organic compounds
Difluoro[2-(quinolin-2-yl)phenolato]borane
aDepartment of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: xiamin@hzcnc.com
The title compound, C15H10BF2NO, was synthesized by the reaction of 2-(quinolin-2-yl)phenol and boron trifluoride etherate. The quinoline ring system and the benzene ring are twisted, making a dihedral angle of 8.3 (2)°. In the crystal, π–π interactions between the aromatic rings [centroid–centroid distance = 3.638 (9) Å] link the molecules into chains propagating in [100].
Related literature
For the properties and the preparation of difluoroboron complexes, see: Loudet et al. (2007); Ulrich et al. (2008); Ono et al. (2009); Zhou et al. (2008); Xia et al. (2008).
Experimental
Crystal data
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811011895/si2346sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811011895/si2346Isup2.hkl
At room temperature, triethylamine (21 mmol, 2.9 mL) is added to the solution of 2-quinolin-2-yl- phenol (10 mmol, 2.21 g) in benzene(15 mL), the resulted mixture is stirred for 20 min and boron trifluoride etherate (30 mmol, 2.8 mL) is dropped into it. The large amount of yellow solid is precipitated after stirring for about 40 min, the solid is collected by filtration and washed by ether for several times. After dried in air, the corresponding difluoroboron complex is obtained in 92% yield as bright yellow powder(m.p. 537–538 K). At room temperature, ether is carefully and slowly dropped into the solution of the complex in dichoromethane and the resulted mixture is kept without any disturb under the airproof condition until the crystal is formed.
The structures were solved by
and using Fourier techniques. The non-hydrogen atoms were refined anisotropically. All H-atoms were placed in idealized locations with C–H distances 0.93 Å and refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.2 times Ueq(C).Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. View of the title molecule. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary size. |
C15H10BF2NO | Z = 2 |
Mr = 269.05 | F(000) = 276 |
Triclinic, P1 | Dx = 1.508 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4660 (15) Å | Cell parameters from 3364 reflections |
b = 8.6300 (17) Å | θ = 3.0–27.4° |
c = 9.3420 (19) Å | µ = 0.12 mm−1 |
α = 97.71 (3)° | T = 295 K |
β = 95.63 (3)° | Prism, yellow |
γ = 92.61 (3)° | 0.46 × 0.22 × 0.14 mm |
V = 592.5 (2) Å3 |
Rigaku R-AXIS RAPID diffractometer | 2169 independent reflections |
Radiation source: fine-focus sealed tube | 1329 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 10.00 pixels mm-1 | θmax = 25.4°, θmin = 3.0° |
ω scans | h = −8→9 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −10→10 |
Tmin = 0.949, Tmax = 0.984 | l = −11→11 |
4885 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.127 | w = 1/[σ2(Fo2) + (0.0631P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
2169 reflections | Δρmax = 0.29 e Å−3 |
182 parameters | Δρmin = −0.20 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.033 (7) |
C15H10BF2NO | γ = 92.61 (3)° |
Mr = 269.05 | V = 592.5 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.4660 (15) Å | Mo Kα radiation |
b = 8.6300 (17) Å | µ = 0.12 mm−1 |
c = 9.3420 (19) Å | T = 295 K |
α = 97.71 (3)° | 0.46 × 0.22 × 0.14 mm |
β = 95.63 (3)° |
Rigaku R-AXIS RAPID diffractometer | 2169 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1329 reflections with I > 2σ(I) |
Tmin = 0.949, Tmax = 0.984 | Rint = 0.025 |
4885 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.29 e Å−3 |
2169 reflections | Δρmin = −0.20 e Å−3 |
182 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.38077 (17) | 0.27217 (11) | 0.25453 (14) | 0.0696 (4) | |
F2 | 0.07658 (16) | 0.22181 (12) | 0.23344 (13) | 0.0700 (4) | |
O1 | 0.2311 (2) | 0.34773 (14) | 0.44802 (16) | 0.0710 (5) | |
N1 | 0.26036 (19) | 0.06102 (14) | 0.37319 (17) | 0.0427 (4) | |
C1 | 0.3005 (2) | −0.06216 (19) | 0.2687 (2) | 0.0441 (5) | |
C2 | 0.3067 (3) | −0.0422 (2) | 0.1235 (2) | 0.0579 (6) | |
H2 | 0.2826 | 0.0541 | 0.0939 | 0.069* | |
C3 | 0.3479 (3) | −0.1635 (2) | 0.0245 (2) | 0.0640 (6) | |
H3 | 0.3524 | −0.1481 | −0.0718 | 0.077* | |
C4 | 0.3833 (3) | −0.3099 (2) | 0.0649 (3) | 0.0624 (6) | |
H4 | 0.4125 | −0.3905 | −0.0037 | 0.075* | |
C5 | 0.3750 (3) | −0.3344 (2) | 0.2044 (3) | 0.0563 (6) | |
H5 | 0.3972 | −0.4322 | 0.2313 | 0.068* | |
C6 | 0.3324 (2) | −0.21077 (19) | 0.3095 (2) | 0.0465 (5) | |
C7 | 0.3186 (3) | −0.2317 (2) | 0.4545 (2) | 0.0554 (5) | |
H7 | 0.3407 | −0.3284 | 0.4840 | 0.066* | |
C8 | 0.2735 (3) | −0.1123 (2) | 0.5524 (2) | 0.0511 (5) | |
H8 | 0.2625 | −0.1285 | 0.6476 | 0.061* | |
C9 | 0.2435 (2) | 0.03633 (18) | 0.5099 (2) | 0.0425 (4) | |
C10 | 0.1944 (2) | 0.16571 (19) | 0.6148 (2) | 0.0441 (5) | |
C11 | 0.1542 (3) | 0.1444 (2) | 0.7542 (2) | 0.0556 (5) | |
H11 | 0.1573 | 0.0449 | 0.7817 | 0.067* | |
C12 | 0.1102 (3) | 0.2672 (3) | 0.8516 (2) | 0.0629 (6) | |
H12 | 0.0857 | 0.2506 | 0.9442 | 0.075* | |
C13 | 0.1024 (3) | 0.4155 (2) | 0.8112 (2) | 0.0602 (6) | |
H13 | 0.0710 | 0.4983 | 0.8766 | 0.072* | |
C14 | 0.1407 (3) | 0.4412 (2) | 0.6757 (2) | 0.0591 (6) | |
H14 | 0.1355 | 0.5411 | 0.6493 | 0.071* | |
C15 | 0.1874 (3) | 0.3172 (2) | 0.5773 (2) | 0.0498 (5) | |
B1 | 0.2359 (3) | 0.2321 (2) | 0.3236 (3) | 0.0502 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0908 (10) | 0.0476 (6) | 0.0785 (9) | 0.0031 (5) | 0.0333 (7) | 0.0210 (6) |
F2 | 0.0803 (9) | 0.0602 (7) | 0.0707 (9) | 0.0220 (6) | −0.0066 (7) | 0.0181 (6) |
O1 | 0.1229 (14) | 0.0395 (7) | 0.0548 (10) | 0.0104 (7) | 0.0259 (9) | 0.0080 (6) |
N1 | 0.0465 (9) | 0.0372 (8) | 0.0449 (10) | 0.0025 (6) | 0.0032 (7) | 0.0089 (7) |
C1 | 0.0420 (10) | 0.0382 (9) | 0.0508 (13) | 0.0034 (7) | 0.0027 (9) | 0.0031 (8) |
C2 | 0.0719 (14) | 0.0489 (10) | 0.0536 (14) | 0.0113 (9) | 0.0089 (11) | 0.0057 (9) |
C3 | 0.0769 (16) | 0.0611 (12) | 0.0542 (14) | 0.0151 (10) | 0.0107 (11) | 0.0019 (10) |
C4 | 0.0588 (13) | 0.0511 (11) | 0.0718 (17) | 0.0090 (9) | 0.0043 (11) | −0.0112 (11) |
C5 | 0.0515 (12) | 0.0393 (10) | 0.0760 (16) | 0.0048 (8) | 0.0003 (11) | 0.0044 (10) |
C6 | 0.0384 (10) | 0.0430 (10) | 0.0567 (13) | −0.0010 (7) | −0.0011 (9) | 0.0072 (8) |
C7 | 0.0554 (12) | 0.0402 (10) | 0.0724 (15) | 0.0034 (8) | 0.0011 (11) | 0.0179 (9) |
C8 | 0.0569 (12) | 0.0468 (10) | 0.0516 (12) | 0.0029 (8) | 0.0018 (9) | 0.0175 (9) |
C9 | 0.0390 (10) | 0.0449 (9) | 0.0442 (12) | −0.0019 (7) | 0.0006 (8) | 0.0132 (8) |
C10 | 0.0379 (10) | 0.0442 (9) | 0.0481 (12) | −0.0002 (7) | 0.0004 (8) | 0.0030 (8) |
C11 | 0.0510 (12) | 0.0656 (12) | 0.0522 (13) | 0.0037 (9) | 0.0050 (10) | 0.0158 (10) |
C12 | 0.0570 (13) | 0.0839 (15) | 0.0485 (13) | 0.0044 (10) | 0.0110 (10) | 0.0080 (11) |
C13 | 0.0529 (13) | 0.0657 (13) | 0.0570 (15) | −0.0005 (9) | 0.0095 (10) | −0.0106 (11) |
C14 | 0.0676 (14) | 0.0479 (10) | 0.0603 (15) | 0.0033 (9) | 0.0124 (11) | −0.0023 (10) |
C15 | 0.0556 (12) | 0.0499 (11) | 0.0440 (12) | −0.0009 (8) | 0.0077 (10) | 0.0065 (9) |
B1 | 0.0666 (15) | 0.0391 (11) | 0.0489 (14) | 0.0099 (9) | 0.0138 (12) | 0.0133 (9) |
F1—B1 | 1.367 (3) | C6—C7 | 1.403 (3) |
F2—B1 | 1.381 (3) | C7—C8 | 1.360 (3) |
O1—C15 | 1.338 (2) | C7—H7 | 0.9300 |
O1—B1 | 1.431 (3) | C8—C9 | 1.414 (2) |
N1—C9 | 1.339 (2) | C8—H8 | 0.9300 |
N1—C1 | 1.408 (2) | C9—C10 | 1.468 (3) |
N1—B1 | 1.619 (2) | C10—C11 | 1.398 (3) |
C1—C2 | 1.395 (3) | C10—C15 | 1.400 (3) |
C1—C6 | 1.410 (2) | C11—C12 | 1.374 (3) |
C2—C3 | 1.368 (2) | C11—H11 | 0.9300 |
C2—H2 | 0.9300 | C12—C13 | 1.384 (3) |
C3—C4 | 1.396 (3) | C12—H12 | 0.9300 |
C3—H3 | 0.9300 | C13—C14 | 1.369 (3) |
C4—C5 | 1.354 (3) | C13—H13 | 0.9300 |
C4—H4 | 0.9300 | C14—C15 | 1.394 (3) |
C5—C6 | 1.420 (3) | C14—H14 | 0.9300 |
C5—H5 | 0.9300 | ||
Cg1···Cg2i | 3.638 (9) | ||
C15—O1—B1 | 124.65 (15) | N1—C9—C8 | 120.27 (16) |
C9—N1—C1 | 120.50 (15) | N1—C9—C10 | 119.15 (16) |
C9—N1—B1 | 121.28 (15) | C8—C9—C10 | 120.58 (18) |
C1—N1—B1 | 118.22 (15) | C11—C10—C15 | 117.48 (17) |
C2—C1—N1 | 121.58 (16) | C11—C10—C9 | 122.35 (17) |
C2—C1—C6 | 118.53 (16) | C15—C10—C9 | 120.17 (18) |
N1—C1—C6 | 119.88 (18) | C12—C11—C10 | 121.6 (2) |
C3—C2—C1 | 120.35 (18) | C12—C11—H11 | 119.2 |
C3—C2—H2 | 119.8 | C10—C11—H11 | 119.2 |
C1—C2—H2 | 119.8 | C11—C12—C13 | 119.7 (2) |
C2—C3—C4 | 121.3 (2) | C11—C12—H12 | 120.1 |
C2—C3—H3 | 119.3 | C13—C12—H12 | 120.1 |
C4—C3—H3 | 119.3 | C14—C13—C12 | 120.48 (18) |
C5—C4—C3 | 119.90 (18) | C14—C13—H13 | 119.8 |
C5—C4—H4 | 120.1 | C12—C13—H13 | 119.8 |
C3—C4—H4 | 120.1 | C13—C14—C15 | 119.88 (19) |
C4—C5—C6 | 120.01 (18) | C13—C14—H14 | 120.1 |
C4—C5—H5 | 120.0 | C15—C14—H14 | 120.1 |
C6—C5—H5 | 120.0 | O1—C15—C14 | 118.28 (17) |
C7—C6—C1 | 118.21 (17) | O1—C15—C10 | 120.85 (16) |
C7—C6—C5 | 121.96 (18) | C14—C15—C10 | 120.83 (19) |
C1—C6—C5 | 119.83 (19) | F1—B1—F2 | 111.96 (18) |
C8—C7—C6 | 120.81 (17) | F1—B1—O1 | 107.42 (17) |
C8—C7—H7 | 119.6 | F2—B1—O1 | 111.11 (16) |
C6—C7—H7 | 119.6 | F1—B1—N1 | 109.25 (15) |
C7—C8—C9 | 120.25 (19) | F2—B1—N1 | 106.83 (15) |
C7—C8—H8 | 119.9 | O1—B1—N1 | 110.27 (17) |
C9—C8—H8 | 119.9 |
Symmetry code: (i) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C15H10BF2NO |
Mr | 269.05 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 7.4660 (15), 8.6300 (17), 9.3420 (19) |
α, β, γ (°) | 97.71 (3), 95.63 (3), 92.61 (3) |
V (Å3) | 592.5 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.46 × 0.22 × 0.14 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.949, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4885, 2169, 1329 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.604 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.127, 1.13 |
No. of reflections | 2169 |
No. of parameters | 182 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.20 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Acknowledgements
We are grateful for financial support by the Natural Science Foundation of Zhejiang Province (Y4100034) and the Innovation Fund Program for Graduate Students of Zhejiang Sci-Tech University (YCX–S10015).
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Loudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891–4932. Web of Science CrossRef PubMed CAS Google Scholar
Ono, K., Hashizume, J., Yamaguchi, H., Tomura, M., Nishida, J. & Yamashita, Y. (2009). Org. Lett. 11, 4326–4329. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ulrich, G., Ziessel, R. & Harriman, A. (2008). Angew. Chem. Int. Ed. 47, 1184–1201. Web of Science CrossRef CAS Google Scholar
Xia, M., Wu, B. & Xiang, G. F. (2008). J. Fluorine Chem. 129, 402–408. CrossRef CAS Google Scholar
Zhou, Y., Xiao, Y., Chi, X. M. & Qian, X. H. (2008). Org. Lett. 10, 633–636. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, the interest in synthesis and property research on novel difluoroboron complexes has been becoming increasingly intensive, due to their distinguishing fluorescence and important applications in chemical and biological fields [Loudet et al., 2007]. Among them, the two types with N, N– and O, O-double dentate ligands are dominantly focused, like boradipyrromethene [Ulrich et al., 2008] and 1, 3, 2- dioxaborine [Ono et al., 2009] as the corresponding representatives. However, the isosteric analogues with N, O-double dentate ligands are limitedly reported, especially those having strong fluorescence intensity and high quantum yields [Zhou et al., 2008]. We reported our example of N, O-double dentate difluoroborane complexes with outstandingly intensive green fluorescence based on 1,3-enamino-ketone structures [Xia et al., 2008]. In connection with our study, herein we describe another complex exhibiting strong cyan fluorescence.
The bond lengths and angles of the title molecule (Fig. 1) are within normal ranges. The aromatic quinoline [C1–C9/N1] and benzene [C10–C15] rings are twisted at a dihedral angle of 8.3 (2)°. In the crystal structure, π-π interactions between the aromatic rings [Cg1···Cg21 = 3.638 (9) Å, symm. code i = -x, -y, 1 - z] link molecules into chains propagated in direction [1 0 0], the two aromatic planes are partial overlap. The van der Waals forces stabilize further the crystal packing.