organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1250

(5-Benzoyl-3,6-dimeth­­oxy­naphthalen-2-yl)(phen­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 12 April 2011; accepted 21 April 2011; online 29 April 2011)

The asymmetric unit of the title compound, C26H20O4, contains two independent conformers. The aromatic rings of the aroyl groups are twisted with respect to the naphthalene ring systems to form dihedral angles of 66.58 (6) and 66.45 (6)° in one conformer, and 75.00 (7) and 81.17 (6)° in the other conformer. The crystal packing is stabilized by weak inter­molecular C—H⋯O hydrogen bonds and by C—H⋯π inter­actions.

Related literature

For information on the electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]). For the structures of closely related compounds, see: Kataoka et al. (2010[Kataoka, K., Nishijima, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2972.]); Kato et al. (2010[Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.], 2011[Kato, Y., Takeuchi, R., Muto, T., Okamoto, A. & Yonezawa, N. (2011). Acta Cryst. E67, o668.]); Nakaema et al. (2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Nishijima et al. (2010[Nishijima, T., Kataoka, K., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2904-o2905.]); Watanabe et al. (2010[Watanabe, S., Muto, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o712.]).

[Scheme 1]

Experimental

Crystal data
  • C26H20O4

  • Mr = 396.42

  • Triclinic, [P \overline 1]

  • a = 8.42828 (15) Å

  • b = 12.5953 (2) Å

  • c = 20.0578 (4) Å

  • α = 96.222 (1)°

  • β = 99.688 (1)°

  • γ = 102.727 (1)°

  • V = 2023.76 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 193 K

  • 0.60 × 0.40 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.677, Tmax = 0.933

  • 32431 measured reflections

  • 7263 independent reflections

  • 5957 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.115

  • S = 1.08

  • 7263 reflections

  • 546 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C19–C24 and C4–C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O3i 0.95 2.57 3.5191 (19) 176
C25—H25C⋯O4ii 0.98 2.56 3.348 (2) 138
C51—H51C⋯O8iii 0.98 2.47 3.371 (2) 152
C3—H3⋯Cg1iv 0.95 2.59 3.416 (11) 145
C14—H14⋯Cg2v 0.95 2.86 3.578 (9) 133
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+2, -z; (v) x-1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: IL MILIONE (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by 1,8-bis(4-aminobenzoyl)-2,7-dimethoxynaphthalene (Nishijima et al., 2010) and 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are connected in an almost perpendicular fashion. In this course, the crystal structures of 1-monoaroylated naphthalene compounds and the β-isomers of 3-monoaroylated compounds have been also clarified such as 1-benzoyl-2,7-dimethoxynaphthalene (Kato, et al., 2010), 1-(3-nitrobenzoyl)-2,7-dimethoxynaphthalene (Kataoka et al., 2010), 3-benzoyl-2,7-dimethoxynaphthalene (Kato et al., 2011), and (3,6-dimethoxy-2-naphthyl)(4-fluorophenyl)methanone (Watanabe et al., 2010). 1-Aroylated naphthalene compounds have been revealed to have essentially the same non-coplanar structure as the 1,8-diaroylated naphthalenes. 3-Substituted aroylnaphthalene compounds are generally regarded to be thermodynamically more stable than the corresponding 1-positioned isomeric molecules, with the aroyl groups connected to the naphthalene rings in a moderately twisted fashion. As a part of our continuous study on the molecular structures of this kind of homologous molecules, the crystal structure of title compound, a 1,6-dibenzoylated naphthalene derivative, is discussed in this paper.

There are two independent conformers in the asymmetric unit of the title compound. The conformers, labeled (I) and (II), are shown in Fig. 1. Each conformer has essentially the same non-coplanar structure, the main difference consisting in the dihedral angles formed by the benzene rings with the naphthalene ring systems. Conformer (II) shows a larger dihedral angle for the benzene ring of the aroyl group at 6-position than that of the benzene ring of the aroyl group at 1-potision [81.17 (6) and 75.00 (7)°], whereas very similar dihedral angles are observed for conformer (I) [66.45 (6) and 66.58 (6)°]. These angles could be compared with those reported for related 1- and 3-monoaroylated naphthalenes, e. g. (2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone (75.34 (7), 86.47 (7) and 76.55 (6)°; Kato et al., 2010) and (3,6-dimethoxynaphthalen-2-yl)(phenyl)methanone (68.32 (5)°; Kato et al., 2011). The torsion angles between the carbonyl groups and the naphthalene ring of conformer (I) are 116.90 (14) (C1—C10—C11—O3) and 48.7 (2)° (C5—C6—C18—O4), those of conformer (II) are 106.70 (17) (C27—C36—C37—O7) and 73.7 (2)° (C31—C32—C44—O8). In the crystal structure, the molecular packing is stabilized mainly by weak two intermolecular C—H···O hydrogen bonds in conformer (I) (Table 1, Fig. 2). Moreover, a C—H···O hydrogen bond between the hydrogen atom of a 2-methoxy group and the oxygen atom of a carbonyl group is observed in conformer (II) (Table 1, Fig. 3). The crystal structure is further stabilized by C—H···π interactions (Table 1). In the crystal structure, conformer (I) and (II) are alternately piled up along a axis as shown in Fig. 4.

Related literature top

For information on the electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Kataoka et al. (2010); Kato et al. (2010, 2011); Nakaema et al. (2008); Nishijima et al. (2010); Watanabe et al. (2010).

Experimental top

To a 50 ml flask, benzoyl chloride (3.2 mmol, 350 mg), aluminium chloride (3.4 mmo1, 450 mg) and methylene chloride (2.5 ml) were added and stirred at 273 K. To the reaction mixture thus obtained, was then added 3-benzoyl-2,7-dimethoxynaphthalene (1.0 mmol, 294 mg). After the reaction mixture was stirred at 273 K for 72 h, it was poured into ice-cold water (10 ml). The aqueous layer was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake (quant.). The crude product was purified by recrystallization from ethanol (34% yield). Colourless platelet single crystals suitable for X-ray diffraction analysis were obtained by repeated crystallization from a hexane/chloroform (1:1 v/v) solution. 1H NMR δ (400 MHz, CDCl3, p.p.m.); 3.60(3H, s), 3.82(3H, s), 6.88(1H, s), 7.23(1H, d, J = 8.4 Hz), 7.41–7.48(4H, m), 7.54–7.62(2H, m), 7.82–7.87(4H, m), 7.89(1H, d, J = 1.6 Hz), 7.92(1H, d, J = 9.2 Hz). 13C NMR δ (75 MHz, CDCl3, p.p.m.): 55.45, 56.31, 102.36, 110.99, 121.64, 123.35, 128.24, 128.63, 128.94, 129.51, 129.87, 130.26, 132.00, 133.04, 133.54, 134.06, 137.75, 137.94, 156.08, 156.39, 195.77, 197.72. IR (KBr); 1668(CO), 1624, 1578, 1497(Ar, naphthalene) cm-1. HRMS (m/z); [M + H]+ Calcd for C26H21O4, 397.1440; found, 397.1444. M.p. = 429.4–431.8 K

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(C). Rigid bond restrains were applied to the Uij values of naphthalene ring (C31—C32) and benzene ring (C40—C41) [2 restrains with the DELU command in SHELXL97].

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: IL MILIONE (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of conformers (I) and (II). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular C—H···O interactions in conformer (I) [symmetry code: (i) -x+3/2, y-1/2, z; (ii) -x+1, -y+2, -z].
[Figure 3] Fig. 3. Intermolecular C—H···O interactions in conformer (II) [symmetry code: (iii) -x+1, -y+1, -z+1].
[Figure 4] Fig. 4. The alignment of the molecules in the crystal structure, viewed along the a axis [conformer (I) is blue, conformer (II) is red].
(5-Benzoyl-3,6-dimethoxynaphthalen-2-yl)(phenyl)methanone top
Crystal data top
C26H20O4Z = 4
Mr = 396.42F(000) = 832
Triclinic, P1Dx = 1.301 Mg m3
Hall symbol: -P 1Melting point = 429.4–431.8 K
a = 8.42828 (15) ÅCu Kα radiation, λ = 1.54187 Å
b = 12.5953 (2) ÅCell parameters from 27981 reflections
c = 20.0578 (4) Åθ = 3.6–68.2°
α = 96.222 (1)°µ = 0.71 mm1
β = 99.688 (1)°T = 193 K
γ = 102.727 (1)°Platelet, colourless
V = 2023.76 (6) Å30.60 × 0.40 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7263 independent reflections
Radiation source: rotating anode5957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 3.6°
ω scansh = 1010
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1515
Tmin = 0.677, Tmax = 0.933l = 2324
32431 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.2292P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
7263 reflectionsΔρmax = 0.27 e Å3
546 parametersΔρmin = 0.21 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0067 (4)
Crystal data top
C26H20O4γ = 102.727 (1)°
Mr = 396.42V = 2023.76 (6) Å3
Triclinic, P1Z = 4
a = 8.42828 (15) ÅCu Kα radiation
b = 12.5953 (2) ŵ = 0.71 mm1
c = 20.0578 (4) ÅT = 193 K
α = 96.222 (1)°0.60 × 0.40 × 0.10 mm
β = 99.688 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7263 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
5957 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 0.933Rint = 0.031
32431 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
7263 reflectionsΔρmin = 0.21 e Å3
546 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.75620 (12)1.12665 (8)0.24000 (5)0.0463 (3)
O20.14926 (12)0.65855 (8)0.03150 (5)0.0455 (3)
O30.55140 (12)0.85168 (9)0.25446 (5)0.0494 (3)
O40.03981 (14)0.81814 (11)0.11186 (6)0.0629 (3)
O50.39029 (14)0.33247 (9)0.27240 (6)0.0541 (3)
O60.39614 (13)0.86845 (9)0.44885 (5)0.0511 (3)
O70.38552 (13)0.58829 (10)0.22876 (6)0.0564 (3)
O80.36093 (17)0.79742 (14)0.60807 (6)0.0856 (5)
C10.63721 (16)1.08595 (11)0.18260 (7)0.0382 (3)
C20.58200 (17)1.15268 (11)0.13624 (8)0.0423 (3)
H20.63021.22970.14340.051*
C30.45899 (17)1.10584 (11)0.08112 (7)0.0410 (3)
H30.42331.15090.04960.049*
C40.38305 (16)0.99224 (11)0.06952 (7)0.0364 (3)
C50.25120 (16)0.94529 (11)0.01373 (7)0.0383 (3)
H50.21600.99100.01750.046*
C60.17237 (16)0.83613 (11)0.00312 (7)0.0377 (3)
C70.23026 (16)0.76713 (11)0.04875 (7)0.0367 (3)
C80.35891 (15)0.80916 (11)0.10324 (7)0.0357 (3)
H80.39570.76170.13280.043*
C90.43812 (15)0.92381 (11)0.11589 (7)0.0340 (3)
C100.57067 (15)0.97328 (11)0.17229 (7)0.0350 (3)
C110.63953 (16)0.90486 (11)0.22145 (7)0.0354 (3)
C120.81623 (15)0.89971 (10)0.22638 (7)0.0342 (3)
C130.91210 (17)0.94624 (12)0.18213 (7)0.0419 (3)
H130.86660.98490.14860.050*
C141.07400 (18)0.93639 (14)0.18677 (8)0.0505 (4)
H141.13900.96820.15630.061*
C151.14103 (18)0.88071 (14)0.23533 (8)0.0519 (4)
H151.25180.87360.23820.062*
C161.04694 (18)0.83527 (14)0.27983 (9)0.0526 (4)
H161.09360.79760.31370.063*
C170.88488 (17)0.84427 (12)0.27543 (8)0.0437 (3)
H170.82050.81240.30610.052*
C180.02760 (17)0.79442 (12)0.05542 (7)0.0414 (3)
C190.13454 (16)0.73366 (10)0.04292 (7)0.0376 (3)
C200.17214 (18)0.73856 (12)0.02197 (8)0.0448 (3)
H200.08960.77600.06060.054*
C210.3297 (2)0.68907 (14)0.03039 (10)0.0581 (4)
H210.35580.69350.07470.070*
C220.4493 (2)0.63315 (14)0.02576 (11)0.0633 (5)
H220.55730.59880.01990.076*
C230.4121 (2)0.62724 (12)0.08983 (11)0.0590 (5)
H230.49450.58840.12820.071*
C240.25615 (18)0.67716 (11)0.09900 (8)0.0464 (4)
H240.23160.67300.14360.056*
C250.8244 (2)1.24308 (12)0.25537 (9)0.0547 (4)
H25A0.90511.26040.29870.066*
H25B0.73511.28040.25920.066*
H25C0.87981.26820.21870.066*
C260.1872 (2)0.58516 (12)0.07768 (9)0.0529 (4)
H26A0.30270.58080.08010.064*
H26B0.11320.51180.06140.064*
H26C0.17180.61240.12320.064*
C270.36484 (18)0.39304 (13)0.32852 (8)0.0460 (3)
C280.3038 (2)0.34626 (14)0.38244 (9)0.0543 (4)
H280.28000.26880.38160.065*
C290.2792 (2)0.41289 (14)0.43577 (9)0.0550 (4)
H290.23970.38080.47240.066*
C300.31049 (17)0.52816 (13)0.43836 (8)0.0456 (3)
C310.28001 (18)0.59751 (14)0.49256 (8)0.0497 (4)
H310.23930.56570.52910.060*
C320.30714 (17)0.70823 (13)0.49412 (7)0.0456 (3)
C330.37117 (17)0.75666 (13)0.44010 (7)0.0434 (3)
C340.40361 (16)0.69303 (12)0.38659 (7)0.0411 (3)
H340.44650.72670.35110.049*
C350.37334 (16)0.57641 (12)0.38400 (7)0.0401 (3)
C360.40236 (16)0.50614 (12)0.32941 (7)0.0412 (3)
C370.47086 (17)0.55206 (11)0.27136 (7)0.0400 (3)
C380.64577 (17)0.55189 (11)0.26701 (7)0.0406 (3)
C390.75209 (19)0.52482 (14)0.31930 (9)0.0535 (4)
H390.71490.50680.35980.064*
C400.9143 (2)0.52407 (15)0.31253 (11)0.0673 (5)
H400.98810.50680.34870.081*
C410.9670 (2)0.54832 (16)0.25342 (12)0.0731 (6)
H411.07640.54620.24840.088*
C420.8617 (2)0.57558 (17)0.20157 (11)0.0698 (5)
H420.89840.59210.16080.084*
C430.70313 (19)0.57898 (13)0.20861 (8)0.0517 (4)
H430.63220.60010.17310.062*
C440.26992 (19)0.77897 (14)0.55201 (8)0.0515 (4)
C450.11741 (17)0.82003 (12)0.54022 (7)0.0426 (3)
C460.00223 (18)0.78735 (12)0.47869 (8)0.0456 (3)
H460.02340.74060.44250.055*
C470.1424 (2)0.82298 (14)0.47039 (9)0.0545 (4)
H470.22130.80000.42860.065*
C480.1730 (2)0.89198 (14)0.52258 (9)0.0570 (4)
H480.27270.91640.51660.068*
C490.0592 (2)0.92543 (13)0.58321 (9)0.0542 (4)
H490.08040.97320.61890.065*
C500.08573 (19)0.88984 (12)0.59252 (8)0.0479 (4)
H500.16370.91290.63450.057*
C510.3316 (2)0.21502 (13)0.26385 (9)0.0578 (4)
H51A0.34620.18270.21930.069*
H51B0.21360.19590.26610.069*
H51C0.39470.18620.30030.069*
C520.46383 (19)0.92637 (13)0.39871 (8)0.0499 (4)
H52A0.47781.00560.41190.060*
H52B0.38830.90190.35420.060*
H52C0.57180.91140.39560.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0494 (6)0.0427 (5)0.0421 (6)0.0103 (4)0.0006 (5)0.0016 (4)
O20.0443 (5)0.0388 (5)0.0503 (6)0.0099 (4)0.0024 (5)0.0124 (4)
O30.0365 (5)0.0686 (7)0.0494 (6)0.0138 (5)0.0130 (5)0.0271 (5)
O40.0529 (7)0.0952 (9)0.0393 (6)0.0091 (6)0.0066 (5)0.0267 (6)
O50.0627 (7)0.0495 (6)0.0495 (7)0.0096 (5)0.0141 (5)0.0088 (5)
O60.0549 (6)0.0536 (6)0.0465 (6)0.0110 (5)0.0171 (5)0.0081 (5)
O70.0478 (6)0.0831 (8)0.0468 (6)0.0245 (6)0.0108 (5)0.0267 (6)
O80.0697 (8)0.1516 (14)0.0404 (7)0.0559 (9)0.0025 (6)0.0036 (8)
C10.0345 (7)0.0443 (7)0.0382 (8)0.0135 (6)0.0092 (6)0.0056 (6)
C20.0421 (8)0.0378 (7)0.0488 (9)0.0120 (6)0.0101 (6)0.0082 (6)
C30.0403 (7)0.0419 (7)0.0466 (8)0.0165 (6)0.0105 (6)0.0159 (6)
C40.0330 (7)0.0430 (7)0.0385 (7)0.0145 (5)0.0116 (6)0.0122 (6)
C50.0360 (7)0.0466 (7)0.0379 (8)0.0156 (6)0.0092 (6)0.0167 (6)
C60.0325 (7)0.0474 (7)0.0360 (7)0.0126 (6)0.0074 (6)0.0120 (6)
C70.0324 (7)0.0404 (7)0.0398 (8)0.0112 (5)0.0082 (6)0.0105 (6)
C80.0326 (7)0.0414 (7)0.0386 (7)0.0153 (5)0.0086 (6)0.0136 (6)
C90.0293 (6)0.0419 (7)0.0362 (7)0.0143 (5)0.0114 (5)0.0095 (6)
C100.0309 (6)0.0425 (7)0.0358 (7)0.0143 (5)0.0096 (5)0.0086 (6)
C110.0329 (7)0.0412 (7)0.0324 (7)0.0090 (5)0.0071 (5)0.0062 (6)
C120.0312 (7)0.0370 (6)0.0328 (7)0.0086 (5)0.0028 (5)0.0029 (5)
C130.0374 (7)0.0555 (8)0.0363 (8)0.0154 (6)0.0089 (6)0.0105 (6)
C140.0375 (8)0.0733 (10)0.0430 (9)0.0149 (7)0.0130 (6)0.0079 (7)
C150.0335 (7)0.0730 (11)0.0485 (9)0.0193 (7)0.0032 (7)0.0011 (8)
C160.0420 (8)0.0635 (10)0.0531 (10)0.0208 (7)0.0020 (7)0.0143 (8)
C170.0378 (7)0.0485 (8)0.0452 (8)0.0103 (6)0.0051 (6)0.0138 (6)
C180.0410 (8)0.0491 (8)0.0367 (8)0.0145 (6)0.0062 (6)0.0122 (6)
C190.0382 (7)0.0366 (7)0.0393 (8)0.0131 (5)0.0028 (6)0.0108 (6)
C200.0411 (8)0.0520 (8)0.0445 (8)0.0149 (6)0.0061 (6)0.0169 (7)
C210.0502 (9)0.0697 (11)0.0676 (11)0.0217 (8)0.0212 (8)0.0374 (9)
C220.0401 (9)0.0490 (9)0.1035 (16)0.0077 (7)0.0110 (9)0.0343 (10)
C230.0454 (9)0.0394 (8)0.0824 (13)0.0080 (7)0.0092 (9)0.0054 (8)
C240.0477 (8)0.0403 (7)0.0487 (9)0.0159 (6)0.0034 (7)0.0046 (6)
C250.0589 (10)0.0460 (8)0.0514 (10)0.0046 (7)0.0043 (8)0.0009 (7)
C260.0506 (9)0.0443 (8)0.0618 (10)0.0093 (7)0.0004 (8)0.0204 (7)
C270.0418 (8)0.0532 (8)0.0427 (8)0.0097 (6)0.0074 (6)0.0120 (7)
C280.0579 (10)0.0518 (9)0.0534 (10)0.0073 (7)0.0128 (8)0.0182 (8)
C290.0557 (9)0.0646 (10)0.0486 (10)0.0096 (8)0.0173 (8)0.0255 (8)
C300.0396 (8)0.0593 (9)0.0396 (8)0.0099 (6)0.0090 (6)0.0168 (7)
C310.0450 (8)0.0716 (10)0.0359 (8)0.0125 (7)0.0127 (6)0.0192 (7)
C320.0381 (7)0.0643 (9)0.0355 (8)0.0134 (7)0.0068 (6)0.0112 (7)
C330.0337 (7)0.0566 (9)0.0385 (8)0.0082 (6)0.0051 (6)0.0106 (7)
C340.0327 (7)0.0549 (8)0.0359 (8)0.0073 (6)0.0082 (6)0.0124 (6)
C350.0298 (7)0.0551 (8)0.0350 (7)0.0077 (6)0.0048 (5)0.0128 (6)
C360.0337 (7)0.0517 (8)0.0377 (8)0.0085 (6)0.0053 (6)0.0115 (6)
C370.0364 (7)0.0461 (7)0.0357 (8)0.0082 (6)0.0043 (6)0.0066 (6)
C380.0364 (7)0.0409 (7)0.0412 (8)0.0047 (6)0.0066 (6)0.0036 (6)
C390.0413 (8)0.0607 (9)0.0565 (10)0.0108 (7)0.0040 (7)0.0125 (8)
C400.0405 (9)0.0676 (11)0.0880 (14)0.0139 (8)0.0037 (9)0.0113 (10)
C410.0414 (9)0.0769 (12)0.1002 (16)0.0101 (8)0.0242 (10)0.0030 (11)
C420.0481 (10)0.0860 (13)0.0727 (13)0.0028 (9)0.0272 (9)0.0055 (10)
C430.0436 (8)0.0582 (9)0.0490 (9)0.0013 (7)0.0127 (7)0.0065 (7)
C440.0449 (8)0.0732 (11)0.0368 (8)0.0136 (7)0.0083 (7)0.0110 (7)
C450.0408 (7)0.0479 (8)0.0387 (8)0.0051 (6)0.0105 (6)0.0134 (6)
C460.0453 (8)0.0500 (8)0.0409 (8)0.0084 (6)0.0085 (6)0.0110 (6)
C470.0481 (9)0.0646 (10)0.0484 (9)0.0128 (7)0.0010 (7)0.0140 (8)
C480.0516 (9)0.0609 (10)0.0642 (11)0.0210 (8)0.0129 (8)0.0171 (8)
C490.0586 (10)0.0486 (9)0.0582 (10)0.0137 (7)0.0181 (8)0.0089 (7)
C500.0474 (8)0.0506 (8)0.0424 (8)0.0039 (7)0.0095 (7)0.0085 (7)
C510.0624 (10)0.0501 (9)0.0607 (11)0.0146 (8)0.0095 (8)0.0107 (8)
C520.0500 (9)0.0558 (9)0.0451 (9)0.0117 (7)0.0106 (7)0.0135 (7)
Geometric parameters (Å, º) top
O1—C11.3606 (16)C25—H25A0.9800
O1—C251.4306 (17)C25—H25B0.9800
O2—C71.3647 (16)C25—H25C0.9800
O2—C261.4251 (17)C26—H26A0.9800
O3—C111.2172 (16)C26—H26B0.9800
O4—C181.2168 (17)C26—H26C0.9800
O5—C271.3646 (18)C27—C361.387 (2)
O5—C511.4340 (18)C27—C281.405 (2)
O6—C331.3641 (18)C28—C291.360 (2)
O6—C521.4276 (18)C28—H280.9500
O7—C371.2157 (17)C29—C301.411 (2)
O8—C441.2170 (18)C29—H290.9500
C1—C101.3848 (19)C30—C311.414 (2)
C1—C21.408 (2)C30—C351.426 (2)
C2—C31.360 (2)C31—C321.359 (2)
C2—H20.9500C31—H310.9500
C3—C41.4090 (19)C32—C331.426 (2)
C3—H30.9500C32—C441.504 (2)
C4—C51.4090 (19)C33—C341.370 (2)
C4—C91.4242 (18)C34—C351.428 (2)
C5—C61.3652 (19)C34—H340.9500
C5—H50.9500C35—C361.420 (2)
C6—C71.4282 (19)C36—C371.500 (2)
C6—C181.4984 (18)C37—C381.4918 (19)
C7—C81.3687 (18)C38—C391.384 (2)
C8—C91.4261 (18)C38—C431.388 (2)
C8—H80.9500C39—C401.399 (2)
C9—C101.4252 (18)C39—H390.9500
C10—C111.5045 (19)C40—C411.376 (3)
C11—C121.4921 (18)C40—H400.9500
C12—C171.3875 (19)C41—C421.374 (3)
C12—C131.3892 (19)C41—H410.9500
C13—C141.386 (2)C42—C431.377 (2)
C13—H130.9500C42—H420.9500
C14—C151.377 (2)C43—H430.9500
C14—H140.9500C44—C451.481 (2)
C15—C161.379 (2)C45—C501.394 (2)
C15—H150.9500C45—C461.395 (2)
C16—C171.384 (2)C46—C471.380 (2)
C16—H160.9500C46—H460.9500
C17—H170.9500C47—C481.382 (2)
C18—C191.4872 (19)C47—H470.9500
C19—C201.389 (2)C48—C491.377 (2)
C19—C241.3927 (19)C48—H480.9500
C20—C211.384 (2)C49—C501.382 (2)
C20—H200.9500C49—H490.9500
C21—C221.384 (3)C50—H500.9500
C21—H210.9500C51—H51A0.9800
C22—C231.371 (3)C51—H51B0.9800
C22—H220.9500C51—H51C0.9800
C23—C241.378 (2)C52—H52A0.9800
C23—H230.9500C52—H52B0.9800
C24—H240.9500C52—H52C0.9800
C1—O1—C25118.57 (11)H26A—C26—H26C109.5
C7—O2—C26117.91 (11)H26B—C26—H26C109.5
C27—O5—C51118.04 (12)O5—C27—C36115.63 (13)
C33—O6—C52118.14 (11)O5—C27—C28123.42 (14)
O1—C1—C10115.76 (12)C36—C27—C28120.96 (14)
O1—C1—C2123.07 (12)C29—C28—C27119.40 (15)
C10—C1—C2121.16 (13)C29—C28—H28120.3
C3—C2—C1119.35 (13)C27—C28—H28120.3
C3—C2—H2120.3C28—C29—C30122.05 (15)
C1—C2—H2120.3C28—C29—H29119.0
C2—C3—C4121.78 (13)C30—C29—H29119.0
C2—C3—H3119.1C29—C30—C31122.31 (14)
C4—C3—H3119.1C29—C30—C35118.90 (14)
C5—C4—C3121.30 (12)C31—C30—C35118.78 (14)
C5—C4—C9119.27 (12)C32—C31—C30122.09 (14)
C3—C4—C9119.41 (12)C32—C31—H31119.0
C6—C5—C4122.06 (12)C30—C31—H31119.0
C6—C5—H5119.0C31—C32—C33119.19 (14)
C4—C5—H5119.0C31—C32—C44120.49 (14)
C5—C6—C7118.58 (12)C33—C32—C44120.32 (14)
C5—C6—C18118.45 (12)O6—C33—C34125.97 (13)
C7—C6—C18122.97 (12)O6—C33—C32113.10 (13)
O2—C7—C8124.78 (12)C34—C33—C32120.93 (14)
O2—C7—C6113.96 (11)C33—C34—C35120.31 (13)
C8—C7—C6121.23 (12)C33—C34—H34119.8
C7—C8—C9120.42 (12)C35—C34—H34119.8
C7—C8—H8119.8C36—C35—C30118.47 (13)
C9—C8—H8119.8C36—C35—C34122.84 (13)
C4—C9—C10118.28 (12)C30—C35—C34118.69 (13)
C4—C9—C8118.39 (12)C27—C36—C35120.16 (13)
C10—C9—C8123.33 (12)C27—C36—C37118.84 (13)
C1—C10—C9119.93 (12)C35—C36—C37120.99 (13)
C1—C10—C11119.13 (12)O7—C37—C38120.84 (13)
C9—C10—C11120.94 (12)O7—C37—C36120.69 (13)
O3—C11—C12120.80 (12)C38—C37—C36118.47 (12)
O3—C11—C10120.73 (12)C39—C38—C43119.07 (14)
C12—C11—C10118.42 (11)C39—C38—C37121.92 (14)
C17—C12—C13119.27 (12)C43—C38—C37119.01 (13)
C17—C12—C11118.88 (12)C38—C39—C40119.94 (17)
C13—C12—C11121.83 (12)C38—C39—H39120.0
C14—C13—C12120.13 (14)C40—C39—H39120.0
C14—C13—H13119.9C41—C40—C39119.94 (18)
C12—C13—H13119.9C41—C40—H40120.0
C15—C14—C13120.28 (15)C39—C40—H40120.0
C15—C14—H14119.9C42—C41—C40120.14 (16)
C13—C14—H14119.9C42—C41—H41119.9
C14—C15—C16119.83 (14)C40—C41—H41119.9
C14—C15—H15120.1C41—C42—C43120.15 (18)
C16—C15—H15120.1C41—C42—H42119.9
C15—C16—C17120.33 (14)C43—C42—H42119.9
C15—C16—H16119.8C42—C43—C38120.70 (17)
C17—C16—H16119.8C42—C43—H43119.6
C16—C17—C12120.16 (14)C38—C43—H43119.6
C16—C17—H17119.9O8—C44—C45121.31 (15)
C12—C17—H17119.9O8—C44—C32119.79 (15)
O4—C18—C19120.28 (13)C45—C44—C32118.83 (13)
O4—C18—C6119.60 (13)C50—C45—C46119.36 (14)
C19—C18—C6119.86 (12)C50—C45—C44119.28 (14)
C20—C19—C24119.30 (14)C46—C45—C44121.32 (14)
C20—C19—C18122.06 (12)C47—C46—C45119.98 (15)
C24—C19—C18118.46 (13)C47—C46—H46120.0
C21—C20—C19120.10 (15)C45—C46—H46120.0
C21—C20—H20120.0C46—C47—C48120.27 (15)
C19—C20—H20120.0C46—C47—H47119.9
C22—C21—C20119.99 (17)C48—C47—H47119.9
C22—C21—H21120.0C49—C48—C47120.08 (15)
C20—C21—H21120.0C49—C48—H48120.0
C23—C22—C21120.04 (16)C47—C48—H48120.0
C23—C22—H22120.0C48—C49—C50120.36 (15)
C21—C22—H22120.0C48—C49—H49119.8
C22—C23—C24120.54 (16)C50—C49—H49119.8
C22—C23—H23119.7C49—C50—C45119.94 (15)
C24—C23—H23119.7C49—C50—H50120.0
C23—C24—C19120.02 (16)C45—C50—H50120.0
C23—C24—H24120.0O5—C51—H51A109.5
C19—C24—H24120.0O5—C51—H51B109.5
O1—C25—H25A109.5H51A—C51—H51B109.5
O1—C25—H25B109.5O5—C51—H51C109.5
H25A—C25—H25B109.5H51A—C51—H51C109.5
O1—C25—H25C109.5H51B—C51—H51C109.5
H25A—C25—H25C109.5O6—C52—H52A109.5
H25B—C25—H25C109.5O6—C52—H52B109.5
O2—C26—H26A109.5H52A—C52—H52B109.5
O2—C26—H26B109.5O6—C52—H52C109.5
H26A—C26—H26B109.5H52A—C52—H52C109.5
O2—C26—H26C109.5H52B—C52—H52C109.5
C25—O1—C1—C10177.07 (12)C51—O5—C27—C36171.18 (13)
C25—O1—C1—C22.29 (19)C51—O5—C27—C288.4 (2)
O1—C1—C2—C3178.06 (12)O5—C27—C28—C29178.70 (14)
C10—C1—C2—C31.3 (2)C36—C27—C28—C290.9 (2)
C1—C2—C3—C41.0 (2)C27—C28—C29—C301.1 (2)
C2—C3—C4—C5177.43 (13)C28—C29—C30—C31177.89 (16)
C2—C3—C4—C91.2 (2)C28—C29—C30—C351.4 (2)
C3—C4—C5—C6177.64 (13)C29—C30—C31—C32178.62 (14)
C9—C4—C5—C60.99 (19)C35—C30—C31—C320.7 (2)
C4—C5—C6—C72.4 (2)C30—C31—C32—C331.1 (2)
C4—C5—C6—C18176.84 (12)C30—C31—C32—C44178.77 (14)
C26—O2—C7—C87.8 (2)C52—O6—C33—C340.7 (2)
C26—O2—C7—C6173.92 (13)C52—O6—C33—C32178.53 (12)
C5—C6—C7—O2176.53 (12)C31—C32—C33—O6178.54 (12)
C18—C6—C7—O24.24 (18)C44—C32—C33—O61.55 (19)
C5—C6—C7—C81.8 (2)C31—C32—C33—C340.8 (2)
C18—C6—C7—C8177.42 (12)C44—C32—C33—C34179.15 (13)
O2—C7—C8—C9178.41 (12)O6—C33—C34—C35179.31 (12)
C6—C7—C8—C90.26 (19)C32—C33—C34—C350.1 (2)
C5—C4—C9—C10179.44 (11)C29—C30—C35—C360.2 (2)
C3—C4—C9—C100.78 (18)C31—C30—C35—C36179.48 (13)
C5—C4—C9—C81.10 (18)C29—C30—C35—C34179.53 (13)
C3—C4—C9—C8179.75 (12)C31—C30—C35—C340.2 (2)
C7—C8—C9—C41.69 (18)C33—C34—C35—C36179.10 (13)
C7—C8—C9—C10178.87 (12)C33—C34—C35—C300.6 (2)
O1—C1—C10—C9176.13 (11)O5—C27—C36—C35177.17 (12)
C2—C1—C10—C93.24 (19)C28—C27—C36—C352.4 (2)
O1—C1—C10—C113.54 (17)O5—C27—C36—C371.77 (19)
C2—C1—C10—C11177.08 (12)C28—C27—C36—C37178.60 (14)
C4—C9—C10—C12.95 (18)C30—C35—C36—C272.1 (2)
C8—C9—C10—C1177.61 (12)C34—C35—C36—C27177.65 (13)
C4—C9—C10—C11177.38 (11)C30—C35—C36—C37179.02 (12)
C8—C9—C10—C112.06 (19)C34—C35—C36—C371.3 (2)
C1—C10—C11—O3119.31 (15)C27—C36—C37—O7106.69 (17)
C9—C10—C11—O360.36 (18)C35—C36—C37—O772.25 (19)
C1—C10—C11—C1263.44 (16)C27—C36—C37—C3873.11 (17)
C9—C10—C11—C12116.89 (13)C35—C36—C37—C38107.95 (15)
O3—C11—C12—C177.9 (2)O7—C37—C38—C39171.32 (14)
C10—C11—C12—C17174.81 (12)C36—C37—C38—C398.9 (2)
O3—C11—C12—C13170.31 (13)O7—C37—C38—C439.1 (2)
C10—C11—C12—C136.93 (19)C36—C37—C38—C43170.69 (13)
C17—C12—C13—C140.5 (2)C43—C38—C39—C400.6 (2)
C11—C12—C13—C14177.72 (13)C37—C38—C39—C40178.99 (14)
C12—C13—C14—C150.2 (2)C38—C39—C40—C411.2 (3)
C13—C14—C15—C160.5 (2)C39—C40—C41—C421.4 (3)
C14—C15—C16—C170.7 (2)C40—C41—C42—C430.1 (3)
C15—C16—C17—C120.4 (2)C41—C42—C43—C381.9 (3)
C13—C12—C17—C160.3 (2)C39—C38—C43—C422.1 (2)
C11—C12—C17—C16178.04 (13)C37—C38—C43—C42177.46 (15)
C5—C6—C18—O448.67 (19)C31—C32—C44—O873.7 (2)
C7—C6—C18—O4132.11 (15)C33—C32—C44—O8106.41 (19)
C5—C6—C18—C19125.45 (14)C31—C32—C44—C45103.19 (17)
C7—C6—C18—C1953.78 (18)C33—C32—C44—C4576.72 (19)
O4—C18—C19—C20156.43 (15)O8—C44—C45—C506.2 (2)
C6—C18—C19—C2017.6 (2)C32—C44—C45—C50177.02 (14)
O4—C18—C19—C2418.6 (2)O8—C44—C45—C46171.66 (17)
C6—C18—C19—C24167.32 (12)C32—C44—C45—C465.2 (2)
C24—C19—C20—C211.0 (2)C50—C45—C46—C470.8 (2)
C18—C19—C20—C21174.04 (13)C44—C45—C46—C47177.00 (14)
C19—C20—C21—C221.0 (2)C45—C46—C47—C480.7 (2)
C20—C21—C22—C230.3 (2)C46—C47—C48—C490.1 (3)
C21—C22—C23—C240.3 (2)C47—C48—C49—C500.4 (2)
C22—C23—C24—C190.4 (2)C48—C49—C50—C450.2 (2)
C20—C19—C24—C230.3 (2)C46—C45—C50—C490.4 (2)
C18—C19—C24—C23174.90 (13)C44—C45—C50—C49177.50 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C19–C24 and C4–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···O3i0.952.573.5191 (19)176
C25—H25C···O4ii0.982.563.348 (2)138
C51—H51C···O8iii0.982.473.371 (2)152
C3—H3···Cg1iv0.952.593.416 (11)145
C14—H14···Cg2v0.952.863.578 (9)133
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z; (iii) x+1, y+1, z+1; (iv) x, y+2, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC26H20O4
Mr396.42
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)8.42828 (15), 12.5953 (2), 20.0578 (4)
α, β, γ (°)96.222 (1), 99.688 (1), 102.727 (1)
V3)2023.76 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.71
Crystal size (mm)0.60 × 0.40 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.677, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
32431, 7263, 5957
Rint0.031
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.115, 1.08
No. of reflections7263
No. of parameters546
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2010), IL MILIONE (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C19–C24 and C4–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···O3i0.952.573.5191 (19)176
C25—H25C···O4ii0.982.563.348 (2)138
C51—H51C···O8iii0.982.473.371 (2)152
C3—H3···Cg1iv0.952.593.416 (11)145
C14—H14···Cg2v0.952.863.578 (9)133
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z; (iii) x+1, y+1, z+1; (iv) x, y+2, z; (v) x1, y, z.
 

Acknowledgements

The authors thank Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for technical advice. This work was partially supported by the Mukai Science and Technology Foundation.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKataoka, K., Nishijima, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2972.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKato, Y., Takeuchi, R., Muto, T., Okamoto, A. & Yonezawa, N. (2011). Acta Cryst. E67, o668.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNishijima, T., Kataoka, K., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2904–o2905.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Muto, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o712.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1250
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds