organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1049

Di­fluoro­[2-(quinolin-2-yl)phenolato]borane

aDepartment of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: xiamin@hzcnc.com

(Received 17 March 2011; accepted 30 March 2011; online 7 April 2011)

The title compound, C15H10BF2NO, was synthesized by the reaction of 2-(quinolin-2-yl)phenol and boron trifluoride etherate. The quinoline ring system and the benzene ring are twisted, making a dihedral angle of 8.3 (2)°. In the crystal, ππ inter­actions between the aromatic rings [centroid–centroid distance = 3.638 (9) Å] link the mol­ecules into chains propagating in [100].

Related literature

For the properties and the preparation of difluoro­boron complexes, see: Loudet et al. (2007[Loudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891-4932.]); Ulrich et al. (2008[Ulrich, G., Ziessel, R. & Harriman, A. (2008). Angew. Chem. Int. Ed. 47, 1184-1201.]); Ono et al. (2009[Ono, K., Hashizume, J., Yamaguchi, H., Tomura, M., Nishida, J. & Yamashita, Y. (2009). Org. Lett. 11, 4326-4329.]); Zhou et al. (2008[Zhou, Y., Xiao, Y., Chi, X. M. & Qian, X. H. (2008). Org. Lett. 10, 633-636.]); Xia et al. (2008[Xia, M., Wu, B. & Xiang, G. F. (2008). J. Fluorine Chem. 129, 402-408.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10BF2NO

  • Mr = 269.05

  • Triclinic, [P \overline 1]

  • a = 7.4660 (15) Å

  • b = 8.6300 (17) Å

  • c = 9.3420 (19) Å

  • α = 97.71 (3)°

  • β = 95.63 (3)°

  • γ = 92.61 (3)°

  • V = 592.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 295 K

  • 0.46 × 0.22 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.949, Tmax = 0.984

  • 4885 measured reflections

  • 2169 independent reflections

  • 1329 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.127

  • S = 1.13

  • 2169 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently, the interest in synthesis and property research on novel difluoroboron complexes has been becoming increasingly intensive, due to their distinguishing fluorescence and important applications in chemical and biological fields [Loudet et al., 2007]. Among them, the two types with N, N– and O, O-double dentate ligands are dominantly focused, like boradipyrromethene [Ulrich et al., 2008] and 1, 3, 2- dioxaborine [Ono et al., 2009] as the corresponding representatives. However, the isosteric analogues with N, O-double dentate ligands are limitedly reported, especially those having strong fluorescence intensity and high quantum yields [Zhou et al., 2008]. We reported our example of N, O-double dentate difluoroborane complexes with outstandingly intensive green fluorescence based on 1,3-enamino-ketone structures [Xia et al., 2008]. In connection with our study, herein we describe another complex exhibiting strong cyan fluorescence.

The bond lengths and angles of the title molecule (Fig. 1) are within normal ranges. The aromatic quinoline [C1–C9/N1] and benzene [C10–C15] rings are twisted at a dihedral angle of 8.3 (2)°. In the crystal structure, π-π interactions between the aromatic rings [Cg1···Cg21 = 3.638 (9) Å, symm. code i = -x, -y, 1 - z] link molecules into chains propagated in direction [1 0 0], the two aromatic planes are partial overlap. The van der Waals forces stabilize further the crystal packing.

Related literature top

For the properties and the preparation of difluoroboron complexes, see: Loudet et al. (2007); Ulrich et al. (2008); Ono et al. (2009); Zhou et al. (2008); Xia et al. (2008).

Experimental top

At room temperature, triethylamine (21 mmol, 2.9 mL) is added to the solution of 2-quinolin-2-yl- phenol (10 mmol, 2.21 g) in benzene(15 mL), the resulted mixture is stirred for 20 min and boron trifluoride etherate (30 mmol, 2.8 mL) is dropped into it. The large amount of yellow solid is precipitated after stirring for about 40 min, the solid is collected by filtration and washed by ether for several times. After dried in air, the corresponding difluoroboron complex is obtained in 92% yield as bright yellow powder(m.p. 537–538 K). At room temperature, ether is carefully and slowly dropped into the solution of the complex in dichoromethane and the resulted mixture is kept without any disturb under the airproof condition until the crystal is formed.

Refinement top

The structures were solved by Direct methods and using Fourier techniques. The non-hydrogen atoms were refined anisotropically. All H-atoms were placed in idealized locations with C–H distances 0.93 Å and refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary size.
Difluoro[2-(quinolin-2-yl)phenolato]borane top
Crystal data top
C15H10BF2NOZ = 2
Mr = 269.05F(000) = 276
Triclinic, P1Dx = 1.508 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4660 (15) ÅCell parameters from 3364 reflections
b = 8.6300 (17) Åθ = 3.0–27.4°
c = 9.3420 (19) ŵ = 0.12 mm1
α = 97.71 (3)°T = 295 K
β = 95.63 (3)°Prism, yellow
γ = 92.61 (3)°0.46 × 0.22 × 0.14 mm
V = 592.5 (2) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2169 independent reflections
Radiation source: fine-focus sealed tube1329 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.00 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω scansh = 89
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1010
Tmin = 0.949, Tmax = 0.984l = 1111
4885 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0631P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2169 reflectionsΔρmax = 0.29 e Å3
182 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.033 (7)
Crystal data top
C15H10BF2NOγ = 92.61 (3)°
Mr = 269.05V = 592.5 (2) Å3
Triclinic, P1Z = 2
a = 7.4660 (15) ÅMo Kα radiation
b = 8.6300 (17) ŵ = 0.12 mm1
c = 9.3420 (19) ÅT = 295 K
α = 97.71 (3)°0.46 × 0.22 × 0.14 mm
β = 95.63 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2169 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1329 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.984Rint = 0.025
4885 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.13Δρmax = 0.29 e Å3
2169 reflectionsΔρmin = 0.20 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.38077 (17)0.27217 (11)0.25453 (14)0.0696 (4)
F20.07658 (16)0.22181 (12)0.23344 (13)0.0700 (4)
O10.2311 (2)0.34773 (14)0.44802 (16)0.0710 (5)
N10.26036 (19)0.06102 (14)0.37319 (17)0.0427 (4)
C10.3005 (2)0.06216 (19)0.2687 (2)0.0441 (5)
C20.3067 (3)0.0422 (2)0.1235 (2)0.0579 (6)
H20.28260.05410.09390.069*
C30.3479 (3)0.1635 (2)0.0245 (2)0.0640 (6)
H30.35240.14810.07180.077*
C40.3833 (3)0.3099 (2)0.0649 (3)0.0624 (6)
H40.41250.39050.00370.075*
C50.3750 (3)0.3344 (2)0.2044 (3)0.0563 (6)
H50.39720.43220.23130.068*
C60.3324 (2)0.21077 (19)0.3095 (2)0.0465 (5)
C70.3186 (3)0.2317 (2)0.4545 (2)0.0554 (5)
H70.34070.32840.48400.066*
C80.2735 (3)0.1123 (2)0.5524 (2)0.0511 (5)
H80.26250.12850.64760.061*
C90.2435 (2)0.03633 (18)0.5099 (2)0.0425 (4)
C100.1944 (2)0.16571 (19)0.6148 (2)0.0441 (5)
C110.1542 (3)0.1444 (2)0.7542 (2)0.0556 (5)
H110.15730.04490.78170.067*
C120.1102 (3)0.2672 (3)0.8516 (2)0.0629 (6)
H120.08570.25060.94420.075*
C130.1024 (3)0.4155 (2)0.8112 (2)0.0602 (6)
H130.07100.49830.87660.072*
C140.1407 (3)0.4412 (2)0.6757 (2)0.0591 (6)
H140.13550.54110.64930.071*
C150.1874 (3)0.3172 (2)0.5773 (2)0.0498 (5)
B10.2359 (3)0.2321 (2)0.3236 (3)0.0502 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0908 (10)0.0476 (6)0.0785 (9)0.0031 (5)0.0333 (7)0.0210 (6)
F20.0803 (9)0.0602 (7)0.0707 (9)0.0220 (6)0.0066 (7)0.0181 (6)
O10.1229 (14)0.0395 (7)0.0548 (10)0.0104 (7)0.0259 (9)0.0080 (6)
N10.0465 (9)0.0372 (8)0.0449 (10)0.0025 (6)0.0032 (7)0.0089 (7)
C10.0420 (10)0.0382 (9)0.0508 (13)0.0034 (7)0.0027 (9)0.0031 (8)
C20.0719 (14)0.0489 (10)0.0536 (14)0.0113 (9)0.0089 (11)0.0057 (9)
C30.0769 (16)0.0611 (12)0.0542 (14)0.0151 (10)0.0107 (11)0.0019 (10)
C40.0588 (13)0.0511 (11)0.0718 (17)0.0090 (9)0.0043 (11)0.0112 (11)
C50.0515 (12)0.0393 (10)0.0760 (16)0.0048 (8)0.0003 (11)0.0044 (10)
C60.0384 (10)0.0430 (10)0.0567 (13)0.0010 (7)0.0011 (9)0.0072 (8)
C70.0554 (12)0.0402 (10)0.0724 (15)0.0034 (8)0.0011 (11)0.0179 (9)
C80.0569 (12)0.0468 (10)0.0516 (12)0.0029 (8)0.0018 (9)0.0175 (9)
C90.0390 (10)0.0449 (9)0.0442 (12)0.0019 (7)0.0006 (8)0.0132 (8)
C100.0379 (10)0.0442 (9)0.0481 (12)0.0002 (7)0.0004 (8)0.0030 (8)
C110.0510 (12)0.0656 (12)0.0522 (13)0.0037 (9)0.0050 (10)0.0158 (10)
C120.0570 (13)0.0839 (15)0.0485 (13)0.0044 (10)0.0110 (10)0.0080 (11)
C130.0529 (13)0.0657 (13)0.0570 (15)0.0005 (9)0.0095 (10)0.0106 (11)
C140.0676 (14)0.0479 (10)0.0603 (15)0.0033 (9)0.0124 (11)0.0023 (10)
C150.0556 (12)0.0499 (11)0.0440 (12)0.0009 (8)0.0077 (10)0.0065 (9)
B10.0666 (15)0.0391 (11)0.0489 (14)0.0099 (9)0.0138 (12)0.0133 (9)
Geometric parameters (Å, º) top
F1—B11.367 (3)C6—C71.403 (3)
F2—B11.381 (3)C7—C81.360 (3)
O1—C151.338 (2)C7—H70.9300
O1—B11.431 (3)C8—C91.414 (2)
N1—C91.339 (2)C8—H80.9300
N1—C11.408 (2)C9—C101.468 (3)
N1—B11.619 (2)C10—C111.398 (3)
C1—C21.395 (3)C10—C151.400 (3)
C1—C61.410 (2)C11—C121.374 (3)
C2—C31.368 (2)C11—H110.9300
C2—H20.9300C12—C131.384 (3)
C3—C41.396 (3)C12—H120.9300
C3—H30.9300C13—C141.369 (3)
C4—C51.354 (3)C13—H130.9300
C4—H40.9300C14—C151.394 (3)
C5—C61.420 (3)C14—H140.9300
C5—H50.9300
Cg1···Cg2i3.638 (9)
C15—O1—B1124.65 (15)N1—C9—C8120.27 (16)
C9—N1—C1120.50 (15)N1—C9—C10119.15 (16)
C9—N1—B1121.28 (15)C8—C9—C10120.58 (18)
C1—N1—B1118.22 (15)C11—C10—C15117.48 (17)
C2—C1—N1121.58 (16)C11—C10—C9122.35 (17)
C2—C1—C6118.53 (16)C15—C10—C9120.17 (18)
N1—C1—C6119.88 (18)C12—C11—C10121.6 (2)
C3—C2—C1120.35 (18)C12—C11—H11119.2
C3—C2—H2119.8C10—C11—H11119.2
C1—C2—H2119.8C11—C12—C13119.7 (2)
C2—C3—C4121.3 (2)C11—C12—H12120.1
C2—C3—H3119.3C13—C12—H12120.1
C4—C3—H3119.3C14—C13—C12120.48 (18)
C5—C4—C3119.90 (18)C14—C13—H13119.8
C5—C4—H4120.1C12—C13—H13119.8
C3—C4—H4120.1C13—C14—C15119.88 (19)
C4—C5—C6120.01 (18)C13—C14—H14120.1
C4—C5—H5120.0C15—C14—H14120.1
C6—C5—H5120.0O1—C15—C14118.28 (17)
C7—C6—C1118.21 (17)O1—C15—C10120.85 (16)
C7—C6—C5121.96 (18)C14—C15—C10120.83 (19)
C1—C6—C5119.83 (19)F1—B1—F2111.96 (18)
C8—C7—C6120.81 (17)F1—B1—O1107.42 (17)
C8—C7—H7119.6F2—B1—O1111.11 (16)
C6—C7—H7119.6F1—B1—N1109.25 (15)
C7—C8—C9120.25 (19)F2—B1—N1106.83 (15)
C7—C8—H8119.9O1—B1—N1110.27 (17)
C9—C8—H8119.9
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H10BF2NO
Mr269.05
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.4660 (15), 8.6300 (17), 9.3420 (19)
α, β, γ (°)97.71 (3), 95.63 (3), 92.61 (3)
V3)592.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.46 × 0.22 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.949, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
4885, 2169, 1329
Rint0.025
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.127, 1.13
No. of reflections2169
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.20

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

We are grateful for financial support by the Natural Science Foundation of Zhejiang Province (Y4100034) and the Innovation Fund Program for Graduate Students of Zhejiang Sci-Tech University (YCX–S10015).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLoudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891–4932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOno, K., Hashizume, J., Yamaguchi, H., Tomura, M., Nishida, J. & Yamashita, Y. (2009). Org. Lett. 11, 4326–4329.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUlrich, G., Ziessel, R. & Harriman, A. (2008). Angew. Chem. Int. Ed. 47, 1184–1201.  Web of Science CrossRef CAS Google Scholar
First citationXia, M., Wu, B. & Xiang, G. F. (2008). J. Fluorine Chem. 129, 402–408.  CrossRef CAS Google Scholar
First citationZhou, Y., Xiao, Y., Chi, X. M. & Qian, X. H. (2008). Org. Lett. 10, 633–636.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1049
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds