metal-organic compounds
Lithium difluoro(oxalato)borate tetramethylene sulfone disolvate
aIonic Liquids & Electrolytes for Energy Technologies (ILEET) Laboratory, Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA, and bX-ray Structural Facility, Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
*Correspondence e-mail: wesley_henderson@ncsu.edu
The title compound, Li+·C2BF2O4−·2C4H8O2S, is a dimeric species, which resides across a crystallographic inversion center. The dimers form eight-membered rings containing two Li+ cations, which are joined by O2S sulfone linkages. The Li+ cations are ligated by four O atoms from the anions and solvent molecules, forming a pseudo-tetrahedral geometry. The exocyclic coordination sites are occupied by O atoms from the oxalate group of the difluoro(oxalato)borate anion and an additional tetramethylene sulfone ligand.
Related literature
For physiochemical properties of tetramethylene sulfone (TMS), see: Della Monica et al. (1968); Dudley et al. (1991); Domanska et al. (1996). For electrochemical properties of TMS, see: Xu & Angell (2002); Abouimrane et al. (2009); Sun & Angell (2009). For electrochemical properties of lithium difluoro(oxalato)borate (LiDFOB), see: Zhang (2007); Chen et al. (2007); Fu et al. (2010).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: cif2tables.py (Boyle, 2008).
Supporting information
10.1107/S1600536811011743/si2348sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811011743/si2348Isup2.hkl
LiDFOB was synthesized by the direct reaction of excess boron trifluoride diethyl etherate (BF3-ether) with lithium oxalate (oxalic acid dilithium salt), both used as-received from Sigma-Aldrich, and extracted/recrystallized from dimethyl carbonate (DMC). The DMC-LiDFOB solvate was vacuum dried at 378 K for 48 h, yielding a high purity salt. TMS (Sigma-Aldrich, >99.8%) was used as-received. A solution was made by dissolving LiDFOB (1.566 mmol) in TMS (6.264 mmol) at 353 K. The solution was allowed to slowly cool to room temperature. Colorless crystals formed suitable for X-ray analysis on standing.
The structure was solved by
using the SIR92 program. All non-hydrogen atoms were obtained from the initial solution. The hydrogen atoms were introduced at idealized positions and were allowed to refine isotropically. The structural model was fit to the data using full matrix least-squares based on F2. The calculated structure factors included corrections for from the usual tabulation. The structure was refined using the XL program from SHELXTL (Sheldrick, 2008). Graphic plots were produced using the ORTEP-3 program.Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: cif2tables.py (Boyle, 2008).Li+·C2BF2O4−·2C4H8O2S | F(000) = 792 |
Mr = 384.12 | Dx = 1.623 Mg m−3 |
Monoclinic, P21/n | Melting point: 367.85 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 13.9005 (4) Å | Cell parameters from 9927 reflections |
b = 5.8917 (1) Å | θ = 3.1–31.8° |
c = 19.9627 (5) Å | µ = 0.40 mm−1 |
β = 106.0101 (13)° | T = 110 K |
V = 1571.48 (7) Å3 | Prism, colourless |
Z = 4 | 0.51 × 0.17 × 0.16 mm |
Bruker–Nonius Kappa X8 APEXII diffractometer | 6723 independent reflections |
Radiation source: fine-focus sealed tube | 4514 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
ω and phi scans | θmax = 35.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −22→22 |
Tmin = 0.823, Tmax = 0.939 | k = −9→8 |
59573 measured reflections | l = −31→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | All H-atom parameters refined |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0531P)2 + 0.5209P] where P = (Fo2 + 2Fc2)/3 |
6723 reflections | (Δ/σ)max = 0.001 |
281 parameters | Δρmax = 0.80 e Å−3 |
0 restraints | Δρmin = −0.45 e Å−3 |
Li+·C2BF2O4−·2C4H8O2S | V = 1571.48 (7) Å3 |
Mr = 384.12 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.9005 (4) Å | µ = 0.40 mm−1 |
b = 5.8917 (1) Å | T = 110 K |
c = 19.9627 (5) Å | 0.51 × 0.17 × 0.16 mm |
β = 106.0101 (13)° |
Bruker–Nonius Kappa X8 APEXII diffractometer | 6723 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4514 reflections with I > 2σ(I) |
Tmin = 0.823, Tmax = 0.939 | Rint = 0.054 |
59573 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.113 | All H-atom parameters refined |
S = 1.02 | Δρmax = 0.80 e Å−3 |
6723 reflections | Δρmin = −0.45 e Å−3 |
281 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.3460 (2) | −0.0347 (4) | 0.00559 (15) | 0.0214 (5) | |
O1 | 0.31626 (9) | 0.20781 (19) | −0.06478 (8) | 0.0316 (3) | |
O2 | 0.22276 (8) | 0.47559 (18) | −0.13303 (6) | 0.0222 (2) | |
O3 | 0.16743 (13) | 0.2577 (2) | 0.01240 (7) | 0.0398 (4) | |
O4 | 0.10533 (8) | 0.52447 (19) | −0.06874 (6) | 0.0215 (2) | |
C1 | 0.24614 (12) | 0.3388 (2) | −0.07979 (9) | 0.0216 (3) | |
C2 | 0.16898 (13) | 0.3664 (3) | −0.03845 (8) | 0.0225 (3) | |
B1 | 0.13278 (13) | 0.6151 (3) | −0.13039 (9) | 0.0197 (3) | |
F1 | 0.15911 (8) | 0.84008 (16) | −0.12160 (6) | 0.0318 (2) | |
F2 | 0.05644 (8) | 0.58017 (19) | −0.18987 (5) | 0.0320 (2) | |
S1 | 0.53657 (3) | 0.23623 (5) | 0.095635 (17) | 0.01352 (8) | |
O5 | 0.45522 (9) | 0.07304 (19) | 0.08378 (6) | 0.0241 (2) | |
O6 | 0.58816 (8) | 0.25394 (17) | 0.04173 (5) | 0.0185 (2) | |
C3 | 0.49317 (12) | 0.5049 (2) | 0.11463 (8) | 0.0192 (3) | |
H3A | 0.5342 (17) | 0.620 (4) | 0.1003 (11) | 0.037 (6)* | |
H3B | 0.4301 (16) | 0.517 (3) | 0.0880 (11) | 0.029 (5)* | |
C4 | 0.50818 (13) | 0.4926 (3) | 0.19321 (8) | 0.0234 (3) | |
H4A | 0.4597 (15) | 0.390 (3) | 0.2058 (10) | 0.025 (5)* | |
H4B | 0.4995 (18) | 0.640 (4) | 0.2119 (13) | 0.048 (7)* | |
C5 | 0.61283 (13) | 0.3906 (3) | 0.22363 (9) | 0.0253 (3) | |
H5A | 0.6587 (17) | 0.502 (4) | 0.2182 (12) | 0.038 (6)* | |
H5B | 0.6283 (16) | 0.349 (4) | 0.2732 (11) | 0.029 (5)* | |
C6 | 0.62066 (13) | 0.1822 (3) | 0.17993 (8) | 0.0204 (3) | |
H6A | 0.5960 (16) | 0.054 (4) | 0.1967 (11) | 0.033 (6)* | |
H6B | 0.6831 (15) | 0.159 (3) | 0.1732 (10) | 0.020 (5)* | |
S2 | 0.22934 (3) | −0.23755 (5) | 0.111283 (18) | 0.01444 (8) | |
O7 | 0.27513 (8) | −0.22574 (17) | 0.05399 (6) | 0.0193 (2) | |
O8 | 0.25996 (9) | −0.42689 (18) | 0.15829 (6) | 0.0234 (2) | |
C7 | 0.09674 (12) | −0.2291 (3) | 0.08044 (9) | 0.0203 (3) | |
H7A | 0.0718 (15) | −0.376 (4) | 0.0698 (11) | 0.031 (5)* | |
H7B | 0.0845 (16) | −0.138 (4) | 0.0414 (12) | 0.037 (6)* | |
C8 | 0.06790 (13) | −0.1165 (3) | 0.14076 (10) | 0.0263 (3) | |
H8A | −0.0049 (15) | −0.066 (3) | 0.1276 (10) | 0.024 (5)* | |
H8B | 0.0803 (18) | −0.232 (4) | 0.1822 (13) | 0.041 (6)* | |
C9 | 0.13774 (13) | 0.0881 (3) | 0.16254 (10) | 0.0251 (3) | |
H9A | 0.1127 (17) | 0.211 (4) | 0.1286 (12) | 0.032 (6)* | |
H9B | 0.1384 (16) | 0.142 (4) | 0.2075 (12) | 0.034 (6)* | |
C10 | 0.24416 (12) | 0.0200 (2) | 0.16109 (8) | 0.0197 (3) | |
H10A | 0.2745 (14) | 0.127 (3) | 0.1391 (10) | 0.022 (5)* | |
H10B | 0.2877 (16) | −0.014 (4) | 0.2038 (12) | 0.032 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Li1 | 0.0245 (13) | 0.0185 (11) | 0.0241 (13) | −0.0036 (10) | 0.0115 (11) | −0.0014 (10) |
O1 | 0.0206 (6) | 0.0172 (5) | 0.0517 (8) | 0.0016 (4) | 0.0012 (6) | 0.0037 (5) |
O2 | 0.0217 (5) | 0.0197 (5) | 0.0279 (6) | 0.0022 (4) | 0.0115 (5) | 0.0050 (4) |
O3 | 0.0674 (10) | 0.0299 (7) | 0.0198 (6) | −0.0123 (6) | 0.0080 (6) | 0.0062 (5) |
O4 | 0.0223 (5) | 0.0235 (5) | 0.0206 (5) | −0.0022 (4) | 0.0092 (4) | −0.0007 (4) |
C1 | 0.0183 (7) | 0.0144 (6) | 0.0283 (8) | −0.0032 (5) | 0.0004 (6) | 0.0010 (5) |
C2 | 0.0298 (8) | 0.0184 (6) | 0.0165 (7) | −0.0073 (6) | 0.0016 (6) | 0.0005 (5) |
B1 | 0.0193 (8) | 0.0188 (7) | 0.0224 (8) | 0.0026 (6) | 0.0082 (6) | 0.0040 (6) |
F1 | 0.0331 (6) | 0.0168 (4) | 0.0491 (7) | 0.0030 (4) | 0.0175 (5) | 0.0069 (4) |
F2 | 0.0305 (6) | 0.0384 (6) | 0.0221 (5) | 0.0087 (4) | −0.0011 (4) | 0.0059 (4) |
S1 | 0.01483 (16) | 0.01248 (13) | 0.01344 (14) | −0.00014 (11) | 0.00423 (11) | −0.00114 (11) |
O5 | 0.0250 (6) | 0.0234 (5) | 0.0240 (6) | −0.0105 (4) | 0.0068 (5) | −0.0052 (4) |
O6 | 0.0216 (5) | 0.0192 (5) | 0.0169 (5) | 0.0028 (4) | 0.0091 (4) | −0.0002 (4) |
C3 | 0.0222 (7) | 0.0164 (6) | 0.0201 (7) | 0.0047 (5) | 0.0074 (6) | −0.0004 (5) |
C4 | 0.0276 (8) | 0.0245 (7) | 0.0208 (7) | −0.0014 (6) | 0.0112 (6) | −0.0066 (6) |
C5 | 0.0260 (8) | 0.0327 (8) | 0.0166 (7) | −0.0059 (7) | 0.0050 (6) | −0.0040 (6) |
C6 | 0.0199 (7) | 0.0229 (7) | 0.0179 (7) | 0.0026 (6) | 0.0042 (6) | 0.0060 (5) |
S2 | 0.01413 (16) | 0.01212 (14) | 0.01752 (15) | −0.00119 (11) | 0.00510 (12) | 0.00011 (11) |
O7 | 0.0180 (5) | 0.0190 (5) | 0.0235 (5) | −0.0017 (4) | 0.0100 (4) | 0.0003 (4) |
O8 | 0.0293 (6) | 0.0155 (5) | 0.0251 (6) | 0.0019 (4) | 0.0068 (5) | 0.0050 (4) |
C7 | 0.0147 (6) | 0.0226 (7) | 0.0252 (7) | −0.0035 (5) | 0.0081 (6) | −0.0056 (6) |
C8 | 0.0258 (9) | 0.0243 (7) | 0.0338 (9) | −0.0026 (6) | 0.0168 (7) | −0.0060 (6) |
C9 | 0.0302 (9) | 0.0205 (7) | 0.0291 (8) | −0.0026 (6) | 0.0158 (7) | −0.0067 (6) |
C10 | 0.0234 (7) | 0.0148 (6) | 0.0192 (7) | −0.0041 (5) | 0.0031 (6) | −0.0018 (5) |
Li1—O7 | 1.922 (3) | C4—H4A | 0.99 (2) |
Li1—O5 | 1.959 (3) | C4—H4B | 0.97 (3) |
Li1—O1 | 1.966 (3) | C5—C6 | 1.527 (2) |
Li1—O6i | 1.969 (3) | C5—H5A | 0.94 (2) |
O1—C1 | 1.2144 (19) | C5—H5B | 0.98 (2) |
O2—C1 | 1.3014 (19) | C6—H6A | 0.93 (2) |
O2—B1 | 1.510 (2) | C6—H6B | 0.925 (19) |
O3—C2 | 1.2053 (19) | S2—O8 | 1.4443 (11) |
O4—C2 | 1.312 (2) | S2—O7 | 1.4559 (11) |
O4—B1 | 1.485 (2) | S2—C7 | 1.7758 (16) |
C1—C2 | 1.532 (2) | S2—C10 | 1.7945 (15) |
B1—F2 | 1.372 (2) | C7—C8 | 1.522 (2) |
B1—F1 | 1.373 (2) | C7—H7A | 0.94 (2) |
S1—O6 | 1.4521 (11) | C7—H7B | 0.92 (2) |
S1—O5 | 1.4530 (11) | C8—C9 | 1.534 (2) |
S1—C3 | 1.7719 (14) | C8—H8A | 1.02 (2) |
S1—C6 | 1.7929 (16) | C8—H8B | 1.05 (2) |
O6—Li1i | 1.969 (3) | C9—C10 | 1.541 (2) |
C3—C4 | 1.526 (2) | C9—H9A | 0.99 (2) |
C3—H3A | 0.98 (2) | C9—H9B | 0.95 (2) |
C3—H3B | 0.89 (2) | C10—H10A | 0.933 (19) |
C4—C5 | 1.536 (2) | C10—H10B | 0.92 (2) |
O7—Li1—O5 | 100.44 (13) | C6—C5—H5A | 109.7 (14) |
O7—Li1—O1 | 138.48 (16) | C4—C5—H5A | 106.3 (14) |
O5—Li1—O1 | 107.32 (13) | C6—C5—H5B | 110.0 (13) |
O7—Li1—O6i | 103.16 (13) | C4—C5—H5B | 114.6 (12) |
O5—Li1—O6i | 103.55 (14) | H5A—C5—H5B | 108.8 (18) |
O1—Li1—O6i | 99.66 (13) | C5—C6—S1 | 105.21 (11) |
C1—O1—Li1 | 129.39 (15) | C5—C6—H6A | 110.8 (13) |
C1—O2—B1 | 109.35 (12) | S1—C6—H6A | 105.9 (13) |
C2—O4—B1 | 110.03 (12) | C5—C6—H6B | 114.9 (12) |
O1—C1—O2 | 126.71 (16) | S1—C6—H6B | 106.6 (12) |
O1—C1—C2 | 124.62 (15) | H6A—C6—H6B | 112.7 (18) |
O2—C1—C2 | 108.66 (13) | O8—S2—O7 | 115.66 (7) |
O3—C2—O4 | 126.78 (18) | O8—S2—C7 | 109.79 (8) |
O3—C2—C1 | 125.12 (16) | O7—S2—C7 | 111.29 (7) |
O4—C2—C1 | 108.09 (13) | O8—S2—C10 | 108.96 (7) |
F2—B1—F1 | 111.75 (13) | O7—S2—C10 | 112.75 (7) |
F2—B1—O4 | 110.44 (13) | C7—S2—C10 | 96.78 (7) |
F1—B1—O4 | 111.20 (13) | S2—O7—Li1 | 144.93 (11) |
F2—B1—O2 | 109.78 (13) | C8—C7—S2 | 102.27 (11) |
F1—B1—O2 | 109.62 (13) | C8—C7—H7A | 115.0 (13) |
O4—B1—O2 | 103.76 (12) | S2—C7—H7A | 109.7 (13) |
O6—S1—O5 | 116.62 (7) | C8—C7—H7B | 112.9 (14) |
O6—S1—C3 | 111.18 (7) | S2—C7—H7B | 104.0 (14) |
O5—S1—C3 | 109.29 (8) | H7A—C7—H7B | 112.0 (19) |
O6—S1—C6 | 112.38 (7) | C7—C8—C9 | 106.42 (13) |
O5—S1—C6 | 108.18 (7) | C7—C8—H8A | 112.5 (11) |
C3—S1—C6 | 97.48 (8) | C9—C8—H8A | 110.6 (11) |
S1—O5—Li1 | 137.86 (11) | C7—C8—H8B | 108.6 (13) |
S1—O6—Li1i | 134.30 (10) | C9—C8—H8B | 109.5 (13) |
C4—C3—S1 | 102.68 (10) | H8A—C8—H8B | 109.1 (17) |
C4—C3—H3A | 114.1 (13) | C8—C9—C10 | 109.02 (13) |
S1—C3—H3A | 107.2 (13) | C8—C9—H9A | 107.7 (13) |
C4—C3—H3B | 116.6 (13) | C10—C9—H9A | 109.7 (13) |
S1—C3—H3B | 106.4 (13) | C8—C9—H9B | 111.8 (13) |
H3A—C3—H3B | 108.9 (18) | C10—C9—H9B | 110.2 (13) |
C3—C4—C5 | 105.72 (13) | H9A—C9—H9B | 108.4 (18) |
C3—C4—H4A | 112.4 (12) | C9—C10—S2 | 105.47 (10) |
C5—C4—H4A | 107.4 (12) | C9—C10—H10A | 113.2 (12) |
C3—C4—H4B | 110.9 (14) | S2—C10—H10A | 108.0 (12) |
C5—C4—H4B | 113.9 (14) | C9—C10—H10B | 115.4 (13) |
H4A—C4—H4B | 106.6 (18) | S2—C10—H10B | 105.9 (13) |
C6—C5—C4 | 107.33 (13) | H10A—C10—H10B | 108.4 (18) |
O7—Li1—O1—C1 | 24.4 (3) | C3—S1—O6—Li1i | −179.61 (15) |
O5—Li1—O1—C1 | −105.29 (18) | C6—S1—O6—Li1i | 72.30 (16) |
O6i—Li1—O1—C1 | 147.13 (16) | O6—S1—C3—C4 | −143.40 (10) |
Li1—O1—C1—O2 | −169.91 (15) | O5—S1—C3—C4 | 86.46 (12) |
Li1—O1—C1—C2 | 9.1 (3) | C6—S1—C3—C4 | −25.83 (12) |
B1—O2—C1—O1 | −177.70 (15) | S1—C3—C4—C5 | 44.85 (14) |
B1—O2—C1—C2 | 3.12 (16) | C3—C4—C5—C6 | −47.70 (17) |
B1—O4—C2—O3 | −179.29 (16) | C4—C5—C6—S1 | 27.11 (16) |
B1—O4—C2—C1 | −0.31 (16) | O6—S1—C6—C5 | 116.13 (11) |
O1—C1—C2—O3 | −2.0 (3) | O5—S1—C6—C5 | −113.69 (12) |
O2—C1—C2—O3 | 177.15 (15) | C3—S1—C6—C5 | −0.49 (13) |
O1—C1—C2—O4 | 178.94 (15) | O8—S2—O7—Li1 | −128.77 (19) |
O2—C1—C2—O4 | −1.86 (17) | C7—S2—O7—Li1 | 105.0 (2) |
C2—O4—B1—F2 | 119.62 (14) | C10—S2—O7—Li1 | −2.5 (2) |
C2—O4—B1—F1 | −115.73 (14) | O5—Li1—O7—S2 | 52.0 (2) |
C2—O4—B1—O2 | 2.03 (16) | O1—Li1—O7—S2 | −79.7 (3) |
C1—O2—B1—F2 | −121.27 (14) | O6i—Li1—O7—S2 | 158.69 (13) |
C1—O2—B1—F1 | 115.62 (14) | O8—S2—C7—C8 | 80.33 (12) |
C1—O2—B1—O4 | −3.23 (16) | O7—S2—C7—C8 | −150.31 (10) |
O6—S1—O5—Li1 | −38.91 (18) | C10—S2—C7—C8 | −32.65 (12) |
C3—S1—O5—Li1 | 88.21 (17) | S2—C7—C8—C9 | 45.93 (16) |
C6—S1—O5—Li1 | −166.71 (16) | C7—C8—C9—C10 | −41.02 (19) |
O7—Li1—O5—S1 | −172.88 (11) | C8—C9—C10—S2 | 16.08 (17) |
O1—Li1—O5—S1 | −24.1 (2) | O8—S2—C10—C9 | −103.64 (12) |
O6i—Li1—O5—S1 | 80.71 (19) | O7—S2—C10—C9 | 126.54 (11) |
O5—S1—O6—Li1i | −53.42 (17) | C7—S2—C10—C9 | 10.02 (12) |
Symmetry code: (i) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | Li+·C2BF2O4−·2C4H8O2S |
Mr | 384.12 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 110 |
a, b, c (Å) | 13.9005 (4), 5.8917 (1), 19.9627 (5) |
β (°) | 106.0101 (13) |
V (Å3) | 1571.48 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.40 |
Crystal size (mm) | 0.51 × 0.17 × 0.16 |
Data collection | |
Diffractometer | Bruker–Nonius Kappa X8 APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.823, 0.939 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 59573, 6723, 4514 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.807 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.113, 1.02 |
No. of reflections | 6723 |
No. of parameters | 281 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.80, −0.45 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), cif2tables.py (Boyle, 2008).
Acknowledgements
This work was funded by the US DOE BATT Program (contract DE-AC02-05-CH11231). JLA would like to thank the SMART Scholarship Program and the American Society for Engineering Education (ASEE) for the award of a SMART Graduate Research Fellowship.
References
Abouimrane, A., Belharouak, I. & Amine, K. (2009). Electrochem. Commun. 11, 1073–1076. CrossRef CAS Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Boyle, P. D. (2008). http://www.xray.ncsu .edu/PyCIFUtils/ Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Z., Liu, J. & Amine, K. (2007). Electrochem. Solid-State Lett. 10, A45–A47. CrossRef CAS Google Scholar
Della Monica, M., Jannelli, L. & Lamanna, U. (1968). J. Phys. Chem. 72, 1068–1071. CrossRef CAS Google Scholar
Domanska, U., Moollan, W. & Letcher, T. (1996). J. Chem. Eng. Data, 41, 261–265. CAS Google Scholar
Dudley, J. T., Wilkinson, D. P., Thomas, G., LeVau, R., Woo, S., Blom, H., Horvath, C., Juzkow, M. W., Denis, B., Juric, P., Aghakian, P. & Dahn, J. R. (1991). J. Power Sources, 35, 59–82. CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fu, M., Huang, K., Liu, S., Liu, J. & Li, Y. (2010). J. Power Sources, 195, 862–866. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, X. & Angell, C. A. (2009). Electrochem. Commun. 11, 1418–1421. CrossRef CAS Google Scholar
Xu, K. & Angell, C. A. (2002). J. Electrochem. Soc. 149, A920–A926. CrossRef CAS Google Scholar
Zhang, S. S. (2007). J. Power Sources, 163, 713–718. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Solvate crystal structures provide invaluable information for understanding the ionic association tendency and manner in which anions and solvent molecules coordinate Li+ cations. Understanding the solid-state behavior provides insight into the various solvates that may exist in liquid solvent-lithium salt electrolytes utilized in state-of-the-art Li-ion batteries. The physiochemical and electrochemical properties of both tetramethylene sulfone (TMS) and lithium difluoro(oxalato)borate (LiDFOB) have attracted much attention recently for non-aqueous secondary battery applications.
The Li+ cation in the title structure, which resides across a crystallographic inversion center, is coordinated by two sulfonyl O atoms from TMS and a carbonyl O atom from the DFOB- anion (Fig. 1). An eight member dimer ring structure is formed from this coordination by linking two Li+ cations through their coordination by TMS molecules coordinated to both Li+ cations with each cation coordinated by a different sulfonyl oxygen (Fig. 2). The eight membered rings are packed in the crystal structure in layers such that Z = 2 (Fig. 3).