metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m522-m523

Bis(2-phenyl­ethyl­ammonium) tetra­chloridocobaltate(II)

aNeutron Science Division, Korea Atomic Energy Research Institute, Daejeon, 305-353, Republic of Korea, bDepartment of Chemistry, Dankook University, Gyeonggi-Do, 448-701, Republic of Korea, cDepartment of Chemistry, Chungnam National University, Daejeon, 305-764, Republic of Korea, and dDepartment of Chemistry, Faculty of Liberal Art & Teacher Education, University of Seoul, Seoul, 130-743, Republic of Korea
*Correspondence e-mail: parksh@uos.ac.kr

(Received 22 March 2011; accepted 29 March 2011; online 7 April 2011)

Crystals of the title compound, (C6H5CH2CH2NH3)2[CoCl4], were grown by the solvent-evaporation method. This inorganic–organic hybrid compound exhibits a layered structure in which isolated CoCl4 inorganic layers alternate with bilayers of phenylethylammonium cations. Although the inorganic anion is zero-dimensional, the layered structure is stabilized via N—H⋯Cl hydrogen bonds. The CoCl4 tetra­hedra connect to the cations through N—H⋯Cl hydrogen bonds, building a two-dimensional network extending parallel to (010).

Related literature

For inorganic–organic hybrids containing tetra­hedral anions, see: Abdi et al. (2005[Abdi, M., Zouari, F., Chniba-Boudjada, N., Bordet, P. & Salah, A. B. (2005). Acta Cryst. E61, m240-m241.]); Huh et al. (2006[Huh, Y. D., Kim, J. H., Kweon, S. S., Kuk, W. K., Hwang, C. S., Hyun, J. W., Kim, Y. J. & Park, Y. (2006). Curr. Appl. Phys. 6, 219-223.]); Zouari & Ben Salah, (2004[Zouari, F. & Ben Salah, A. (2004). Solid State Sci. 6, 847-851.]). For low-dimensional magnetism in inorganic–organic perovskite systems, see: de Jongh (1986[Jongh, L. J. de (1986). In Magnetic Properties of Layered Transition Metal Compounds. Dordrecht: Kluwer.]); Park & Lee (2005[Park, S.-H. & Lee, C. E. (2005). J. Phys. Chem. B, 109, 1118-1124.], 2006[Park, S.-H. & Lee, C. E. (2006). Bull. Kor. Chem. Soc. 27, 1587-1591.]); Depmeier (2009[Depmeier, W. (2009). Z. Kristallogr. 224, 287-294.]); Mitzi (1999[Mitzi, D. B. (1999). Prog. Inorg. Chem. 48, 1-121.]). For classification of hydrogen bonds depending on bond lengths, see: Steiner (1998[Steiner, T. (1998). Acta Cryst. B54, 456-463.], 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H12N)2[CoCl4]

  • Mr = 445.10

  • Monoclinic, P 21 /c

  • a = 7.4623 (13) Å

  • b = 24.664 (3) Å

  • c = 11.1997 (16) Å

  • β = 91.769 (13)°

  • V = 2060.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 296 K

  • 0.50 × 0.40 × 0.35 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.237, Tmax = 0.265

  • 4692 measured reflections

  • 3595 independent reflections

  • 1566 reflections with I > 2σ(I)

  • Rint = 0.041

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.161

  • S = 1.03

  • 3595 reflections

  • 211 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Co1—Cl4 2.229 (2)
Co1—Cl2 2.251 (2)
Co1—Cl1 2.272 (2)
Co1—Cl3 2.276 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯Cl1i 0.89 2.62 3.445 (6) 156
N2—H2A⋯Cl4ii 0.89 2.51 3.321 (6) 152
N1—H1C⋯Cl3iii 0.89 2.42 3.291 (8) 167
N1—H1B⋯Cl1 0.89 2.55 3.382 (7) 156
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y, z-1; (iii) -x+1, -y+1, -z+1.

Data collection: XSCANS (Bruker, 1996[Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (C6H5CH2CH2NH3)2CoCl4, belongs to the layered inorganic-organic hybrid systems of general formula A2MX4 (where A = organic cation, M = divalent metal, X = halides). These systems are of special interest because of typical low-dimensional magnetic systems (de Jongh, 1986; Mitzi, 1999). To investigate the role of interlayer spacing on the magnetic properties, a variety of hybrid systems using long-chain alkylamine have been developed. However, their crystallographic studies are limited because their insolubility make it difficult to obtain a good single-crystal. As a part of our research interest in the low-dimensional magnetism (Park & Lee 2005, 2006), we synthesized a series of the layered inorganic-organic perovskite materials using phenethylamine and present the crystal structure of (C6H5CH2CH2NH3)2CoCl4. Among the phenethylammonium-based compounds, several examples with tetrahedral anions are known to literature, for example, (C6H5C2H4NH3)2ZnBr4 (Huh et al., 2006), (C6H5(CH2)2NH3)2Cd0.75Hg0.25Br4 (Zouari & Ben Salah, 2004), (C8H12N)TlBr4 (Abdi et al., 2005). Except for (C8H12N)TlBr4, in which the heavy atom has trivalent, the other bivalent compounds have tetrahedral MBr4 anions with non-magnetic ions in common. The present paper is the first report of the tetrahedral MCl4 with magnetic ion using phenethylamine.

Fig. 1 shows the molecular structure of (C6H5CH2CH2NH3)2CoCl4. The asymmetric unit of the title compound consists of two phenethylammonium cations and one isolated CoCl4 anion; the latter is arranged as an distorted tetrahedron, whose bond lengths ranging from 2.229 (2) to 2.276 (2) Å (Table 1). Interestingly, the crystal structure exhibits a layered inorganic-organic structure although the dimension of inorganic backbone is 0-dimensional or isolated CoCl4 tetrahedra, as shown in Fig. 2. The CoCl4 tetrahedral groups are isolated and are connected to the organic cations by N—H···Cl hydrogen bonds via the NH3-groups. Tab. 2 and Fig. 2 display also the N—H···Cl hydrogen bonds of (C6H5CH2CH2NH3)2CoCl4. Between the CoCl4 layers, —CNH3+ ions are located in the space between CoCl4 tetrahedra, which is formed by Cl atoms. N—H···Cl hydrogen bonds connect the two groups. The CoCl4 tetrahedra connect the C6H5CH2CH2NH3+ ions through hydrogen bonds to build a two-dimensional hydrogen-bonded NH3—CoCl4 network. Due to the hydrogen bonds, the Co—Cl bond lengths increase, resulting in slightly deformed CoCl4 tetrahedra. The obtained bond lengths suggest that the strength of the N—H···Cl hydrogen bonds in the structure can be classified as weak (Steiner, 1998; Steiner, 2002).

Related literature top

For inorganic–organic hybrids containing tetrahedral anions, see: Abdi et al. (2005); Huh et al. (2006); Zouari & Ben Salah, (2004). For low-dimensional magnetism in inorganic–organic perovskite systems, see: de Jongh (1986); Park & Lee (2005, 2006); Depmeier (2009); Mitzi (1999). For classification of hydrogen bonds depending on bond lengths, see: Steiner (1998, 2002).

Experimental top

CoCl2.6H2O (99%, Aldrich), phenethylamine (C6H5CH2CH2NH2, 99.5%, Aldrich), HCl (37 wt % in water, Aldrich), and methanol (anhydrous, 99.8%, Aldrich) are used as received. For the preparation of single-crystal (C6H5CH2CH2NH3)2CoCl4, 10 ml of a 0.25M CoCl2.6H2O methanol solution were mixed with 10 ml of a 0.5M phenethylamine methanol solution. 1 mL of an HCl solution was added to the mixed solution. Blue crystals of (C6H5CH2CH2NH3)2CoCl4 were obtained after 7 days at room temperature. Elemental analysis of C, H, and N was carried out by CHNS analysis (CE Instrument EA 1112 series). The expected formula of C16H24N2Cl4Co was confirmed. The relative weights calculated for C16H24N2Cl4Co were: C, 43.17%, H, 5.43%, N, 6.29%; found: C, 43.14%, H, 5.44%, N, 6.23%.

Refinement top

H atoms bonded to C were positioned geometrically and refined based on a riding model (C—H = 0.95Å in aromatic ring and 0.99 Å for CH2) with Uiso(H) = 1.2 of their parent atoms. H atoms at N atoms were located in a difference map and refined with distance constrained of N—H = 0.89 Å, and with Uiso(H) = 1.2Ueq(N). C7—C8 and C15—C16 bond lengths were refined with restrained distances 1.545 (2) Å.

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS (Bruker, 1996); data reduction: XSCANS (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (C6H5CH2CH2NH3)2CoCl4, showing the atomic labeling and 50% probability displacement elllisoids for non-H atoms.
[Figure 2] Fig. 2. Crystal structure of (C6H5CH2CH2NH3)2CoCl4 viewed along the a axis, showing the N—H···Cl hydrogen bonds as dashed lines.
Bis(2-phenylethylammonium) tetrachloridocobaltate(II) top
Crystal data top
(C8H12N)2[CoCl4]F(000) = 916
Mr = 445.10Dx = 1.435 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 38 reflections
a = 7.4623 (13) Åθ = 3.3–12.3°
b = 24.664 (3) ŵ = 1.35 mm1
c = 11.1997 (16) ÅT = 296 K
β = 91.769 (13)°Rectangle, blue
V = 2060.3 (5) Å30.5 × 0.4 × 0.35 mm
Z = 4
Data collection top
Bruker P4
diffractometer
1566 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
2θ/ω scansh = 18
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 129
Tmin = 0.237, Tmax = 0.265l = 1313
4692 measured reflections3 standard reflections every 97 reflections
3595 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0502P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3595 reflectionsΔρmax = 0.43 e Å3
211 parametersΔρmin = 0.30 e Å3
2 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0018 (7)
Crystal data top
(C8H12N)2[CoCl4]V = 2060.3 (5) Å3
Mr = 445.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4623 (13) ŵ = 1.35 mm1
b = 24.664 (3) ÅT = 296 K
c = 11.1997 (16) Å0.5 × 0.4 × 0.35 mm
β = 91.769 (13)°
Data collection top
Bruker P4
diffractometer
1566 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
Rint = 0.041
Tmin = 0.237, Tmax = 0.2653 standard reflections every 97 reflections
4692 measured reflections intensity decay: none
3595 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0552 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.03Δρmax = 0.43 e Å3
3595 reflectionsΔρmin = 0.30 e Å3
211 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.25951 (13)0.52176 (4)0.77334 (8)0.0581 (3)
Cl10.0134 (3)0.55281 (9)0.67021 (18)0.0911 (7)
Cl20.2717 (3)0.55493 (8)0.96063 (16)0.0901 (7)
Cl30.5051 (3)0.54580 (9)0.67008 (18)0.0895 (7)
Cl40.2382 (4)0.43175 (8)0.78339 (19)0.1218 (11)
C10.3714 (10)0.6982 (4)0.1447 (7)0.075 (2)
H10.39740.66940.09460.090*
C20.4215 (10)0.7492 (4)0.1131 (6)0.081 (3)
H310.48490.75460.04390.097*
C30.3783 (11)0.7927 (3)0.1835 (8)0.083 (2)
H30.40770.82780.16080.099*
C40.2910 (10)0.7836 (4)0.2879 (7)0.081 (2)
H40.26420.81250.33760.097*
C50.2433 (9)0.7316 (4)0.3188 (6)0.068 (2)
H50.18230.72580.38880.082*
C60.2847 (10)0.6882 (3)0.2473 (6)0.066 (2)
C70.2286 (12)0.6304 (4)0.2746 (7)0.099 (3)
H7A0.09870.62850.27200.118*
H7B0.27170.60670.21260.118*
C80.2921 (13)0.6110 (3)0.3860 (7)0.106 (3)
H8A0.25010.63460.44840.127*
H8B0.42210.61210.38860.127*
C90.2308 (9)0.2503 (3)0.1306 (5)0.0560 (17)
H90.27280.26870.19830.067*
C100.2513 (9)0.1950 (3)0.1235 (6)0.0627 (19)
H100.30660.17620.18660.075*
C110.1908 (10)0.1675 (3)0.0243 (7)0.069 (2)
H110.20440.13010.01980.083*
C120.1107 (10)0.1951 (3)0.0676 (6)0.067 (2)
H120.07020.17630.13530.080*
C130.0887 (9)0.2501 (3)0.0622 (5)0.0608 (18)
H130.03340.26840.12600.073*
C140.1485 (9)0.2788 (3)0.0380 (6)0.0562 (17)
C150.1166 (11)0.3392 (3)0.0449 (7)0.086 (2)
H15A0.07520.35190.03310.103*
H15B0.02150.34580.10020.103*
C160.2724 (11)0.3707 (3)0.0826 (7)0.085 (2)
H16A0.37040.36250.03070.102*
H16B0.30880.36020.16320.102*
N10.2316 (11)0.5540 (3)0.4099 (6)0.115 (3)
H1A0.13290.54690.36610.172*
H1B0.20830.55050.48700.172*
H1C0.31770.53090.39090.172*
N20.2383 (8)0.4300 (2)0.0799 (5)0.0758 (18)
H2A0.21070.44030.00530.114*
H2B0.33620.44750.10590.114*
H2C0.14760.43780.12670.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0607 (6)0.0511 (5)0.0628 (6)0.0000 (5)0.0052 (4)0.0041 (5)
Cl10.0673 (13)0.1124 (17)0.0931 (14)0.0206 (13)0.0035 (11)0.0131 (12)
Cl20.135 (2)0.0655 (12)0.0702 (12)0.0041 (13)0.0055 (13)0.0163 (10)
Cl30.0707 (13)0.1058 (16)0.0931 (14)0.0135 (13)0.0222 (11)0.0084 (12)
Cl40.225 (3)0.0497 (11)0.0914 (15)0.0165 (16)0.0130 (18)0.0131 (10)
C10.060 (5)0.098 (6)0.066 (5)0.007 (5)0.001 (4)0.013 (4)
C20.048 (5)0.140 (8)0.055 (4)0.009 (6)0.004 (4)0.020 (5)
C30.068 (6)0.082 (6)0.097 (6)0.007 (5)0.017 (5)0.030 (5)
C40.068 (6)0.099 (7)0.076 (5)0.006 (5)0.005 (4)0.017 (5)
C50.059 (5)0.104 (6)0.043 (4)0.009 (5)0.007 (3)0.006 (4)
C60.057 (5)0.077 (5)0.065 (5)0.006 (4)0.000 (4)0.009 (4)
C70.101 (7)0.099 (7)0.095 (6)0.012 (6)0.019 (6)0.013 (5)
C80.130 (9)0.090 (7)0.097 (6)0.034 (6)0.008 (6)0.013 (5)
C90.056 (4)0.063 (4)0.049 (4)0.012 (4)0.003 (3)0.000 (3)
C100.062 (5)0.060 (5)0.065 (4)0.007 (4)0.007 (4)0.019 (4)
C110.071 (5)0.052 (4)0.085 (5)0.007 (4)0.002 (4)0.002 (4)
C120.066 (5)0.083 (6)0.050 (4)0.009 (4)0.001 (4)0.016 (4)
C130.061 (5)0.072 (5)0.049 (4)0.000 (4)0.009 (3)0.014 (4)
C140.053 (4)0.051 (4)0.064 (4)0.000 (4)0.001 (4)0.008 (3)
C150.077 (6)0.066 (5)0.115 (6)0.001 (5)0.010 (5)0.007 (5)
C160.089 (6)0.054 (5)0.112 (6)0.003 (5)0.011 (5)0.003 (4)
N10.177 (8)0.066 (4)0.103 (5)0.025 (5)0.033 (5)0.003 (4)
N20.099 (5)0.050 (4)0.079 (4)0.002 (3)0.005 (4)0.003 (3)
Geometric parameters (Å, º) top
Co1—Cl42.229 (2)C15—C161.451 (9)
Co1—Cl22.251 (2)C16—N21.485 (8)
Co1—Cl12.272 (2)C1—H10.931
Co1—Cl32.276 (2)C2—H310.931
C1—C61.358 (9)C3—H30.931
C1—C21.363 (10)C4—H40.929
C2—C31.376 (10)C5—H50.929
C3—C41.374 (10)C7—H7A0.970
C4—C51.377 (10)C7—H7B0.970
C5—C61.379 (10)C8—H8A0.968
C6—C71.519 (10)C8—H8B0.969
C7—C81.405 (9)C9—H90.930
C8—N11.502 (9)C10—H100.930
C9—C101.376 (8)C11—H110.929
C9—C141.380 (8)C12—H120.929
C10—C111.367 (9)C13—H130.930
C11—C121.358 (9)C15—H15A0.970
C12—C131.368 (9)C15—H15B0.970
C13—C141.389 (8)C16—H16A0.970
C14—C151.510 (9)C16—H16B0.970
Cl4—Co1—Cl2108.41 (8)C16—C15—C14114.6 (6)
Cl4—Co1—Cl1107.67 (11)C15—C16—N2112.8 (7)
Cl2—Co1—Cl1111.10 (9)H5—C5—C4119.6
Cl4—Co1—Cl3110.19 (10)H2A—N2—H2C109.5
Cl2—Co1—Cl3111.65 (9)H2C—N2—H2B109.4
Cl1—Co1—Cl3107.75 (9)H2A—N2—H2B109.4
C6—C1—C2122.0 (7)C16—N2—H2A109.4
C1—C2—C3120.0 (7)C16—N2—H2A109.4
C4—C3—C2119.1 (8)C16—N2—H2B109.5
C3—C4—C5119.9 (8)H1A—N1—C8109.3
C4—C5—C6120.9 (7)H1B—N1—C8109.4
C1—C6—C5118.1 (7)H1C—N1—C8109.4
C1—C6—C7118.9 (7)H1A—N1—H1B109.5
C5—C6—C7123.0 (7)H1B—N1—H1C109.5
C8—C7—C6114.3 (7)H1A—N1—H1C109.6
C7—C8—N1112.5 (7)C3—C4—H4119.9
C10—C9—C14120.6 (6)C2—C3—H3120.5
C11—C10—C9120.3 (6)C2—C1—H1119.0
C12—C11—C10119.6 (7)H1—C1—C6118.8
C11—C12—C13121.0 (6)C6—C7—H7B108.5
C12—C13—C14120.3 (6)C6—C7—H7A108.4
C9—C14—C13118.2 (6)C7—C8—H8B108.9
C9—C14—C15122.0 (6)C7—C8—H8A109.0
C13—C14—C15119.7 (6)
C6—C1—C2—C32.5 (12)C14—C9—C10—C110.2 (11)
C1—C2—C3—C42.6 (12)C9—C10—C11—C120.2 (11)
C2—C3—C4—C52.0 (11)C10—C11—C12—C130.4 (11)
C3—C4—C5—C61.1 (11)C11—C12—C13—C140.1 (11)
C2—C1—C6—C51.7 (11)C10—C9—C14—C130.5 (10)
C2—C1—C6—C7178.3 (7)C10—C9—C14—C15177.3 (6)
C4—C5—C6—C10.9 (11)C12—C13—C14—C90.4 (10)
C4—C5—C6—C7177.4 (7)C12—C13—C14—C15177.5 (7)
C1—C6—C7—C8125.0 (9)C9—C14—C15—C1649.4 (10)
C5—C6—C7—C858.6 (11)C13—C14—C15—C16132.8 (8)
C6—C7—C8—N1179.3 (7)C14—C15—C16—N2176.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···Cl1i0.892.623.445 (6)156
N2—H2A···Cl4ii0.892.513.321 (6)152
N1—H1C···Cl3iii0.892.423.291 (8)167
N1—H1B···Cl10.892.553.382 (7)156
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C8H12N)2[CoCl4]
Mr445.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.4623 (13), 24.664 (3), 11.1997 (16)
β (°) 91.769 (13)
V3)2060.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.5 × 0.4 × 0.35
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.237, 0.265
No. of measured, independent and
observed [I > 2σ(I)] reflections
4692, 3595, 1566
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.161, 1.03
No. of reflections3595
No. of parameters211
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.30

Computer programs: XSCANS (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Co1—Cl42.229 (2)Co1—Cl12.272 (2)
Co1—Cl22.251 (2)Co1—Cl32.276 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···Cl1i0.892.623.445 (6)155.5
N2—H2A···Cl4ii0.892.513.321 (6)151.8
N1—H1C···Cl3iii0.892.423.291 (8)166.9
N1—H1B···Cl10.892.553.382 (7)155.6
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1.
 

Acknowledgements

IHO thanks Professor G. Heger for discussion of the results and for suggestions.

References

First citationAbdi, M., Zouari, F., Chniba-Boudjada, N., Bordet, P. & Salah, A. B. (2005). Acta Cryst. E61, m240–m241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDepmeier, W. (2009). Z. Kristallogr. 224, 287–294.  Web of Science CrossRef CAS Google Scholar
First citationHuh, Y. D., Kim, J. H., Kweon, S. S., Kuk, W. K., Hwang, C. S., Hyun, J. W., Kim, Y. J. & Park, Y. (2006). Curr. Appl. Phys. 6, 219–223.  CrossRef Google Scholar
First citationJongh, L. J. de (1986). In Magnetic Properties of Layered Transition Metal Compounds. Dordrecht: Kluwer.  Google Scholar
First citationMitzi, D. B. (1999). Prog. Inorg. Chem. 48, 1–121.  Web of Science CrossRef CAS Google Scholar
First citationPark, S.-H. & Lee, C. E. (2005). J. Phys. Chem. B, 109, 1118–1124.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPark, S.-H. & Lee, C. E. (2006). Bull. Kor. Chem. Soc. 27, 1587–1591.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (1998). Acta Cryst. B54, 456–463.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationZouari, F. & Ben Salah, A. (2004). Solid State Sci. 6, 847–851.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m522-m523
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds