metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m651-m652

trans-Tetra­aqua­bis­­[1,3-bis­­(4-pyrid­yl)propane-κN]cobalt(II) bi­phenyl-4,4′-di­sulfonate monohydrate

aSchool of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246003, People's Republic of China
*Correspondence e-mail: liugx@aqtc.edu.cn

(Received 15 April 2011; accepted 26 April 2011; online 29 April 2011)

In the title compound, [Co(C13H14N2)2(H2O)4](C12H8O6S2)·H2O, the cation, anion and uncoordinated water mol­ecule have crystallographically imposed twofold symmetry. The cobalt(II) atom exhibits a slightly distorted octa­hedral coordination geometry provided by two N atoms from two 1,3-bis­(4-pyrid­yl)propane ligands and the O atoms from four water mol­ecules. The dihedral angle between the pyridine rings in the ligand is 86.14 (11)°, whereas the dihedral angle formed by the symmetry-related benzene rings in the anion is 35.81 (12)°. In the crystal, cations, anions and water mol­ecules are linked into layers parallel to the ac plane by O—H⋯O and O—H⋯N hydrogen-bond inter­actions. The layers are further connected into a three-dimensional network by C—H⋯O hydrogen bonds.

Related literature

For applications of bipyridine ligands and the 4,4′-biphenyl­disulfonate dianion in coordination chemistry, see: Lu et al. (2006[Lu, W. G., Jiang, L., Feng, X. L. & Lu, T. B. (2006). Cryst. Growth Des. 6, 564-571.]); Ghoshal et al. (2003[Ghoshal, D., Maji, T. K., Mostafa, G., Lu, T. H. & Chaudhuri, N. R. (2003). Cryst. Growth Des. 3, 9-11.]); Brandys & Puddephatt (2001[Brandys, M. C. & Puddephatt, R. J. (2001). Chem. Commun. pp. 1508-1509.]); Tong et al. (2002[Tong, M. L., Wu, Y. M., Ru, J., Chen, X. M., Chang, H. C. & Kitagawa, S. (2002). Inorg. Chem. 41, 4846-4848.]); Wang et al. (2005[Wang, Y. L., Yuan, D. Q., Bi, W. H., Li, X., Li, X. J., Li, F. & Cao, R. (2005). Cryst. Growth Des. 5, 1849-1855.]); Suresh & Bhadbhade (2001[Suresh, E. & Bhadbhade, M. M. (2001). CrystEngComm, 3, 50-52.]); Mago et al. (1997[Mago, G. J., Hinago, M., Miyasaka, H., Matsumoto, N. & Okawa, H. (1997). Inorg. Chim. Acta, 254, 145-150.]); Pan et al. (2001[Pan, L., Woodlock, E. B., Wang, X., Lam, K. C. & Rheingold, A. L. (2001). Chem. Commun. pp. 1762-1763.]); Chen, Cai, Feng & Chen (2002[Chen, C. H., Cai, J. W., Feng, X. L. & Chen, X. M. (2002). Polyhedron, 21, 689-695.]); Chen, Cai, Liao et al. (2002[Chen, C. H., Cai, J. W., Liao, C. Z., Feng, X. L., Chen, X. M. & Ng, S. W. (2002). Inorg. Chem. 41, 4967-4974.]); Lian, Cai & Chen (2007[Lian, Z. X., Cai, J. W. & Chen, C. H. (2007). Polyhedron, 26, 2647-2654.]); Lian, Cai, Chen & Luo (2007[Lian, Z. X., Cai, J. W., Chen, C. H. & Luo, H. B. (2007). CrystEngComm, 9, 319-327.]); Liu et al. (2010[Liu, G. X., Huang, R. Y. & Ren, X. M. (2010). Chin. J. Inorg. Chem. 26, 1680-1684.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C13H14N2)2(H2O)4](C12H8O6S2)·H2O

  • Mr = 857.84

  • Monoclinic, C 2/c

  • a = 15.555 (3) Å

  • b = 18.983 (3) Å

  • c = 14.725 (3) Å

  • β = 113.959 (3)°

  • V = 3973.3 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 293 K

  • 0.28 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.850, Tmax = 0.879

  • 10176 measured reflections

  • 3683 independent reflections

  • 3035 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.133

  • S = 1.04

  • 3683 reflections

  • 274 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3i 0.81 (4) 2.60 (4) 3.008 (4) 113 (3)
O1W—H1WA⋯O1i 0.81 (4) 2.01 (5) 2.812 (4) 169 (4)
O2W—H2WA⋯N2ii 0.86 (5) 1.93 (5) 2.779 (4) 167 (5)
O1W—H1WB⋯O3iii 0.71 (4) 2.01 (5) 2.687 (4) 160 (5)
O2W—H2WB⋯O2iii 0.78 (4) 2.01 (4) 2.795 (4) 179 (4)
O3W—H3W⋯O1iv 0.87 (6) 2.05 (6) 2.924 (4) 174 (7)
C10—H10⋯O2v 0.93 2.56 3.360 (4) 144
C16—H16⋯O3Wvi 0.93 2.54 3.311 (5) 141
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [-x+2, y, -z+{\script{3\over 2}}]; (iv) [-x+1, y, -z+{\script{3\over 2}}]; (v) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (vi) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bipyridine ligands with certain spacers between the two terminal coordination groups, for example 4,4-bipyridine (bpy), 1,2-bis(4-pyridyl)ethane (bpe), 1,2-di(4-pyridyl)ethylene (dpe), and 1,3-bi(4-pyridyl)propane (bpp), have been employed to construct novel metal-organic coordination polymers with beautiful aesthetics and useful functional properties. (Lu et al., 2006; Ghoshal et al., 2003; Brandys & Puddephatt, 2001; Tong et al., 2002; Wang et al., 2005; Suresh & Bhadbhade, 2001; Mago et al., 1997; Pan et al., 2001). The 4,4'-biphenyldisulfonate dianion (BPDS2-), which possesses six oxygen atoms, has been also employed either as a ligand with multiple binding sites available to construct coordination polymers with varying dimensionalities, or as a counter ion, forming extensive hydrogen-bonding interaction with the water molecules (Chen, Cai, Feng & Chen, 2002; Chen, Cai, Liao & Feng, 2002; Lian, Cai & Chen 2007; Lian, Cai, Chen & Luo 2007; Liu et al., 2010). In the present work, we report a cobalt(II) complex, [Co(C13H14N2)2(H2O)4](C12H8O6S2).H2O (I), with a two-dimensional H-bonding network structure created by the sulfonate dianions acting as hydrogen-bond acceptors.

In the title compound, cation, anion and uncoordinated water molecule have all crystallographically imposed twofold axis. As shown in Fig. 1, four water molecules coordinate to the cobalt(II) ion in the equatorial positions with Co—O bonds ranging from 2.059 (3) to 2.110 (2) Å, while two bpp ligands coordinate to the metal through N atoms [Co—N = 2.1772 (2) Å] in the axial positions to complete a slightly distorted octahedral coordination geometry. The dihedral angle between the two pyridyl planes in the cation is 86.14 (11)°, and the N···N separation is 10.169 (3) Å. The BPDS dianion does not coordinate to the cobalt(II) ion, but balances the charge. The dihedral angle formed by the symmetry-related benzene rings in the anion is 35.81 (12)°. Hydrogen bonds play an important role for enhancing the stability of the solid-state structure (Table 1). Two intermolecular hydrogen bonds are formed between oxygen atoms of the two coordinated water molecules with two oxygen atoms of sulfonate groups. Additional intermolecular hydrogen bond are formed between atom O3W of the uncoordinated water molecule and the sulfonate atom O1, and between the uncoordinated N atom of bpp and the coordinated O2W atom. All these intermolecular hydrogen bonds result in a two-dimensional layer structure (Fig. 2) parallel to the ac plane. The layers are further linked via C—H···O hydrogen bonds to give rise to a three-dimensional network (Fig. 3).

Related literature top

For applications of bipyridine ligands and the 4,4'-biphenyldisulfonate dianion in coordination chemistry, see: Lu et al. (2006); Ghoshal et al. (2003); Brandys & Puddephatt (2001); Tong et al. (2002); Wang et al. (2005); Suresh & Bhadbhade (2001); Mago et al. (1997); Pan et al. (2001); Chen, Cai, Feng & Chen (2002); Chen, Cai, Liao, Feng et al. (2002); Lian, Cai & Chen (2007); Lian, Cai, Chen & Luo (2007); Liu et al. (2010).

Experimental top

A mixture containing Co(NO3)2.6H2O (0.1 mmol), bpp (0.1 mmol), H2BPDS (0.1 mmol), NaOH (0.2 mmol) dissolved in water (15 ml) was sealed in a 25 ml Teflon lined stainless steel container and heated at 160 °C for 120 h. Orange crystals of (I) suitable for X-ray analysis were collected by filtration and washed with water and ethanol several times (yield 56%).

Refinement top

The water H atoms were located in a difference Fourier map and refined freely. All other H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity [symmetry codes: (A) 2-x, y, 0.5-z; (B) 1-x, y, 1.5-z].
[Figure 2] Fig. 2. The two-dimensional network formed by hydrogen-bonding interactions (green dotted lines). For clarity, the bpp ligands and hydrogen atoms attached to carbon atoms are omitted.
[Figure 3] Fig. 3. The three-dimensional network of the title complex. Hydrogen bonds are shown as blue dotted lines.
trans-Tetraaquabis[1,3-bis(4-pyridyl)propane-κN]cobalt(II) biphenyl-4,4'-disulfonate monohydrate top
Crystal data top
[Co(C13H14N2)2(H2O)4](C12H8O6S2)·H2OF(000) = 1796
Mr = 857.84Dx = 1.434 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2386 reflections
a = 15.555 (3) Åθ = 2.6–24.3°
b = 18.983 (3) ŵ = 0.60 mm1
c = 14.725 (3) ÅT = 293 K
β = 113.959 (3)°Block, orange
V = 3973.3 (12) Å30.28 × 0.24 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3683 independent reflections
Radiation source: sealed tube3035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1718
Tmin = 0.850, Tmax = 0.879k = 2222
10176 measured reflectionsl = 177
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0615P)2 + 4.820P]
where P = (Fo2 + 2Fc2)/3
3683 reflections(Δ/σ)max < 0.001
274 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Co(C13H14N2)2(H2O)4](C12H8O6S2)·H2OV = 3973.3 (12) Å3
Mr = 857.84Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.555 (3) ŵ = 0.60 mm1
b = 18.983 (3) ÅT = 293 K
c = 14.725 (3) Å0.28 × 0.24 × 0.22 mm
β = 113.959 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3683 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3035 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.879Rint = 0.031
10176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.53 e Å3
3683 reflectionsΔρmin = 0.22 e Å3
274 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.10016 (3)0.25000.03592 (19)
N10.84781 (16)0.10664 (12)0.17038 (19)0.0407 (6)
N20.1777 (2)0.16402 (18)0.1131 (3)0.0666 (9)
O10.89574 (17)0.10255 (13)0.81063 (19)0.0630 (7)
O20.89650 (16)0.17146 (13)0.9492 (2)0.0681 (7)
O30.90540 (17)0.04433 (14)0.95901 (19)0.0716 (8)
O1W1.0095 (2)0.01810 (16)0.3451 (2)0.0617 (7)
O2W0.98303 (18)0.17352 (12)0.34914 (19)0.0451 (5)
O3W0.00000.2072 (3)0.75000.112 (2)
S10.87135 (6)0.10569 (5)0.89562 (7)0.0539 (3)
C10.7473 (2)0.10062 (17)0.8458 (2)0.0466 (8)
C20.7022 (2)0.04003 (18)0.8521 (3)0.0574 (9)
H20.73700.00040.88260.069*
C30.6055 (2)0.03761 (17)0.8134 (3)0.0567 (9)
H30.57560.00410.81700.068*
C40.5519 (2)0.09623 (16)0.7691 (2)0.0445 (7)
C50.5987 (2)0.15679 (17)0.7616 (3)0.0507 (8)
H50.56430.19660.73070.061*
C60.6954 (2)0.15851 (17)0.7994 (3)0.0515 (8)
H60.72580.19930.79340.062*
C70.7907 (2)0.05321 (18)0.1656 (3)0.0565 (9)
H70.81700.01150.19840.068*
C80.6940 (2)0.0570 (2)0.1141 (3)0.0654 (10)
H80.65700.01830.11320.079*
C90.6524 (2)0.11739 (19)0.0644 (2)0.0511 (8)
C100.7116 (2)0.17249 (19)0.0707 (3)0.0524 (8)
H100.68730.21490.03890.063*
C110.8070 (2)0.16508 (17)0.1241 (2)0.0460 (8)
H110.84530.20360.12780.055*
C120.5483 (2)0.1237 (2)0.0040 (3)0.0688 (11)
H12A0.52630.08030.03290.083*
H12B0.53760.16120.04410.083*
C130.4892 (2)0.1383 (2)0.0618 (3)0.0536 (8)
H13A0.51150.18080.10100.064*
H13B0.49530.09950.10700.064*
C140.3862 (2)0.1472 (2)0.0086 (3)0.0632 (10)
H14A0.38100.18940.04770.076*
H14B0.36870.10770.05430.076*
C150.3155 (2)0.15246 (17)0.0364 (3)0.0479 (8)
C160.3368 (2)0.1742 (2)0.1314 (3)0.0616 (10)
H160.39850.18600.17270.074*
C170.2674 (3)0.1787 (2)0.1659 (3)0.0712 (11)
H170.28460.19310.23130.085*
C180.1574 (2)0.1424 (2)0.0216 (4)0.0766 (12)
H180.09510.13130.01790.092*
C190.2225 (2)0.1352 (2)0.0194 (3)0.0673 (11)
H190.20390.11870.08420.081*
H3W0.029 (5)0.177 (3)0.728 (5)0.16 (3)*
H2WB1.017 (3)0.1727 (17)0.405 (3)0.044 (10)*
H2WA0.928 (4)0.172 (2)0.351 (3)0.107 (17)*
H1WB1.020 (3)0.028 (2)0.395 (3)0.078 (18)*
H1WA0.972 (3)0.014 (2)0.328 (3)0.080 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0247 (3)0.0405 (3)0.0428 (3)0.0000.0139 (2)0.000
N10.0272 (12)0.0478 (15)0.0476 (15)0.0026 (10)0.0157 (12)0.0015 (12)
N20.0409 (17)0.098 (2)0.068 (2)0.0096 (15)0.0292 (17)0.0128 (19)
O10.0485 (14)0.0777 (17)0.0678 (17)0.0072 (12)0.0288 (13)0.0025 (13)
O20.0400 (13)0.0750 (17)0.0736 (17)0.0078 (11)0.0070 (12)0.0204 (14)
O30.0547 (15)0.0849 (18)0.0633 (16)0.0308 (13)0.0116 (13)0.0095 (14)
O1W0.0676 (18)0.0586 (17)0.0534 (18)0.0231 (13)0.0188 (15)0.0049 (14)
O2W0.0320 (12)0.0611 (14)0.0438 (14)0.0003 (10)0.0169 (12)0.0048 (11)
O3W0.087 (4)0.079 (3)0.174 (6)0.0000.058 (4)0.000
S10.0357 (4)0.0678 (6)0.0518 (5)0.0141 (4)0.0112 (4)0.0087 (4)
C10.0363 (17)0.0576 (19)0.0421 (17)0.0101 (14)0.0118 (14)0.0053 (15)
C20.049 (2)0.053 (2)0.068 (2)0.0172 (16)0.0222 (18)0.0098 (17)
C30.052 (2)0.0467 (19)0.073 (2)0.0044 (15)0.0274 (19)0.0087 (18)
C40.0389 (17)0.0501 (18)0.0433 (18)0.0015 (14)0.0154 (15)0.0009 (15)
C50.0373 (17)0.0504 (18)0.054 (2)0.0036 (14)0.0082 (16)0.0064 (16)
C60.0368 (17)0.0532 (19)0.056 (2)0.0008 (14)0.0104 (16)0.0042 (16)
C70.0337 (17)0.056 (2)0.072 (2)0.0003 (14)0.0130 (17)0.0088 (18)
C80.0369 (18)0.070 (2)0.081 (3)0.0160 (17)0.0149 (19)0.000 (2)
C90.0286 (16)0.079 (2)0.0449 (18)0.0056 (15)0.0143 (15)0.0078 (17)
C100.0373 (17)0.065 (2)0.057 (2)0.0164 (15)0.0209 (16)0.0097 (17)
C110.0336 (16)0.0495 (18)0.057 (2)0.0038 (13)0.0212 (15)0.0021 (15)
C120.0317 (18)0.117 (3)0.056 (2)0.0058 (19)0.0162 (17)0.009 (2)
C130.0322 (17)0.078 (2)0.052 (2)0.0041 (16)0.0180 (16)0.0006 (18)
C140.0362 (18)0.098 (3)0.056 (2)0.0070 (18)0.0194 (17)0.001 (2)
C150.0307 (16)0.0598 (19)0.0523 (19)0.0049 (14)0.0160 (15)0.0025 (16)
C160.0310 (17)0.095 (3)0.056 (2)0.0018 (17)0.0149 (16)0.009 (2)
C170.051 (2)0.109 (3)0.056 (2)0.010 (2)0.025 (2)0.002 (2)
C180.0328 (19)0.111 (3)0.087 (3)0.007 (2)0.025 (2)0.004 (3)
C190.0372 (19)0.100 (3)0.063 (2)0.0022 (19)0.0182 (18)0.016 (2)
Geometric parameters (Å, º) top
Co1—O1Wi2.059 (3)C5—H50.9300
Co1—O1W2.059 (3)C6—H60.9300
Co1—O2W2.110 (2)C7—C81.385 (4)
Co1—O2Wi2.110 (2)C7—H70.9300
Co1—N1i2.177 (2)C8—C91.373 (5)
Co1—N12.177 (2)C8—H80.9300
N1—C111.322 (4)C9—C101.371 (5)
N1—C71.331 (4)C9—C121.503 (4)
N2—C181.318 (5)C10—C111.376 (4)
N2—C171.321 (5)C10—H100.9300
O1—S11.449 (3)C11—H110.9300
O2—S11.443 (3)C12—C131.511 (4)
O3—S11.451 (3)C12—H12A0.9700
O1W—H1WB0.71 (4)C12—H12B0.9700
O1W—H1WA0.81 (4)C13—C141.524 (4)
O2W—H2WB0.78 (4)C13—H13A0.9700
O2W—H2WA0.86 (5)C13—H13B0.9700
O3W—H3W0.87 (6)C14—C151.501 (5)
S1—C11.766 (3)C14—H14A0.9700
C1—C21.370 (5)C14—H14B0.9700
C1—C61.371 (4)C15—C161.364 (5)
C2—C31.376 (5)C15—C191.382 (4)
C2—H20.9300C16—C171.371 (5)
C3—C41.384 (4)C16—H160.9300
C3—H30.9300C17—H170.9300
C4—C51.388 (4)C18—C191.381 (5)
C4—C4ii1.479 (6)C18—H180.9300
C5—C61.376 (4)C19—H190.9300
O1Wi—Co1—O1W81.7 (2)N1—C7—C8122.8 (3)
O1Wi—Co1—O2W167.14 (11)N1—C7—H7118.6
O1W—Co1—O2W91.35 (12)C8—C7—H7118.6
O1Wi—Co1—O2Wi91.35 (12)C9—C8—C7120.5 (3)
O1W—Co1—O2Wi167.14 (11)C9—C8—H8119.8
O2W—Co1—O2Wi97.41 (13)C7—C8—H8119.8
O1Wi—Co1—N1i99.86 (11)C10—C9—C8116.3 (3)
O1W—Co1—N1i85.08 (11)C10—C9—C12120.8 (3)
O2W—Co1—N1i90.24 (10)C8—C9—C12122.9 (3)
O2Wi—Co1—N1i85.48 (10)C9—C10—C11120.0 (3)
O1Wi—Co1—N185.08 (11)C9—C10—H10120.0
O1W—Co1—N199.86 (11)C11—C10—H10120.0
O2W—Co1—N185.48 (10)N1—C11—C10124.1 (3)
O2Wi—Co1—N190.24 (10)N1—C11—H11117.9
N1i—Co1—N1173.52 (13)C10—C11—H11117.9
C11—N1—C7116.3 (3)C9—C12—C13115.9 (3)
C11—N1—Co1120.9 (2)C9—C12—H12A108.3
C7—N1—Co1122.8 (2)C13—C12—H12A108.3
C18—N2—C17115.1 (3)C9—C12—H12B108.3
Co1—O1W—H1WB116 (4)C13—C12—H12B108.3
Co1—O1W—H1WA121 (3)H12A—C12—H12B107.4
H1WB—O1W—H1WA110 (5)C12—C13—C14110.4 (3)
Co1—O2W—H2WB120 (2)C12—C13—H13A109.6
Co1—O2W—H2WA113 (3)C14—C13—H13A109.6
H2WB—O2W—H2WA103 (4)C12—C13—H13B109.6
O2—S1—O1113.57 (17)C14—C13—H13B109.6
O2—S1—O3113.29 (16)H13A—C13—H13B108.1
O1—S1—O3111.55 (15)C15—C14—C13117.6 (3)
O2—S1—C1106.38 (14)C15—C14—H14A107.9
O1—S1—C1105.30 (15)C13—C14—H14A107.9
O3—S1—C1105.96 (16)C15—C14—H14B107.9
C2—C1—C6119.5 (3)C13—C14—H14B107.9
C2—C1—S1121.4 (2)H14A—C14—H14B107.2
C6—C1—S1119.1 (3)C16—C15—C19116.3 (3)
C1—C2—C3120.3 (3)C16—C15—C14123.8 (3)
C1—C2—H2119.9C19—C15—C14119.9 (3)
C3—C2—H2119.9C15—C16—C17119.9 (3)
C2—C3—C4121.0 (3)C15—C16—H16120.1
C2—C3—H3119.5C17—C16—H16120.1
C4—C3—H3119.5N2—C17—C16124.8 (4)
C3—C4—C5118.0 (3)N2—C17—H17117.6
C3—C4—C4ii122.3 (2)C16—C17—H17117.6
C5—C4—C4ii119.8 (2)N2—C18—C19124.4 (4)
C6—C5—C4120.6 (3)N2—C18—H18117.8
C6—C5—H5119.7C19—C18—H18117.8
C4—C5—H5119.7C18—C19—C15119.4 (4)
C1—C6—C5120.6 (3)C18—C19—H19120.3
C1—C6—H6119.7C15—C19—H19120.3
C5—C6—H6119.7
O1Wi—Co1—N1—C11121.1 (3)C11—N1—C7—C81.1 (5)
O1W—Co1—N1—C11158.2 (2)Co1—N1—C7—C8179.3 (3)
O2W—Co1—N1—C1167.6 (2)N1—C7—C8—C90.3 (6)
O2Wi—Co1—N1—C1129.8 (2)C7—C8—C9—C101.2 (5)
O1Wi—Co1—N1—C759.3 (3)C7—C8—C9—C12177.6 (3)
O1W—Co1—N1—C721.4 (3)C8—C9—C10—C110.6 (5)
O2W—Co1—N1—C7112.0 (3)C12—C9—C10—C11178.2 (3)
O2Wi—Co1—N1—C7150.6 (3)C7—N1—C11—C101.7 (5)
O2—S1—C1—C2134.6 (3)Co1—N1—C11—C10178.6 (2)
O1—S1—C1—C2104.6 (3)C9—C10—C11—N10.9 (5)
O3—S1—C1—C213.7 (3)C10—C9—C12—C13100.7 (4)
O2—S1—C1—C645.8 (3)C8—C9—C12—C1380.6 (5)
O1—S1—C1—C675.0 (3)C9—C12—C13—C14177.0 (3)
O3—S1—C1—C6166.7 (3)C12—C13—C14—C15172.0 (3)
C6—C1—C2—C30.9 (5)C13—C14—C15—C1623.9 (6)
S1—C1—C2—C3179.5 (3)C13—C14—C15—C19156.5 (4)
C1—C2—C3—C41.2 (6)C19—C15—C16—C170.8 (6)
C2—C3—C4—C52.3 (5)C14—C15—C16—C17178.8 (4)
C2—C3—C4—C4ii177.1 (4)C18—N2—C17—C161.4 (6)
C3—C4—C5—C61.5 (5)C15—C16—C17—N20.8 (7)
C4ii—C4—C5—C6178.0 (4)C17—N2—C18—C190.3 (7)
C2—C1—C6—C51.7 (5)N2—C18—C19—C151.3 (7)
S1—C1—C6—C5178.7 (3)C16—C15—C19—C181.8 (6)
C4—C5—C6—C10.5 (5)C14—C15—C19—C18177.8 (4)
Symmetry codes: (i) x+2, y, z+1/2; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3iii0.81 (4)2.60 (4)3.008 (4)113 (3)
O1W—H1WA···O1iii0.81 (4)2.01 (5)2.812 (4)169 (4)
O2W—H2WA···N2iv0.86 (5)1.93 (5)2.779 (4)167 (5)
O1W—H1WB···O3v0.71 (4)2.01 (5)2.687 (4)160 (5)
O2W—H2WB···O2v0.78 (4)2.01 (4)2.795 (4)179 (4)
O3W—H3W···O1ii0.87 (6)2.05 (6)2.924 (4)174 (7)
C10—H10···O2vi0.932.563.360 (4)144
C16—H16···O3Wvii0.932.543.311 (5)141
Symmetry codes: (ii) x+1, y, z+3/2; (iii) x, y, z1/2; (iv) x+1, y, z+1/2; (v) x+2, y, z+3/2; (vi) x+3/2, y+1/2, z+1; (vii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Co(C13H14N2)2(H2O)4](C12H8O6S2)·H2O
Mr857.84
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)15.555 (3), 18.983 (3), 14.725 (3)
β (°) 113.959 (3)
V3)3973.3 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.28 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.850, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
10176, 3683, 3035
Rint0.031
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.133, 1.04
No. of reflections3683
No. of parameters274
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3i0.81 (4)2.60 (4)3.008 (4)113 (3)
O1W—H1WA···O1i0.81 (4)2.01 (5)2.812 (4)169 (4)
O2W—H2WA···N2ii0.86 (5)1.93 (5)2.779 (4)167 (5)
O1W—H1WB···O3iii0.71 (4)2.01 (5)2.687 (4)160 (5)
O2W—H2WB···O2iii0.78 (4)2.01 (4)2.795 (4)179 (4)
O3W—H3W···O1iv0.87 (6)2.05 (6)2.924 (4)174 (7)
C10—H10···O2v0.932.563.360 (4)144
C16—H16···O3Wvi0.932.543.311 (5)141
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y, z+1/2; (iii) x+2, y, z+3/2; (iv) x+1, y, z+3/2; (v) x+3/2, y+1/2, z+1; (vi) x+1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20971004), the Key Project of the Chinese Ministry of Education (No. 210102) and the Natural Science Foundation of Anhui Province of China (No. 11040606M45).

References

First citationBrandys, M. C. & Puddephatt, R. J. (2001). Chem. Commun. pp. 1508–1509.  CSD CrossRef Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C. H., Cai, J. W., Feng, X. L. & Chen, X. M. (2002). Polyhedron, 21, 689–695.  CrossRef CAS Google Scholar
First citationChen, C. H., Cai, J. W., Liao, C. Z., Feng, X. L., Chen, X. M. & Ng, S. W. (2002). Inorg. Chem. 41, 4967–4974.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGhoshal, D., Maji, T. K., Mostafa, G., Lu, T. H. & Chaudhuri, N. R. (2003). Cryst. Growth Des. 3, 9–11.  CrossRef CAS Google Scholar
First citationLian, Z. X., Cai, J. W. & Chen, C. H. (2007). Polyhedron, 26, 2647–2654.  CrossRef CAS Google Scholar
First citationLian, Z. X., Cai, J. W., Chen, C. H. & Luo, H. B. (2007). CrystEngComm, 9, 319-327.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, G. X., Huang, R. Y. & Ren, X. M. (2010). Chin. J. Inorg. Chem. 26, 1680–1684.  CAS Google Scholar
First citationLu, W. G., Jiang, L., Feng, X. L. & Lu, T. B. (2006). Cryst. Growth Des. 6, 564–571.  Web of Science CSD CrossRef CAS Google Scholar
First citationMago, G. J., Hinago, M., Miyasaka, H., Matsumoto, N. & Okawa, H. (1997). Inorg. Chim. Acta, 254, 145–150.  CrossRef CAS Google Scholar
First citationPan, L., Woodlock, E. B., Wang, X., Lam, K. C. & Rheingold, A. L. (2001). Chem. Commun. pp. 1762–1763.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, E. & Bhadbhade, M. M. (2001). CrystEngComm, 3, 50–52.  CrossRef Google Scholar
First citationTong, M. L., Wu, Y. M., Ru, J., Chen, X. M., Chang, H. C. & Kitagawa, S. (2002). Inorg. Chem. 41, 4846–4848.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, Y. L., Yuan, D. Q., Bi, W. H., Li, X., Li, X. J., Li, F. & Cao, R. (2005). Cryst. Growth Des. 5, 1849–1855.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m651-m652
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds