metal-organic compounds
Bis(2-phenylethylammonium) tetrachloridocobaltate(II)
aNeutron Science Division, Korea Atomic Energy Research Institute, Daejeon, 305-353, Republic of Korea, bDepartment of Chemistry, Dankook University, Gyeonggi-Do, 448-701, Republic of Korea, cDepartment of Chemistry, Chungnam National University, Daejeon, 305-764, Republic of Korea, and dDepartment of Chemistry, Faculty of Liberal Art & Teacher Education, University of Seoul, Seoul, 130-743, Republic of Korea
*Correspondence e-mail: parksh@uos.ac.kr
Crystals of the title compound, (C6H5CH2CH2NH3)2[CoCl4], were grown by the solvent-evaporation method. This inorganic–organic hybrid compound exhibits a layered structure in which isolated CoCl4 inorganic layers alternate with bilayers of phenylethylammonium cations. Although the inorganic anion is zero-dimensional, the layered structure is stabilized via N—H⋯Cl hydrogen bonds. The CoCl4 tetrahedra connect to the cations through N—H⋯Cl hydrogen bonds, building a two-dimensional network extending parallel to (010).
Related literature
For inorganic–organic hybrids containing tetrahedral anions, see: Abdi et al. (2005); Huh et al. (2006); Zouari & Ben Salah, (2004). For low-dimensional magnetism in inorganic–organic perovskite systems, see: de Jongh (1986); Park & Lee (2005, 2006); Depmeier (2009); Mitzi (1999). For classification of hydrogen bonds depending on bond lengths, see: Steiner (1998, 2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: XSCANS (Bruker, 1996); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811011603/si2347sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811011603/si2347Isup2.hkl
CoCl2.6H2O (99%, Aldrich), phenethylamine (C6H5CH2CH2NH2, 99.5%, Aldrich), HCl (37 wt % in water, Aldrich), and methanol (anhydrous, 99.8%, Aldrich) are used as received. For the preparation of single-crystal (C6H5CH2CH2NH3)2CoCl4, 10 ml of a 0.25M CoCl2.6H2O methanol solution were mixed with 10 ml of a 0.5M phenethylamine methanol solution. 1 mL of an HCl solution was added to the mixed solution. Blue crystals of (C6H5CH2CH2NH3)2CoCl4 were obtained after 7 days at room temperature. Elemental analysis of C, H, and N was carried out by CHNS analysis (CE Instrument EA 1112 series). The expected formula of C16H24N2Cl4Co was confirmed. The relative weights calculated for C16H24N2Cl4Co were: C, 43.17%, H, 5.43%, N, 6.29%; found: C, 43.14%, H, 5.44%, N, 6.23%.
H atoms bonded to C were positioned geometrically and refined based on a riding model (C—H = 0.95Å in aromatic ring and 0.99 Å for CH2) with Uiso(H) = 1.2 of their parent atoms. H atoms at N atoms were located in a difference map and refined with distance constrained of N—H = 0.89 Å, and with Uiso(H) = 1.2Ueq(N). C7—C8 and C15—C16 bond lengths were refined with restrained distances 1.545 (2) Å.
Data collection: XSCANS (Bruker, 1996); cell
XSCANS (Bruker, 1996); data reduction: XSCANS (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).(C8H12N)2[CoCl4] | F(000) = 916 |
Mr = 445.10 | Dx = 1.435 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 38 reflections |
a = 7.4623 (13) Å | θ = 3.3–12.3° |
b = 24.664 (3) Å | µ = 1.35 mm−1 |
c = 11.1997 (16) Å | T = 296 K |
β = 91.769 (13)° | Rectangle, blue |
V = 2060.3 (5) Å3 | 0.5 × 0.4 × 0.35 mm |
Z = 4 |
Bruker P4 diffractometer | 1566 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.041 |
Graphite monochromator | θmax = 25.0°, θmin = 2.0° |
2θ/ω scans | h = −1→8 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −1→29 |
Tmin = 0.237, Tmax = 0.265 | l = −13→13 |
4692 measured reflections | 3 standard reflections every 97 reflections |
3595 independent reflections | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.055 | H-atom parameters constrained |
wR(F2) = 0.161 | w = 1/[σ2(Fo2) + (0.0502P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
3595 reflections | Δρmax = 0.43 e Å−3 |
211 parameters | Δρmin = −0.30 e Å−3 |
2 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0018 (7) |
(C8H12N)2[CoCl4] | V = 2060.3 (5) Å3 |
Mr = 445.10 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.4623 (13) Å | µ = 1.35 mm−1 |
b = 24.664 (3) Å | T = 296 K |
c = 11.1997 (16) Å | 0.5 × 0.4 × 0.35 mm |
β = 91.769 (13)° |
Bruker P4 diffractometer | 1566 reflections with I > 2σ(I) |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | Rint = 0.041 |
Tmin = 0.237, Tmax = 0.265 | 3 standard reflections every 97 reflections |
4692 measured reflections | intensity decay: none |
3595 independent reflections |
R[F2 > 2σ(F2)] = 0.055 | 2 restraints |
wR(F2) = 0.161 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.43 e Å−3 |
3595 reflections | Δρmin = −0.30 e Å−3 |
211 parameters |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.25951 (13) | 0.52176 (4) | 0.77334 (8) | 0.0581 (3) | |
Cl1 | 0.0134 (3) | 0.55281 (9) | 0.67021 (18) | 0.0911 (7) | |
Cl2 | 0.2717 (3) | 0.55493 (8) | 0.96063 (16) | 0.0901 (7) | |
Cl3 | 0.5051 (3) | 0.54580 (9) | 0.67008 (18) | 0.0895 (7) | |
Cl4 | 0.2382 (4) | 0.43175 (8) | 0.78339 (19) | 0.1218 (11) | |
C1 | 0.3714 (10) | 0.6982 (4) | 0.1447 (7) | 0.075 (2) | |
H1 | 0.3974 | 0.6694 | 0.0946 | 0.090* | |
C2 | 0.4215 (10) | 0.7492 (4) | 0.1131 (6) | 0.081 (3) | |
H31 | 0.4849 | 0.7546 | 0.0439 | 0.097* | |
C3 | 0.3783 (11) | 0.7927 (3) | 0.1835 (8) | 0.083 (2) | |
H3 | 0.4077 | 0.8278 | 0.1608 | 0.099* | |
C4 | 0.2910 (10) | 0.7836 (4) | 0.2879 (7) | 0.081 (2) | |
H4 | 0.2642 | 0.8125 | 0.3376 | 0.097* | |
C5 | 0.2433 (9) | 0.7316 (4) | 0.3188 (6) | 0.068 (2) | |
H5 | 0.1823 | 0.7258 | 0.3888 | 0.082* | |
C6 | 0.2847 (10) | 0.6882 (3) | 0.2473 (6) | 0.066 (2) | |
C7 | 0.2286 (12) | 0.6304 (4) | 0.2746 (7) | 0.099 (3) | |
H7A | 0.0987 | 0.6285 | 0.2720 | 0.118* | |
H7B | 0.2717 | 0.6067 | 0.2126 | 0.118* | |
C8 | 0.2921 (13) | 0.6110 (3) | 0.3860 (7) | 0.106 (3) | |
H8A | 0.2501 | 0.6346 | 0.4484 | 0.127* | |
H8B | 0.4221 | 0.6121 | 0.3886 | 0.127* | |
C9 | 0.2308 (9) | 0.2503 (3) | 0.1306 (5) | 0.0560 (17) | |
H9 | 0.2728 | 0.2687 | 0.1983 | 0.067* | |
C10 | 0.2513 (9) | 0.1950 (3) | 0.1235 (6) | 0.0627 (19) | |
H10 | 0.3066 | 0.1762 | 0.1866 | 0.075* | |
C11 | 0.1908 (10) | 0.1675 (3) | 0.0243 (7) | 0.069 (2) | |
H11 | 0.2044 | 0.1301 | 0.0198 | 0.083* | |
C12 | 0.1107 (10) | 0.1951 (3) | −0.0676 (6) | 0.067 (2) | |
H12 | 0.0702 | 0.1763 | −0.1353 | 0.080* | |
C13 | 0.0887 (9) | 0.2501 (3) | −0.0622 (5) | 0.0608 (18) | |
H13 | 0.0334 | 0.2684 | −0.1260 | 0.073* | |
C14 | 0.1485 (9) | 0.2788 (3) | 0.0380 (6) | 0.0562 (17) | |
C15 | 0.1166 (11) | 0.3392 (3) | 0.0449 (7) | 0.086 (2) | |
H15A | 0.0752 | 0.3519 | −0.0331 | 0.103* | |
H15B | 0.0215 | 0.3458 | 0.1002 | 0.103* | |
C16 | 0.2724 (11) | 0.3707 (3) | 0.0826 (7) | 0.085 (2) | |
H16A | 0.3704 | 0.3625 | 0.0307 | 0.102* | |
H16B | 0.3088 | 0.3602 | 0.1632 | 0.102* | |
N1 | 0.2316 (11) | 0.5540 (3) | 0.4099 (6) | 0.115 (3) | |
H1A | 0.1329 | 0.5469 | 0.3661 | 0.172* | |
H1B | 0.2083 | 0.5505 | 0.4870 | 0.172* | |
H1C | 0.3177 | 0.5309 | 0.3909 | 0.172* | |
N2 | 0.2383 (8) | 0.4300 (2) | 0.0799 (5) | 0.0758 (18) | |
H2A | 0.2107 | 0.4403 | 0.0053 | 0.114* | |
H2B | 0.3362 | 0.4475 | 0.1059 | 0.114* | |
H2C | 0.1476 | 0.4378 | 0.1267 | 0.114* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0607 (6) | 0.0511 (5) | 0.0628 (6) | 0.0000 (5) | 0.0052 (4) | −0.0041 (5) |
Cl1 | 0.0673 (13) | 0.1124 (17) | 0.0931 (14) | 0.0206 (13) | −0.0035 (11) | 0.0131 (12) |
Cl2 | 0.135 (2) | 0.0655 (12) | 0.0702 (12) | 0.0041 (13) | 0.0055 (13) | −0.0163 (10) |
Cl3 | 0.0707 (13) | 0.1058 (16) | 0.0931 (14) | −0.0135 (13) | 0.0222 (11) | −0.0084 (12) |
Cl4 | 0.225 (3) | 0.0497 (11) | 0.0914 (15) | −0.0165 (16) | 0.0130 (18) | −0.0131 (10) |
C1 | 0.060 (5) | 0.098 (6) | 0.066 (5) | 0.007 (5) | 0.001 (4) | −0.013 (4) |
C2 | 0.048 (5) | 0.140 (8) | 0.055 (4) | 0.009 (6) | 0.004 (4) | 0.020 (5) |
C3 | 0.068 (6) | 0.082 (6) | 0.097 (6) | −0.007 (5) | −0.017 (5) | 0.030 (5) |
C4 | 0.068 (6) | 0.099 (7) | 0.076 (5) | 0.006 (5) | −0.005 (4) | −0.017 (5) |
C5 | 0.059 (5) | 0.104 (6) | 0.043 (4) | 0.009 (5) | 0.007 (3) | 0.006 (4) |
C6 | 0.057 (5) | 0.077 (5) | 0.065 (5) | 0.006 (4) | 0.000 (4) | 0.009 (4) |
C7 | 0.101 (7) | 0.099 (7) | 0.095 (6) | −0.012 (6) | −0.019 (6) | 0.013 (5) |
C8 | 0.130 (9) | 0.090 (7) | 0.097 (6) | −0.034 (6) | −0.008 (6) | 0.013 (5) |
C9 | 0.056 (4) | 0.063 (4) | 0.049 (4) | −0.012 (4) | 0.003 (3) | 0.000 (3) |
C10 | 0.062 (5) | 0.060 (5) | 0.065 (4) | −0.007 (4) | −0.007 (4) | 0.019 (4) |
C11 | 0.071 (5) | 0.052 (4) | 0.085 (5) | −0.007 (4) | 0.002 (4) | −0.002 (4) |
C12 | 0.066 (5) | 0.083 (6) | 0.050 (4) | −0.009 (4) | 0.001 (4) | −0.016 (4) |
C13 | 0.061 (5) | 0.072 (5) | 0.049 (4) | 0.000 (4) | −0.009 (3) | 0.014 (4) |
C14 | 0.053 (4) | 0.051 (4) | 0.064 (4) | 0.000 (4) | 0.001 (4) | 0.008 (3) |
C15 | 0.077 (6) | 0.066 (5) | 0.115 (6) | −0.001 (5) | −0.010 (5) | 0.007 (5) |
C16 | 0.089 (6) | 0.054 (5) | 0.112 (6) | 0.003 (5) | −0.011 (5) | −0.003 (4) |
N1 | 0.177 (8) | 0.066 (4) | 0.103 (5) | −0.025 (5) | 0.033 (5) | −0.003 (4) |
N2 | 0.099 (5) | 0.050 (4) | 0.079 (4) | 0.002 (3) | 0.005 (4) | 0.003 (3) |
Co1—Cl4 | 2.229 (2) | C15—C16 | 1.451 (9) |
Co1—Cl2 | 2.251 (2) | C16—N2 | 1.485 (8) |
Co1—Cl1 | 2.272 (2) | C1—H1 | 0.931 |
Co1—Cl3 | 2.276 (2) | C2—H31 | 0.931 |
C1—C6 | 1.358 (9) | C3—H3 | 0.931 |
C1—C2 | 1.363 (10) | C4—H4 | 0.929 |
C2—C3 | 1.376 (10) | C5—H5 | 0.929 |
C3—C4 | 1.374 (10) | C7—H7A | 0.970 |
C4—C5 | 1.377 (10) | C7—H7B | 0.970 |
C5—C6 | 1.379 (10) | C8—H8A | 0.968 |
C6—C7 | 1.519 (10) | C8—H8B | 0.969 |
C7—C8 | 1.405 (9) | C9—H9 | 0.930 |
C8—N1 | 1.502 (9) | C10—H10 | 0.930 |
C9—C10 | 1.376 (8) | C11—H11 | 0.929 |
C9—C14 | 1.380 (8) | C12—H12 | 0.929 |
C10—C11 | 1.367 (9) | C13—H13 | 0.930 |
C11—C12 | 1.358 (9) | C15—H15A | 0.970 |
C12—C13 | 1.368 (9) | C15—H15B | 0.970 |
C13—C14 | 1.389 (8) | C16—H16A | 0.970 |
C14—C15 | 1.510 (9) | C16—H16B | 0.970 |
Cl4—Co1—Cl2 | 108.41 (8) | C16—C15—C14 | 114.6 (6) |
Cl4—Co1—Cl1 | 107.67 (11) | C15—C16—N2 | 112.8 (7) |
Cl2—Co1—Cl1 | 111.10 (9) | H5—C5—C4 | 119.6 |
Cl4—Co1—Cl3 | 110.19 (10) | H2A—N2—H2C | 109.5 |
Cl2—Co1—Cl3 | 111.65 (9) | H2C—N2—H2B | 109.4 |
Cl1—Co1—Cl3 | 107.75 (9) | H2A—N2—H2B | 109.4 |
C6—C1—C2 | 122.0 (7) | C16—N2—H2A | 109.4 |
C1—C2—C3 | 120.0 (7) | C16—N2—H2A | 109.4 |
C4—C3—C2 | 119.1 (8) | C16—N2—H2B | 109.5 |
C3—C4—C5 | 119.9 (8) | H1A—N1—C8 | 109.3 |
C4—C5—C6 | 120.9 (7) | H1B—N1—C8 | 109.4 |
C1—C6—C5 | 118.1 (7) | H1C—N1—C8 | 109.4 |
C1—C6—C7 | 118.9 (7) | H1A—N1—H1B | 109.5 |
C5—C6—C7 | 123.0 (7) | H1B—N1—H1C | 109.5 |
C8—C7—C6 | 114.3 (7) | H1A—N1—H1C | 109.6 |
C7—C8—N1 | 112.5 (7) | C3—C4—H4 | 119.9 |
C10—C9—C14 | 120.6 (6) | C2—C3—H3 | 120.5 |
C11—C10—C9 | 120.3 (6) | C2—C1—H1 | 119.0 |
C12—C11—C10 | 119.6 (7) | H1—C1—C6 | 118.8 |
C11—C12—C13 | 121.0 (6) | C6—C7—H7B | 108.5 |
C12—C13—C14 | 120.3 (6) | C6—C7—H7A | 108.4 |
C9—C14—C13 | 118.2 (6) | C7—C8—H8B | 108.9 |
C9—C14—C15 | 122.0 (6) | C7—C8—H8A | 109.0 |
C13—C14—C15 | 119.7 (6) | ||
C6—C1—C2—C3 | −2.5 (12) | C14—C9—C10—C11 | 0.2 (11) |
C1—C2—C3—C4 | 2.6 (12) | C9—C10—C11—C12 | 0.2 (11) |
C2—C3—C4—C5 | −2.0 (11) | C10—C11—C12—C13 | −0.4 (11) |
C3—C4—C5—C6 | 1.1 (11) | C11—C12—C13—C14 | 0.1 (11) |
C2—C1—C6—C5 | 1.7 (11) | C10—C9—C14—C13 | −0.5 (10) |
C2—C1—C6—C7 | 178.3 (7) | C10—C9—C14—C15 | 177.3 (6) |
C4—C5—C6—C1 | −0.9 (11) | C12—C13—C14—C9 | 0.4 (10) |
C4—C5—C6—C7 | −177.4 (7) | C12—C13—C14—C15 | −177.5 (7) |
C1—C6—C7—C8 | 125.0 (9) | C9—C14—C15—C16 | 49.4 (10) |
C5—C6—C7—C8 | −58.6 (11) | C13—C14—C15—C16 | −132.8 (8) |
C6—C7—C8—N1 | 179.3 (7) | C14—C15—C16—N2 | 176.0 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2C···Cl1i | 0.89 | 2.62 | 3.445 (6) | 156 |
N2—H2A···Cl4ii | 0.89 | 2.51 | 3.321 (6) | 152 |
N1—H1C···Cl3iii | 0.89 | 2.42 | 3.291 (8) | 167 |
N1—H1B···Cl1 | 0.89 | 2.55 | 3.382 (7) | 156 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y, z−1; (iii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | (C8H12N)2[CoCl4] |
Mr | 445.10 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 7.4623 (13), 24.664 (3), 11.1997 (16) |
β (°) | 91.769 (13) |
V (Å3) | 2060.3 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.35 |
Crystal size (mm) | 0.5 × 0.4 × 0.35 |
Data collection | |
Diffractometer | Bruker P4 diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.237, 0.265 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4692, 3595, 1566 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.161, 1.03 |
No. of reflections | 3595 |
No. of parameters | 211 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.30 |
Computer programs: XSCANS (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2C···Cl1i | 0.89 | 2.62 | 3.445 (6) | 155.5 |
N2—H2A···Cl4ii | 0.89 | 2.51 | 3.321 (6) | 151.8 |
N1—H1C···Cl3iii | 0.89 | 2.42 | 3.291 (8) | 166.9 |
N1—H1B···Cl1 | 0.89 | 2.55 | 3.382 (7) | 155.6 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y, z−1; (iii) −x+1, −y+1, −z+1. |
Acknowledgements
IHO thanks Professor G. Heger for discussion of the results and for suggestions.
References
Abdi, M., Zouari, F., Chniba-Boudjada, N., Bordet, P. & Salah, A. B. (2005). Acta Cryst. E61, m240–m241. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Depmeier, W. (2009). Z. Kristallogr. 224, 287–294. Web of Science CrossRef CAS Google Scholar
Huh, Y. D., Kim, J. H., Kweon, S. S., Kuk, W. K., Hwang, C. S., Hyun, J. W., Kim, Y. J. & Park, Y. (2006). Curr. Appl. Phys. 6, 219–223. CrossRef Google Scholar
Jongh, L. J. de (1986). In Magnetic Properties of Layered Transition Metal Compounds. Dordrecht: Kluwer. Google Scholar
Mitzi, D. B. (1999). Prog. Inorg. Chem. 48, 1–121. Web of Science CrossRef CAS Google Scholar
Park, S.-H. & Lee, C. E. (2005). J. Phys. Chem. B, 109, 1118–1124. Web of Science CrossRef PubMed CAS Google Scholar
Park, S.-H. & Lee, C. E. (2006). Bull. Kor. Chem. Soc. 27, 1587–1591. CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (1998). Acta Cryst. B54, 456–463. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76. Web of Science CrossRef CAS Google Scholar
Zouari, F. & Ben Salah, A. (2004). Solid State Sci. 6, 847–851. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, (C6H5CH2CH2NH3)2CoCl4, belongs to the layered inorganic-organic hybrid systems of general formula A2MX4 (where A = organic cation, M = divalent metal, X = halides). These systems are of special interest because of typical low-dimensional magnetic systems (de Jongh, 1986; Mitzi, 1999). To investigate the role of interlayer spacing on the magnetic properties, a variety of hybrid systems using long-chain alkylamine have been developed. However, their crystallographic studies are limited because their insolubility make it difficult to obtain a good single-crystal. As a part of our research interest in the low-dimensional magnetism (Park & Lee 2005, 2006), we synthesized a series of the layered inorganic-organic perovskite materials using phenethylamine and present the crystal structure of (C6H5CH2CH2NH3)2CoCl4. Among the phenethylammonium-based compounds, several examples with tetrahedral anions are known to literature, for example, (C6H5C2H4NH3)2ZnBr4 (Huh et al., 2006), (C6H5(CH2)2NH3)2Cd0.75Hg0.25Br4 (Zouari & Ben Salah, 2004), (C8H12N)TlBr4 (Abdi et al., 2005). Except for (C8H12N)TlBr4, in which the heavy atom has trivalent, the other bivalent compounds have tetrahedral MBr4 anions with non-magnetic ions in common. The present paper is the first report of the tetrahedral MCl4 with magnetic ion using phenethylamine.
Fig. 1 shows the molecular structure of (C6H5CH2CH2NH3)2CoCl4. The asymmetric unit of the title compound consists of two phenethylammonium cations and one isolated CoCl4 anion; the latter is arranged as an distorted tetrahedron, whose bond lengths ranging from 2.229 (2) to 2.276 (2) Å (Table 1). Interestingly, the crystal structure exhibits a layered inorganic-organic structure although the dimension of inorganic backbone is 0-dimensional or isolated CoCl4 tetrahedra, as shown in Fig. 2. The CoCl4 tetrahedral groups are isolated and are connected to the organic cations by N—H···Cl hydrogen bonds via the NH3-groups. Tab. 2 and Fig. 2 display also the N—H···Cl hydrogen bonds of (C6H5CH2CH2NH3)2CoCl4. Between the CoCl4 layers, —CNH3+ ions are located in the space between CoCl4 tetrahedra, which is formed by Cl atoms. N—H···Cl hydrogen bonds connect the two groups. The CoCl4 tetrahedra connect the C6H5CH2CH2NH3+ ions through hydrogen bonds to build a two-dimensional hydrogen-bonded NH3—CoCl4 network. Due to the hydrogen bonds, the Co—Cl bond lengths increase, resulting in slightly deformed CoCl4 tetrahedra. The obtained bond lengths suggest that the strength of the N—H···Cl hydrogen bonds in the structure can be classified as weak (Steiner, 1998; Steiner, 2002).