—H11B108.4
C5—C4—H4A119.2N1—C12—C11113.03 (19)
C3—C4—H4A119.2N1—C12—H12A109.0
C4—C5—C6118.7 (2)C11—C12—H12A109.0
C4—C5—H5A120.6N1—C12—H12B109.0
C6—C5—H5A120.6C11—C12—H12B109.0
O1—C6—C5123.9 (2)H12A—C12—H12B107.8
O1—C6—C1115.77 (19)N1—C13—C14106.8 (2)
C5—C6—C1120.3 (2)N1—C13—H13A126.6
O1—C7—C8107.08 (17)C14—C13—H13A126.6
O1—C7—H7A110.3N2—C14—C13110.5 (2)
C8—C7—H7A110.3N2—C14—H14A124.8
O1—C7—H7B110.3C13—C14—H14A124.8
C8—C7—H7B110.3N2—C15—N1114.0 (2)
H7A—C7—H7B108.6N2—C15—N3122.39 (19)
O2—C8—C7109.2 (2)N1—C15—N3123.6 (2)
O2—C8—H8A109.8O4—C16—C3124.7 (2)
C7—C8—H8A109.8O4—C16—H16A117.6
O2—C8—H8B109.9C3—C16—H16A117.6
C6—C1—C2—C30.3 (3)C15—N1—C12—C1169.6 (3)
C1—C2—C3—C40.3 (3)C13—N1—C12—C11108.9 (2)
C1—C2—C3—C16178.4 (2)O3—C11—C12—N1105.5 (2)
C2—C3—C4—C50.1 (3)C15—N1—C13—C140.0 (3)
C16—C3—C4—C5178.9 (2)C12—N1—C13—C14178.9 (2)
C3—C4—C5—C61.2 (3)C15—N2—C14—C130.3 (3)
C7—O1—C6—C54.4 (3)N1—C13—C14—N20.2 (3)
C7—O1—C6—C1175.6 (2)C14—N2—C15—N10.3 (3)
C4—C5—C6—O1178.2 (2)C14—N2—C15—N3177.8 (2)
C4—C5—C6—C11.9 (3)C13—N1—C15—N20.1 (3)
C2—C1—C6—O1178.6 (2)C12—N1—C15—N2178.6 (2)
C2—C1—C6—C51.4 (3)C13—N1—C15—N3177.9 (2)
C6—O1—C7—C8179.05 (18)C12—N1—C15—N33.3 (4)
C9—O2—C8—C7167.89 (17)O6—N3—C15—N25.4 (3)
O1—C7—C8—O270.0 (2)O5—N3—C15—N2174.2 (2)
C8—O2—C9—C10176.92 (17)O6—N3—C15—N1176.7 (2)
C11—O3—C10—C9176.86 (19)O5—N3—C15—N13.7 (3)
O2—C9—C10—O375.8 (2)C4—C3—C16—O4172.9 (2)
C10—O3—C11—C12171.84 (19)C2—C3—C16—O48.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O4i0.972.563.335 (3)137
C10—H10A···O4ii0.972.573.461 (3)152
Symmetry codes: (i) x+3/2, y+3/2, z; (ii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC16H19N3O6
Mr349.34
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)4.4403 (3), 11.4686 (8), 31.2763 (19)
V3)1592.72 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)1.00 × 0.10 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.895, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
11825, 2763, 2243
Rint0.045
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.094, 1.03
No. of reflections2763
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O4i0.97002.56003.335 (3)137.40
C10—H10A···O4ii0.97002.57003.461 (3)152.40
Symmetry codes: (i) x+3/2, y+3/2, z; (ii) x+1/2, y+3/2, z.
 

Footnotes

Additional correspondence author, e-mail: 13722380143@163.com.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

SXL and DHZ gratefully acknowledge the financial assistance of Handan College. The authors thank the Malaysian Government and Universiti Sains Malaysia for Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAbdel-Jalil, R. J. M., Übele, M., Ehrlichmann, W., Voelter, W. & Machulla, H. J. (2006). J. Radioanal. Nucl. Chem. 267, 557–560.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKennedy, D. C., Wu, A., Patrick, B. O. & James, B. R. (2006). J. Inorg. Biochem. 100, 1974–1982.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNagasawa, H., Uto, Y., Kirk, K. L. & Hori, H. (2006). Biol. Pharm. Bull. 29, 2335–2342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNunn, A., Linder, K. & Strauss, W. H. (1995). J. Nucl. Med. pp. 264–280.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1206
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds