metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­(aceto­nitrile-κN)bis­­[μ3-bis­(tri­fluoro­methane­sulfonyl)­imido-κ4O,O′:O′′:O′′′]dilithium]

aDepartment of Chemical and Biomolecular Engineering, North Carolina State Univerisity, Raleigh, NC 27695, USA, and bDepartment of Chemistry, North Carolina State Univerisity, Raleigh, NC 27695, USA
*Correspondence e-mail: wesley_henderson@ncsu.edu

(Received 4 March 2011; accepted 28 March 2011; online 7 April 2011)

In the title compound, [Li2(CF3SO2NSO2CF3)2(CH3CN)2]n, two Li+ cations reside on crystallographic inversion centers, each coordinated by six O atoms from bis(trifluoromethanesulfonyl)imide (TFSI) anions. The third Li+ cation on a general position is four-coordinated by two anion O atoms and two N atoms from acetonitrile mol­ecules in a tetra­hedral geometry.

Related literature

For the structure of LiN(SO2CF3)2, see: Nowinski et al. (1994)[Nowinski, J. L., Lightfoot, P. & Bruce, P. G. (1994). J. Mater. Chem. 4, 1579-1580.]. For a related structure of LiN(SO2CF3)2, see: Henderson et al. (2005[Henderson, W. A., McKenna, F., Khan, M. A., Brooks, N. R., Young, V. G. Jr & Frech, R. (2005). Chem. Mater. 17, 2284-2289.]); Davidson et al. (2003[Davidson, M. G., Raithby, P. R., Johnson, A. L. & Bolton, P. D. (2003). Eur. J. Inorg. Chem. 18, 3445-3452.]); Brouillette et al. (2002[Brouillette, D., Irish, D. E., Taylor, N. J., Perron, G., Odziemkowskic, M. & Desnoyers, J. E. (2002). Phys. Chem. Chem. Phys. 4, 6063-6071.]); Dillon et al. (2001)[Dillon, R. E. A., Stern, C. L. & Shriver, D. F. (2001). Chem. Mater. 13, 2516-2522.]. For the structure of CH3CN with lithium salts, see: Klapötke et al. (2006[Klapötke, T. M., Krumm, B., Mayer, P., Scherr, M. & Schwab, I. (2006). Acta Cryst. E62, m2666-m2667.]); Brooks et al. (2002[Brooks, N. R., Henderson, W. A. & Smyrl, W. H. (2002). Acta Cryst. E58, m176-m177.]); Yokota et al. (1999)[Yokota, Y., Young, V. G. & Verkade, J. G. (1999). Acta Cryst. C55, 196-198.]; Raston et al. (1989[Raston, C. L., Whitaker, C. R. & White, A. H. (1989). Aust. J. Chem. 42, 201-207.]).

[Scheme 1]

Experimental

Crystal data
  • [Li2(C2F6NO4S2)2(C2H3N)2]

  • Mr = 656.29

  • Monoclinic, P 21 /n

  • a = 10.8654 (2) Å

  • b = 11.0610 (2) Å

  • c = 19.1778 (3) Å

  • β = 90.8483 (10)°

  • V = 2304.58 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.16 mm−1

  • T = 110 K

  • 0.40 × 0.20 × 0.15 mm

Data collection
  • Bruker–Nonius X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.232, Tmax = 0.512

  • 9937 measured reflections

  • 3950 independent reflections

  • 3482 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.07

  • 3950 reflections

  • 348 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: cif2tables.py (Boyle, 2008[Boyle, P. D. (2008). http://www.xray.ncsu.edu/PyCIFUtils/ .]).

Supporting information


Comment top

The structure contains three symmetry independent Li+ cations. Two of these, Li1 and Li2, reside on crystallographic inversion centers and are each are coordinated by six O atoms from TFSI- anions in a pseudo-octahedral coordination geometry. The third Li+ cation, Li3, sits at a general position and is four coordinate: two O atoms and two N atoms from acetonitrile molecules form a pseudo-tetragonal coordination geometry. There are two different TFSI- anions which ligate the Li+ cations Li1 and Li2 by chelating a single lithium as well as bridging the Li1···Li2 sites. These two lithium sites are joined by two TFSI- anions to form eight membered rings. The rings are formed using atoms {O1, O2} and {O5, O6}, while the axial coordination sites for Li1 and Li2 are occupied by O3 and O7, respectively. These rings form a polymeric chain which propagates along the [0 1 0] direction. Two of the coordination sites for the four coordinate Li3 atom are occupied by O4 and O8, thus providing a link between two TFSI- ligands. The other two coordination sites are occupied by the N atoms from two different acetonitrile molecules. The methyl tails as well as the CF3 groups from the TFSI- anions form the exterior of the polymeric chains.

Related literature top

For the structure of pure LiN(SO2CF3)2, see: Nowinski et al. (1994). For a related structure of LiN(SO2CF3)2, see: Henderson et al. (2005); Davidson et al. (2003); Brouillette et al. (2002); Dillon et al. (2001). For the structure of CH3CN with lithium salts, see: Klapötke et al. (2006); Brooks et al. (2002); Yokota et al. (1999); Raston et al. (1989).

Experimental top

LiTFSI was purchased from 3M and dried under high-vacuum at 393 K. Anhydrous acetonitrile (Sigma Aldrich, 99.8%) was used as-received. In a vacuum atmospheres (N2) glove box (< 5 p.p.m. H2O), LiTFSI (5 mmol) and acetonitrile (6 mmol) were sealed in a vial and the mixture heated on a hot plate to form a homogeneous solution. 2 ml of toluene was then added to the vial to dilute the mixture. Upon standing at 278 K in a refrigerator, colorless plate single crystals formed suitable for analysis.

Refinement top

The structure was solved by direct methods using the SIR92 program. All non-hydrogen atoms were obtained from the initial solution. The structural model was fit to the data using full matrix least-squares based on F2. The calculated structure factors included corrections for anomalous dispersion from the usual tabulation. The structure was refined using the XL program from SHELXTL, and graphic plots were produced using the ORTEP-3 program. Methyl hydrogens were introduced at idealized positions and were allowed to ride on the parent carbon atom with C—H = 0.98 Å and Uiso(H) = 1.5 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: cif2tables.py (Boyle, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. The thermal ellipsoids are shown at a 50% probability level. (Symmetric codes: (i)-x + 2, -y - 1, -z + 1; (ii) -x + 2, -y, -z + 1)
[Figure 2] Fig. 2. Schematic illustration of ion and solvent coordination for the title compound.
Poly[bis(acetonitrile-κN)bis[µ3- bis(trifluoromethanesulfonyl)imido-κ4O,O':O'': O''']dilithium] top
Crystal data top
[Li2(C2F6NO4S2)2(C2H3N)2]F(000) = 1296
Mr = 656.29Dx = 1.892 Mg m3
Monoclinic, P21/nMelting point: 315.68 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54178 Å
a = 10.8654 (2) ÅCell parameters from 4162 reflections
b = 11.0610 (2) Åθ = 4.6–65.8°
c = 19.1778 (3) ŵ = 5.16 mm1
β = 90.8483 (10)°T = 110 K
V = 2304.58 (7) Å3Plate, colourless
Z = 40.40 × 0.20 × 0.15 mm
Data collection top
Bruker–Nonius X8 APEXII
diffractometer
3950 independent reflections
Radiation source: fine-focus sealed tube3482 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω and ϕ scansθmax = 66.2°, θmin = 4.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.232, Tmax = 0.512k = 139
9937 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.1796P]
where P = (Fo2 + 2Fc2)/3
3950 reflections(Δ/σ)max = 0.001
348 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Li2(C2F6NO4S2)2(C2H3N)2]V = 2304.58 (7) Å3
Mr = 656.29Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.8654 (2) ŵ = 5.16 mm1
b = 11.0610 (2) ÅT = 110 K
c = 19.1778 (3) Å0.40 × 0.20 × 0.15 mm
β = 90.8483 (10)°
Data collection top
Bruker–Nonius X8 APEXII
diffractometer
3950 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3482 reflections with I > 2σ(I)
Tmin = 0.232, Tmax = 0.512Rint = 0.041
9937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.07Δρmax = 0.66 e Å3
3950 reflectionsΔρmin = 0.49 e Å3
348 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li11.00000.50000.50000.0241 (13)
Li21.00000.00000.50000.0319 (15)
Li31.2401 (4)0.2523 (4)0.7428 (2)0.0212 (8)
S10.86669 (5)0.27813 (5)0.57295 (3)0.01533 (16)
S21.02904 (5)0.40779 (5)0.65910 (3)0.01465 (16)
O10.86025 (16)0.38148 (16)0.52784 (9)0.0198 (4)
O20.88818 (17)0.16218 (16)0.54296 (10)0.0242 (4)
O31.05935 (15)0.48372 (15)0.60138 (9)0.0189 (4)
O41.12685 (17)0.37177 (16)0.70505 (10)0.0235 (4)
N10.9472 (2)0.29426 (18)0.64117 (11)0.0189 (4)
C10.7103 (2)0.2650 (3)0.60816 (15)0.0259 (6)
F10.63021 (15)0.26086 (15)0.55589 (10)0.0322 (4)
F20.70074 (18)0.1660 (2)0.64600 (12)0.0514 (6)
F30.68438 (17)0.3600 (2)0.64704 (11)0.0514 (6)
C20.9349 (3)0.5030 (2)0.71598 (14)0.0223 (5)
F40.83885 (15)0.54657 (15)0.68038 (9)0.0322 (4)
F50.89314 (17)0.43864 (16)0.76878 (8)0.0338 (4)
F61.00206 (18)0.59308 (15)0.74022 (10)0.0387 (4)
S31.17709 (5)0.22534 (5)0.47597 (3)0.01494 (16)
S41.22060 (5)0.09504 (5)0.59873 (3)0.01427 (16)
O51.11998 (18)0.34116 (16)0.46985 (9)0.0227 (4)
O61.11351 (17)0.12146 (16)0.44846 (9)0.0211 (4)
O71.11864 (15)0.01780 (16)0.58177 (9)0.0194 (4)
O81.23617 (17)0.13043 (16)0.66994 (9)0.0223 (4)
N21.23502 (19)0.21021 (18)0.55127 (11)0.0182 (4)
C31.3146 (3)0.2392 (2)0.42186 (15)0.0237 (5)
F71.28089 (18)0.24474 (16)0.35552 (9)0.0344 (4)
F81.38759 (17)0.1450 (2)0.43007 (10)0.0463 (5)
F91.3759 (2)0.3386 (2)0.43789 (11)0.0532 (6)
C41.3576 (2)0.0027 (2)0.58387 (14)0.0202 (5)
F101.36085 (16)0.08703 (15)0.62945 (10)0.0336 (4)
F111.35530 (15)0.04254 (15)0.52012 (9)0.0305 (4)
F121.45820 (14)0.06888 (15)0.59205 (10)0.0310 (4)
N31.3951 (2)0.3487 (2)0.75516 (13)0.0278 (5)
C51.4711 (2)0.4159 (2)0.76885 (14)0.0234 (6)
C61.5678 (3)0.5024 (3)0.78594 (15)0.0285 (6)
H611.63880.48790.75620.043*
H621.53710.58470.77820.043*
H631.59270.49290.83500.043*
N41.1814 (2)0.1550 (2)0.82413 (12)0.0289 (5)
C71.1632 (3)0.0855 (2)0.86648 (14)0.0240 (6)
C81.1392 (3)0.0036 (3)0.92008 (15)0.0274 (6)
H811.15880.08440.90250.041*
H821.19040.01380.96140.041*
H831.05210.00040.93260.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.031 (3)0.027 (3)0.014 (3)0.008 (2)0.001 (2)0.004 (2)
Li20.038 (4)0.036 (4)0.021 (3)0.019 (3)0.010 (3)0.005 (3)
Li30.030 (2)0.0212 (19)0.0124 (19)0.0019 (16)0.0045 (17)0.0002 (16)
S10.0196 (3)0.0144 (3)0.0120 (3)0.00129 (19)0.0004 (2)0.0002 (2)
S20.0209 (3)0.0143 (3)0.0088 (3)0.0003 (2)0.0007 (2)0.0000 (2)
O10.0244 (9)0.0204 (8)0.0145 (8)0.0041 (7)0.0042 (7)0.0033 (7)
O20.0284 (9)0.0179 (9)0.0261 (10)0.0009 (7)0.0054 (7)0.0072 (7)
O30.0248 (9)0.0192 (8)0.0126 (8)0.0044 (6)0.0010 (7)0.0002 (7)
O40.0298 (9)0.0212 (9)0.0195 (9)0.0012 (7)0.0070 (7)0.0025 (7)
N10.0288 (11)0.0145 (9)0.0133 (10)0.0030 (8)0.0010 (8)0.0031 (8)
C10.0219 (13)0.0309 (14)0.0249 (14)0.0058 (10)0.0050 (11)0.0002 (11)
F10.0226 (8)0.0376 (9)0.0362 (10)0.0036 (6)0.0033 (7)0.0029 (7)
F20.0379 (10)0.0616 (13)0.0549 (12)0.0145 (9)0.0075 (9)0.0308 (11)
F30.0339 (9)0.0677 (14)0.0532 (12)0.0096 (9)0.0184 (9)0.0374 (11)
C20.0310 (13)0.0187 (12)0.0173 (12)0.0000 (10)0.0041 (11)0.0028 (10)
F40.0324 (8)0.0305 (8)0.0337 (9)0.0125 (7)0.0053 (7)0.0030 (7)
F50.0455 (10)0.0399 (9)0.0165 (8)0.0008 (7)0.0135 (7)0.0035 (7)
F60.0452 (10)0.0294 (9)0.0418 (10)0.0070 (7)0.0111 (8)0.0208 (8)
S30.0207 (3)0.0140 (3)0.0102 (3)0.0003 (2)0.0020 (2)0.0006 (2)
S40.0196 (3)0.0143 (3)0.0090 (3)0.00059 (19)0.0006 (2)0.0010 (2)
O50.0367 (10)0.0172 (8)0.0141 (8)0.0066 (7)0.0034 (7)0.0030 (7)
O60.0297 (9)0.0206 (9)0.0129 (8)0.0053 (7)0.0016 (7)0.0008 (7)
O70.0216 (8)0.0219 (8)0.0148 (8)0.0032 (7)0.0004 (7)0.0040 (7)
O80.0336 (9)0.0208 (8)0.0123 (8)0.0018 (7)0.0010 (7)0.0009 (7)
N20.0249 (10)0.0152 (9)0.0143 (10)0.0029 (7)0.0021 (8)0.0006 (8)
C30.0274 (13)0.0244 (12)0.0195 (13)0.0011 (10)0.0074 (10)0.0037 (10)
F70.0470 (10)0.0403 (9)0.0162 (8)0.0102 (7)0.0124 (7)0.0057 (7)
F80.0400 (10)0.0579 (12)0.0417 (11)0.0271 (9)0.0201 (8)0.0218 (9)
F90.0543 (12)0.0562 (13)0.0499 (12)0.0327 (10)0.0257 (10)0.0126 (10)
C40.0225 (12)0.0198 (12)0.0182 (12)0.0019 (9)0.0020 (10)0.0005 (10)
F100.0370 (9)0.0275 (8)0.0366 (10)0.0109 (7)0.0078 (7)0.0144 (7)
F110.0374 (9)0.0285 (8)0.0258 (8)0.0067 (7)0.0066 (7)0.0096 (7)
F120.0205 (7)0.0323 (8)0.0402 (10)0.0021 (6)0.0004 (7)0.0014 (7)
N30.0307 (12)0.0214 (11)0.0311 (13)0.0008 (10)0.0080 (10)0.0037 (10)
C50.0284 (13)0.0240 (13)0.0177 (13)0.0068 (11)0.0007 (10)0.0017 (10)
C60.0331 (14)0.0303 (14)0.0223 (14)0.0057 (11)0.0032 (11)0.0059 (11)
N40.0486 (14)0.0224 (11)0.0157 (11)0.0041 (10)0.0017 (10)0.0001 (10)
C70.0328 (14)0.0217 (13)0.0174 (13)0.0022 (10)0.0018 (11)0.0041 (11)
C80.0313 (14)0.0273 (14)0.0236 (14)0.0007 (10)0.0019 (11)0.0061 (11)
Geometric parameters (Å, º) top
Li1—O32.0473 (17)S3—O51.4275 (18)
Li1—O12.0817 (17)S3—O61.4370 (18)
Li1—O52.2678 (17)S3—N21.576 (2)
Li2—O72.0247 (17)S3—C31.838 (3)
Li2—O62.0831 (17)S4—O81.4284 (18)
Li2—O22.3243 (18)S4—O71.4326 (18)
Li3—O41.940 (5)S4—N21.575 (2)
Li3—O81.942 (5)S4—C41.831 (3)
Li3—N32.004 (5)C3—F81.317 (3)
Li3—N42.006 (5)C3—F91.319 (3)
S1—O21.4263 (18)C3—F71.320 (3)
S1—O11.4347 (18)C4—F111.321 (3)
S1—N11.573 (2)C4—F101.323 (3)
S1—C11.844 (3)C4—F121.323 (3)
S2—O41.4272 (19)N3—C51.139 (4)
S2—O31.4317 (18)C5—C61.455 (4)
S2—N11.574 (2)C6—H610.9800
S2—C21.838 (3)C6—H620.9800
C1—F11.318 (4)C6—H630.9800
C1—F21.318 (4)N4—C71.138 (4)
C1—F31.322 (3)C7—C81.450 (4)
C2—F61.316 (3)C8—H810.9800
C2—F51.323 (3)C8—H820.9800
C2—F41.329 (3)C8—H830.9800
O3i—Li1—O3180.00 (3)F2—C1—F3109.3 (3)
O3i—Li1—O194.49 (7)F1—C1—S1109.02 (19)
O3—Li1—O185.51 (7)F2—C1—S1110.3 (2)
O3i—Li1—O1i85.51 (7)F3—C1—S1110.43 (18)
O3—Li1—O1i94.49 (7)F6—C2—F5109.4 (2)
O1—Li1—O1i180.00 (9)F6—C2—F4109.5 (2)
O3i—Li1—O5i89.99 (7)F5—C2—F4108.2 (2)
O3—Li1—O5i90.01 (7)F6—C2—S2109.43 (18)
O1—Li1—O5i89.90 (7)F5—C2—S2110.27 (18)
O1i—Li1—O5i90.10 (7)F4—C2—S2110.04 (18)
O3i—Li1—O590.01 (7)O5—S3—O6118.77 (12)
O3—Li1—O589.99 (7)O5—S3—N2109.75 (11)
O1—Li1—O590.10 (7)O6—S3—N2115.79 (11)
O1i—Li1—O589.90 (7)O5—S3—C3103.57 (11)
O5i—Li1—O5180.00 (8)O6—S3—C3104.46 (12)
O7ii—Li2—O7180.00 (6)N2—S3—C3102.08 (12)
O7ii—Li2—O6ii86.00 (7)O8—S4—O7117.44 (11)
O7—Li2—O6ii94.00 (7)O8—S4—N2108.63 (11)
O7ii—Li2—O694.00 (7)O7—S4—N2115.75 (11)
O7—Li2—O686.00 (7)O8—S4—C4102.51 (12)
O6ii—Li2—O6180.00 (8)O7—S4—C4105.05 (11)
O7ii—Li2—O291.11 (7)N2—S4—C4105.86 (11)
O7—Li2—O288.89 (7)S3—O5—Li1157.68 (11)
O6ii—Li2—O290.76 (7)S3—O6—Li2128.77 (11)
O6—Li2—O289.24 (7)S4—O7—Li2135.66 (11)
O7ii—Li2—O2ii88.89 (7)S4—O8—Li3151.60 (18)
O7—Li2—O2ii91.11 (7)S4—N2—S3125.01 (13)
O6ii—Li2—O2ii89.24 (7)F8—C3—F9109.2 (3)
O6—Li2—O2ii90.76 (7)F8—C3—F7108.1 (2)
O2—Li2—O2ii180.00 (6)F9—C3—F7108.5 (2)
O4—Li3—O8101.3 (2)F8—C3—S3111.08 (18)
O4—Li3—N3102.0 (2)F9—C3—S3110.49 (19)
O8—Li3—N3117.6 (2)F7—C3—S3109.38 (19)
O4—Li3—N4116.6 (2)F11—C4—F10109.1 (2)
O8—Li3—N4100.6 (2)F11—C4—F12108.9 (2)
N3—Li3—N4118.1 (2)F10—C4—F12108.8 (2)
O2—S1—O1118.69 (11)F11—C4—S4110.56 (18)
O2—S1—N1110.18 (11)F10—C4—S4109.24 (17)
O1—S1—N1115.64 (11)F12—C4—S4110.19 (17)
O2—S1—C1103.54 (12)C5—N3—Li3168.4 (3)
O1—S1—C1104.28 (12)N3—C5—C6179.6 (3)
N1—S1—C1102.06 (12)C5—C6—H61109.5
O4—S2—O3117.61 (11)C5—C6—H62109.5
O4—S2—N1108.98 (11)H61—C6—H62109.5
O3—S2—N1115.77 (11)C5—C6—H63109.5
O4—S2—C2102.09 (12)H61—C6—H63109.5
O3—S2—C2105.03 (11)H62—C6—H63109.5
N1—S2—C2105.62 (12)C7—N4—Li3167.9 (3)
S1—O1—Li1128.84 (11)N4—C7—C8179.5 (3)
S1—O2—Li2157.89 (12)C7—C8—H81109.5
S2—O3—Li1135.48 (11)C7—C8—H82109.5
S2—O4—Li3152.09 (18)H81—C8—H82109.5
S1—N1—S2125.29 (13)C7—C8—H83109.5
F1—C1—F2109.5 (2)H81—C8—H83109.5
F1—C1—F3108.2 (2)H82—C8—H83109.5
O2—S1—O1—Li193.14 (15)O3i—Li1—O5—S3139.2 (3)
N1—S1—O1—Li141.19 (18)O3—Li1—O5—S340.8 (3)
C1—S1—O1—Li1152.37 (14)O1—Li1—O5—S344.7 (3)
O3i—Li1—O1—S1141.25 (14)O1i—Li1—O5—S3135.3 (3)
O3—Li1—O1—S138.75 (14)O5—S3—O6—Li294.77 (15)
O5i—Li1—O1—S1128.77 (14)N2—S3—O6—Li239.14 (18)
O5—Li1—O1—S151.23 (14)C3—S3—O6—Li2150.52 (14)
O1—S1—O2—Li286.1 (3)O7ii—Li2—O6—S3142.32 (14)
N1—S1—O2—Li250.5 (4)O7—Li2—O6—S337.68 (14)
C1—S1—O2—Li2159.0 (3)O2—Li2—O6—S351.26 (14)
O7ii—Li2—O2—S1137.1 (3)O2ii—Li2—O6—S3128.74 (14)
O7—Li2—O2—S142.9 (3)O8—S4—O7—Li2144.13 (14)
O6ii—Li2—O2—S1136.9 (3)N2—S4—O7—Li213.6 (2)
O6—Li2—O2—S143.1 (3)C4—S4—O7—Li2102.77 (16)
O4—S2—O3—Li1143.85 (14)O6ii—Li2—O7—S4170.77 (16)
N1—S2—O3—Li112.6 (2)O6—Li2—O7—S49.23 (16)
C2—S2—O3—Li1103.50 (17)O2—Li2—O7—S480.09 (16)
O1—Li1—O3—S29.75 (15)O2ii—Li2—O7—S499.91 (16)
O1i—Li1—O3—S2170.25 (15)O7—S4—O8—Li3115.4 (4)
O5i—Li1—O3—S299.65 (16)N2—S4—O8—Li318.4 (4)
O5—Li1—O3—S280.35 (16)C4—S4—O8—Li3130.1 (4)
O3—S2—O4—Li3107.9 (4)O4—Li3—O8—S428.7 (5)
N1—S2—O4—Li326.5 (4)N3—Li3—O8—S481.5 (5)
C2—S2—O4—Li3137.8 (4)N4—Li3—O8—S4148.9 (3)
O8—Li3—O4—S219.3 (5)O8—S4—N2—S3155.10 (15)
N3—Li3—O4—S2141.1 (3)O7—S4—N2—S320.5 (2)
N4—Li3—O4—S288.7 (4)C4—S4—N2—S395.43 (17)
O2—S1—N1—S2131.85 (16)O5—S3—N2—S4133.72 (15)
O1—S1—N1—S26.2 (2)O6—S3—N2—S44.1 (2)
C1—S1—N1—S2118.67 (17)C3—S3—N2—S4116.90 (17)
O4—S2—N1—S1154.01 (15)O5—S3—C3—F8170.8 (2)
O3—S2—N1—S118.8 (2)O6—S3—C3—F864.2 (2)
C2—S2—N1—S196.96 (17)N2—S3—C3—F856.7 (2)
O2—S1—C1—F170.7 (2)O5—S3—C3—F949.4 (2)
O1—S1—C1—F154.1 (2)O6—S3—C3—F9174.4 (2)
N1—S1—C1—F1174.84 (18)N2—S3—C3—F964.7 (2)
O2—S1—C1—F249.6 (2)O5—S3—C3—F770.1 (2)
O1—S1—C1—F2174.4 (2)O6—S3—C3—F754.9 (2)
N1—S1—C1—F264.9 (2)N2—S3—C3—F7175.92 (17)
O2—S1—C1—F3170.5 (2)O8—S4—C4—F11177.28 (17)
O1—S1—C1—F364.7 (2)O7—S4—C4—F1154.0 (2)
N1—S1—C1—F356.1 (2)N2—S4—C4—F1168.9 (2)
O4—S2—C2—F658.6 (2)O8—S4—C4—F1057.2 (2)
O3—S2—C2—F664.6 (2)O7—S4—C4—F1066.1 (2)
N1—S2—C2—F6172.51 (19)N2—S4—C4—F10170.98 (17)
O4—S2—C2—F561.7 (2)O8—S4—C4—F1262.3 (2)
O3—S2—C2—F5175.04 (18)O7—S4—C4—F12174.42 (17)
N1—S2—C2—F552.2 (2)N2—S4—C4—F1251.5 (2)
O4—S2—C2—F4178.96 (17)O4—Li3—N3—C556.2 (14)
O3—S2—C2—F455.7 (2)O8—Li3—N3—C5166.0 (12)
N1—S2—C2—F467.1 (2)N4—Li3—N3—C573.1 (14)
O6—S3—O5—Li188.8 (3)O4—Li3—N4—C7157.1 (12)
N2—S3—O5—Li147.7 (4)O8—Li3—N4—C748.6 (14)
C3—S3—O5—Li1156.1 (3)N3—Li3—N4—C780.8 (13)
Symmetry codes: (i) x+2, y1, z+1; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Li2(C2F6NO4S2)2(C2H3N)2]
Mr656.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)110
a, b, c (Å)10.8654 (2), 11.0610 (2), 19.1778 (3)
β (°) 90.8483 (10)
V3)2304.58 (7)
Z4
Radiation typeCu Kα
µ (mm1)5.16
Crystal size (mm)0.40 × 0.20 × 0.15
Data collection
DiffractometerBruker–Nonius X8 APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.232, 0.512
No. of measured, independent and
observed [I > 2σ(I)] reflections
9937, 3950, 3482
Rint0.041
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.07
No. of reflections3950
No. of parameters348
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.49

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), cif2tables.py (Boyle, 2008).

 

Acknowledgements

The authors wish to thank Dr Peter S. White and the Department of Chemistry at the University of North Carolina at Chapel Hill for use of their diffractometer. They also wish to express their gratitude to the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, which fully supported this research (Award DE-SC0002169).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBoyle, P. D. (2008). http://www.xray.ncsu.edu/PyCIFUtils/Google Scholar
First citationBrooks, N. R., Henderson, W. A. & Smyrl, W. H. (2002). Acta Cryst. E58, m176–m177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrouillette, D., Irish, D. E., Taylor, N. J., Perron, G., Odziemkowskic, M. & Desnoyers, J. E. (2002). Phys. Chem. Chem. Phys. 4, 6063–6071.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavidson, M. G., Raithby, P. R., Johnson, A. L. & Bolton, P. D. (2003). Eur. J. Inorg. Chem. 18, 3445–3452.  CrossRef Google Scholar
First citationDillon, R. E. A., Stern, C. L. & Shriver, D. F. (2001). Chem. Mater. 13, 2516–2522.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHenderson, W. A., McKenna, F., Khan, M. A., Brooks, N. R., Young, V. G. Jr & Frech, R. (2005). Chem. Mater. 17, 2284–2289.  CrossRef CAS Google Scholar
First citationKlapötke, T. M., Krumm, B., Mayer, P., Scherr, M. & Schwab, I. (2006). Acta Cryst. E62, m2666–m2667.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNowinski, J. L., Lightfoot, P. & Bruce, P. G. (1994). J. Mater. Chem. 4, 1579–1580.  CSD CrossRef CAS Web of Science Google Scholar
First citationRaston, C. L., Whitaker, C. R. & White, A. H. (1989). Aust. J. Chem. 42, 201–207.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYokota, Y., Young, V. G. & Verkade, J. G. (1999). Acta Cryst. C55, 196–198.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds