metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Lithium di­fluoro­(oxalato)borate tetra­methyl­ene sulfone disolvate

aIonic Liquids & Electrolytes for Energy Technologies (ILEET) Laboratory, Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA, and bX-ray Structural Facility, Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
*Correspondence e-mail: wesley_henderson@ncsu.edu

(Received 24 March 2011; accepted 29 March 2011; online 7 April 2011)

The title compound, Li+·C2BF2O4·2C4H8O2S, is a dimeric species, which resides across a crystallographic inversion center. The dimers form eight-membered rings containing two Li+ cations, which are joined by O2S sulfone linkages. The Li+ cations are ligated by four O atoms from the anions and solvent mol­ecules, forming a pseudo-tetra­hedral geometry. The exocyclic coordination sites are occupied by O atoms from the oxalate group of the difluoro­(oxalato)borate anion and an additional tetra­methyl­ene sulfone ligand.

Related literature

For physiochemical properties of tetra­methyl­ene sulfone (TMS), see: Della Monica et al. (1968[Della Monica, M., Jannelli, L. & Lamanna, U. (1968). J. Phys. Chem. 72, 1068-1071.]); Dudley et al. (1991[Dudley, J. T., Wilkinson, D. P., Thomas, G., LeVau, R., Woo, S., Blom, H., Horvath, C., Juzkow, M. W., Denis, B., Juric, P., Aghakian, P. & Dahn, J. R. (1991). J. Power Sources, 35, 59-82.]); Domanska et al. (1996[Domanska, U., Moollan, W. & Letcher, T. (1996). J. Chem. Eng. Data, 41, 261-265.]). For electrochemical properties of TMS, see: Xu & Angell (2002[Xu, K. & Angell, C. A. (2002). J. Electrochem. Soc. 149, A920-A926.]); Abouimrane et al. (2009[Abouimrane, A., Belharouak, I. & Amine, K. (2009). Electrochem. Commun. 11, 1073-1076.]); Sun & Angell (2009[Sun, X. & Angell, C. A. (2009). Electrochem. Commun. 11, 1418-1421.]). For electrochemical properties of lithium difluoro­(oxalato)borate (LiDFOB), see: Zhang (2007[Zhang, S. S. (2007). J. Power Sources, 163, 713-718.]); Chen et al. (2007[Chen, Z., Liu, J. & Amine, K. (2007). Electrochem. Solid-State Lett. 10, A45-A47.]); Fu et al. (2010[Fu, M., Huang, K., Liu, S., Liu, J. & Li, Y. (2010). J. Power Sources, 195, 862-866.]).

[Scheme 1]

Experimental

Crystal data
  • Li+·C2BF2O4·2C4H8O2S

  • Mr = 384.12

  • Monoclinic, P 21 /n

  • a = 13.9005 (4) Å

  • b = 5.8917 (1) Å

  • c = 19.9627 (5) Å

  • β = 106.0101 (13)°

  • V = 1571.48 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 110 K

  • 0.51 × 0.17 × 0.16 mm

Data collection
  • Bruker–Nonius Kappa X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.823, Tmax = 0.939

  • 59573 measured reflections

  • 6723 independent reflections

  • 4514 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.113

  • S = 1.02

  • 6723 reflections

  • 281 parameters

  • All H-atom parameters refined

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: cif2tables.py (Boyle, 2008[Boyle, P. D. (2008). http://www.xray.ncsu .edu/PyCIFUtils/]).

Supporting information


Comment top

Solvate crystal structures provide invaluable information for understanding the ionic association tendency and manner in which anions and solvent molecules coordinate Li+ cations. Understanding the solid-state behavior provides insight into the various solvates that may exist in liquid solvent-lithium salt electrolytes utilized in state-of-the-art Li-ion batteries. The physiochemical and electrochemical properties of both tetramethylene sulfone (TMS) and lithium difluoro(oxalato)borate (LiDFOB) have attracted much attention recently for non-aqueous secondary battery applications.

The Li+ cation in the title structure, which resides across a crystallographic inversion center, is coordinated by two sulfonyl O atoms from TMS and a carbonyl O atom from the DFOB- anion (Fig. 1). An eight member dimer ring structure is formed from this coordination by linking two Li+ cations through their coordination by TMS molecules coordinated to both Li+ cations with each cation coordinated by a different sulfonyl oxygen (Fig. 2). The eight membered rings are packed in the crystal structure in layers such that Z = 2 (Fig. 3).

Related literature top

For physiochemical properties of tetramethylene sulfone (TMS), see: Della Monica et al. (1968); Dudley et al. (1991); Domanska et al. (1996). For electrochemical properties of TMS, see: Xu & Angell (2002); Abouimrane et al. (2009); Sun & Angell (2009). For electrochemical properties of lithium difluoro(oxalato)borate (LiDFOB), see: Zhang (2007); Chen et al. (2007); Fu et al. (2010).

Experimental top

LiDFOB was synthesized by the direct reaction of excess boron trifluoride diethyl etherate (BF3-ether) with lithium oxalate (oxalic acid dilithium salt), both used as-received from Sigma-Aldrich, and extracted/recrystallized from dimethyl carbonate (DMC). The DMC-LiDFOB solvate was vacuum dried at 378 K for 48 h, yielding a high purity salt. TMS (Sigma-Aldrich, >99.8%) was used as-received. A solution was made by dissolving LiDFOB (1.566 mmol) in TMS (6.264 mmol) at 353 K. The solution was allowed to slowly cool to room temperature. Colorless crystals formed suitable for X-ray analysis on standing.

Refinement top

The structure was solved by direct methods using the SIR92 program. All non-hydrogen atoms were obtained from the initial solution. The hydrogen atoms were introduced at idealized positions and were allowed to refine isotropically. The structural model was fit to the data using full matrix least-squares based on F2. The calculated structure factors included corrections for anomalous dispersion from the usual tabulation. The structure was refined using the XL program from SHELXTL (Sheldrick, 2008). Graphic plots were produced using the ORTEP-3 program.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: cif2tables.py (Boyle, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of (TMS)2:LiDFOB. Thermal ellipsoids are at 50% probability (Li-purple, O-red, F-green, B-tan, C-grey, S-yellow).
[Figure 2] Fig. 2. Ion and solvent coordination in (TMS)2:LiDFOB. Thermal ellipsoids are at 50% probability (Li-purple, O-red, F-green, B-tan, C-grey, S-yellow).
[Figure 3] Fig. 3. Unit cell of (TMS)2:LiDFOB. Thermal ellipsoids are at 50% probability (Li-purple, O-red, F-green, B-tan, C-grey, S-yellow).
Lithium difluoro(oxalato)borate tetramethylene sulfone disolvate top
Crystal data top
Li+·C2BF2O4·2C4H8O2SF(000) = 792
Mr = 384.12Dx = 1.623 Mg m3
Monoclinic, P21/nMelting point: 367.85 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 13.9005 (4) ÅCell parameters from 9927 reflections
b = 5.8917 (1) Åθ = 3.1–31.8°
c = 19.9627 (5) ŵ = 0.40 mm1
β = 106.0101 (13)°T = 110 K
V = 1571.48 (7) Å3Prism, colourless
Z = 40.51 × 0.17 × 0.16 mm
Data collection top
Bruker–Nonius Kappa X8 APEXII
diffractometer
6723 independent reflections
Radiation source: fine-focus sealed tube4514 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω and phi scansθmax = 35.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2222
Tmin = 0.823, Tmax = 0.939k = 98
59573 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.5209P]
where P = (Fo2 + 2Fc2)/3
6723 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
Li+·C2BF2O4·2C4H8O2SV = 1571.48 (7) Å3
Mr = 384.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.9005 (4) ŵ = 0.40 mm1
b = 5.8917 (1) ÅT = 110 K
c = 19.9627 (5) Å0.51 × 0.17 × 0.16 mm
β = 106.0101 (13)°
Data collection top
Bruker–Nonius Kappa X8 APEXII
diffractometer
6723 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4514 reflections with I > 2σ(I)
Tmin = 0.823, Tmax = 0.939Rint = 0.054
59573 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.113All H-atom parameters refined
S = 1.02Δρmax = 0.80 e Å3
6723 reflectionsΔρmin = 0.45 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.3460 (2)0.0347 (4)0.00559 (15)0.0214 (5)
O10.31626 (9)0.20781 (19)0.06478 (8)0.0316 (3)
O20.22276 (8)0.47559 (18)0.13303 (6)0.0222 (2)
O30.16743 (13)0.2577 (2)0.01240 (7)0.0398 (4)
O40.10533 (8)0.52447 (19)0.06874 (6)0.0215 (2)
C10.24614 (12)0.3388 (2)0.07979 (9)0.0216 (3)
C20.16898 (13)0.3664 (3)0.03845 (8)0.0225 (3)
B10.13278 (13)0.6151 (3)0.13039 (9)0.0197 (3)
F10.15911 (8)0.84008 (16)0.12160 (6)0.0318 (2)
F20.05644 (8)0.58017 (19)0.18987 (5)0.0320 (2)
S10.53657 (3)0.23623 (5)0.095635 (17)0.01352 (8)
O50.45522 (9)0.07304 (19)0.08378 (6)0.0241 (2)
O60.58816 (8)0.25394 (17)0.04173 (5)0.0185 (2)
C30.49317 (12)0.5049 (2)0.11463 (8)0.0192 (3)
H3A0.5342 (17)0.620 (4)0.1003 (11)0.037 (6)*
H3B0.4301 (16)0.517 (3)0.0880 (11)0.029 (5)*
C40.50818 (13)0.4926 (3)0.19321 (8)0.0234 (3)
H4A0.4597 (15)0.390 (3)0.2058 (10)0.025 (5)*
H4B0.4995 (18)0.640 (4)0.2119 (13)0.048 (7)*
C50.61283 (13)0.3906 (3)0.22363 (9)0.0253 (3)
H5A0.6587 (17)0.502 (4)0.2182 (12)0.038 (6)*
H5B0.6283 (16)0.349 (4)0.2732 (11)0.029 (5)*
C60.62066 (13)0.1822 (3)0.17993 (8)0.0204 (3)
H6A0.5960 (16)0.054 (4)0.1967 (11)0.033 (6)*
H6B0.6831 (15)0.159 (3)0.1732 (10)0.020 (5)*
S20.22934 (3)0.23755 (5)0.111283 (18)0.01444 (8)
O70.27513 (8)0.22574 (17)0.05399 (6)0.0193 (2)
O80.25996 (9)0.42689 (18)0.15829 (6)0.0234 (2)
C70.09674 (12)0.2291 (3)0.08044 (9)0.0203 (3)
H7A0.0718 (15)0.376 (4)0.0698 (11)0.031 (5)*
H7B0.0845 (16)0.138 (4)0.0414 (12)0.037 (6)*
C80.06790 (13)0.1165 (3)0.14076 (10)0.0263 (3)
H8A0.0049 (15)0.066 (3)0.1276 (10)0.024 (5)*
H8B0.0803 (18)0.232 (4)0.1822 (13)0.041 (6)*
C90.13774 (13)0.0881 (3)0.16254 (10)0.0251 (3)
H9A0.1127 (17)0.211 (4)0.1286 (12)0.032 (6)*
H9B0.1384 (16)0.142 (4)0.2075 (12)0.034 (6)*
C100.24416 (12)0.0200 (2)0.16109 (8)0.0197 (3)
H10A0.2745 (14)0.127 (3)0.1391 (10)0.022 (5)*
H10B0.2877 (16)0.014 (4)0.2038 (12)0.032 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.0245 (13)0.0185 (11)0.0241 (13)0.0036 (10)0.0115 (11)0.0014 (10)
O10.0206 (6)0.0172 (5)0.0517 (8)0.0016 (4)0.0012 (6)0.0037 (5)
O20.0217 (5)0.0197 (5)0.0279 (6)0.0022 (4)0.0115 (5)0.0050 (4)
O30.0674 (10)0.0299 (7)0.0198 (6)0.0123 (6)0.0080 (6)0.0062 (5)
O40.0223 (5)0.0235 (5)0.0206 (5)0.0022 (4)0.0092 (4)0.0007 (4)
C10.0183 (7)0.0144 (6)0.0283 (8)0.0032 (5)0.0004 (6)0.0010 (5)
C20.0298 (8)0.0184 (6)0.0165 (7)0.0073 (6)0.0016 (6)0.0005 (5)
B10.0193 (8)0.0188 (7)0.0224 (8)0.0026 (6)0.0082 (6)0.0040 (6)
F10.0331 (6)0.0168 (4)0.0491 (7)0.0030 (4)0.0175 (5)0.0069 (4)
F20.0305 (6)0.0384 (6)0.0221 (5)0.0087 (4)0.0011 (4)0.0059 (4)
S10.01483 (16)0.01248 (13)0.01344 (14)0.00014 (11)0.00423 (11)0.00114 (11)
O50.0250 (6)0.0234 (5)0.0240 (6)0.0105 (4)0.0068 (5)0.0052 (4)
O60.0216 (5)0.0192 (5)0.0169 (5)0.0028 (4)0.0091 (4)0.0002 (4)
C30.0222 (7)0.0164 (6)0.0201 (7)0.0047 (5)0.0074 (6)0.0004 (5)
C40.0276 (8)0.0245 (7)0.0208 (7)0.0014 (6)0.0112 (6)0.0066 (6)
C50.0260 (8)0.0327 (8)0.0166 (7)0.0059 (7)0.0050 (6)0.0040 (6)
C60.0199 (7)0.0229 (7)0.0179 (7)0.0026 (6)0.0042 (6)0.0060 (5)
S20.01413 (16)0.01212 (14)0.01752 (15)0.00119 (11)0.00510 (12)0.00011 (11)
O70.0180 (5)0.0190 (5)0.0235 (5)0.0017 (4)0.0100 (4)0.0003 (4)
O80.0293 (6)0.0155 (5)0.0251 (6)0.0019 (4)0.0068 (5)0.0050 (4)
C70.0147 (6)0.0226 (7)0.0252 (7)0.0035 (5)0.0081 (6)0.0056 (6)
C80.0258 (9)0.0243 (7)0.0338 (9)0.0026 (6)0.0168 (7)0.0060 (6)
C90.0302 (9)0.0205 (7)0.0291 (8)0.0026 (6)0.0158 (7)0.0067 (6)
C100.0234 (7)0.0148 (6)0.0192 (7)0.0041 (5)0.0031 (6)0.0018 (5)
Geometric parameters (Å, º) top
Li1—O71.922 (3)C4—H4A0.99 (2)
Li1—O51.959 (3)C4—H4B0.97 (3)
Li1—O11.966 (3)C5—C61.527 (2)
Li1—O6i1.969 (3)C5—H5A0.94 (2)
O1—C11.2144 (19)C5—H5B0.98 (2)
O2—C11.3014 (19)C6—H6A0.93 (2)
O2—B11.510 (2)C6—H6B0.925 (19)
O3—C21.2053 (19)S2—O81.4443 (11)
O4—C21.312 (2)S2—O71.4559 (11)
O4—B11.485 (2)S2—C71.7758 (16)
C1—C21.532 (2)S2—C101.7945 (15)
B1—F21.372 (2)C7—C81.522 (2)
B1—F11.373 (2)C7—H7A0.94 (2)
S1—O61.4521 (11)C7—H7B0.92 (2)
S1—O51.4530 (11)C8—C91.534 (2)
S1—C31.7719 (14)C8—H8A1.02 (2)
S1—C61.7929 (16)C8—H8B1.05 (2)
O6—Li1i1.969 (3)C9—C101.541 (2)
C3—C41.526 (2)C9—H9A0.99 (2)
C3—H3A0.98 (2)C9—H9B0.95 (2)
C3—H3B0.89 (2)C10—H10A0.933 (19)
C4—C51.536 (2)C10—H10B0.92 (2)
O7—Li1—O5100.44 (13)C6—C5—H5A109.7 (14)
O7—Li1—O1138.48 (16)C4—C5—H5A106.3 (14)
O5—Li1—O1107.32 (13)C6—C5—H5B110.0 (13)
O7—Li1—O6i103.16 (13)C4—C5—H5B114.6 (12)
O5—Li1—O6i103.55 (14)H5A—C5—H5B108.8 (18)
O1—Li1—O6i99.66 (13)C5—C6—S1105.21 (11)
C1—O1—Li1129.39 (15)C5—C6—H6A110.8 (13)
C1—O2—B1109.35 (12)S1—C6—H6A105.9 (13)
C2—O4—B1110.03 (12)C5—C6—H6B114.9 (12)
O1—C1—O2126.71 (16)S1—C6—H6B106.6 (12)
O1—C1—C2124.62 (15)H6A—C6—H6B112.7 (18)
O2—C1—C2108.66 (13)O8—S2—O7115.66 (7)
O3—C2—O4126.78 (18)O8—S2—C7109.79 (8)
O3—C2—C1125.12 (16)O7—S2—C7111.29 (7)
O4—C2—C1108.09 (13)O8—S2—C10108.96 (7)
F2—B1—F1111.75 (13)O7—S2—C10112.75 (7)
F2—B1—O4110.44 (13)C7—S2—C1096.78 (7)
F1—B1—O4111.20 (13)S2—O7—Li1144.93 (11)
F2—B1—O2109.78 (13)C8—C7—S2102.27 (11)
F1—B1—O2109.62 (13)C8—C7—H7A115.0 (13)
O4—B1—O2103.76 (12)S2—C7—H7A109.7 (13)
O6—S1—O5116.62 (7)C8—C7—H7B112.9 (14)
O6—S1—C3111.18 (7)S2—C7—H7B104.0 (14)
O5—S1—C3109.29 (8)H7A—C7—H7B112.0 (19)
O6—S1—C6112.38 (7)C7—C8—C9106.42 (13)
O5—S1—C6108.18 (7)C7—C8—H8A112.5 (11)
C3—S1—C697.48 (8)C9—C8—H8A110.6 (11)
S1—O5—Li1137.86 (11)C7—C8—H8B108.6 (13)
S1—O6—Li1i134.30 (10)C9—C8—H8B109.5 (13)
C4—C3—S1102.68 (10)H8A—C8—H8B109.1 (17)
C4—C3—H3A114.1 (13)C8—C9—C10109.02 (13)
S1—C3—H3A107.2 (13)C8—C9—H9A107.7 (13)
C4—C3—H3B116.6 (13)C10—C9—H9A109.7 (13)
S1—C3—H3B106.4 (13)C8—C9—H9B111.8 (13)
H3A—C3—H3B108.9 (18)C10—C9—H9B110.2 (13)
C3—C4—C5105.72 (13)H9A—C9—H9B108.4 (18)
C3—C4—H4A112.4 (12)C9—C10—S2105.47 (10)
C5—C4—H4A107.4 (12)C9—C10—H10A113.2 (12)
C3—C4—H4B110.9 (14)S2—C10—H10A108.0 (12)
C5—C4—H4B113.9 (14)C9—C10—H10B115.4 (13)
H4A—C4—H4B106.6 (18)S2—C10—H10B105.9 (13)
C6—C5—C4107.33 (13)H10A—C10—H10B108.4 (18)
O7—Li1—O1—C124.4 (3)C3—S1—O6—Li1i179.61 (15)
O5—Li1—O1—C1105.29 (18)C6—S1—O6—Li1i72.30 (16)
O6i—Li1—O1—C1147.13 (16)O6—S1—C3—C4143.40 (10)
Li1—O1—C1—O2169.91 (15)O5—S1—C3—C486.46 (12)
Li1—O1—C1—C29.1 (3)C6—S1—C3—C425.83 (12)
B1—O2—C1—O1177.70 (15)S1—C3—C4—C544.85 (14)
B1—O2—C1—C23.12 (16)C3—C4—C5—C647.70 (17)
B1—O4—C2—O3179.29 (16)C4—C5—C6—S127.11 (16)
B1—O4—C2—C10.31 (16)O6—S1—C6—C5116.13 (11)
O1—C1—C2—O32.0 (3)O5—S1—C6—C5113.69 (12)
O2—C1—C2—O3177.15 (15)C3—S1—C6—C50.49 (13)
O1—C1—C2—O4178.94 (15)O8—S2—O7—Li1128.77 (19)
O2—C1—C2—O41.86 (17)C7—S2—O7—Li1105.0 (2)
C2—O4—B1—F2119.62 (14)C10—S2—O7—Li12.5 (2)
C2—O4—B1—F1115.73 (14)O5—Li1—O7—S252.0 (2)
C2—O4—B1—O22.03 (16)O1—Li1—O7—S279.7 (3)
C1—O2—B1—F2121.27 (14)O6i—Li1—O7—S2158.69 (13)
C1—O2—B1—F1115.62 (14)O8—S2—C7—C880.33 (12)
C1—O2—B1—O43.23 (16)O7—S2—C7—C8150.31 (10)
O6—S1—O5—Li138.91 (18)C10—S2—C7—C832.65 (12)
C3—S1—O5—Li188.21 (17)S2—C7—C8—C945.93 (16)
C6—S1—O5—Li1166.71 (16)C7—C8—C9—C1041.02 (19)
O7—Li1—O5—S1172.88 (11)C8—C9—C10—S216.08 (17)
O1—Li1—O5—S124.1 (2)O8—S2—C10—C9103.64 (12)
O6i—Li1—O5—S180.71 (19)O7—S2—C10—C9126.54 (11)
O5—S1—O6—Li1i53.42 (17)C7—S2—C10—C910.02 (12)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaLi+·C2BF2O4·2C4H8O2S
Mr384.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)110
a, b, c (Å)13.9005 (4), 5.8917 (1), 19.9627 (5)
β (°) 106.0101 (13)
V3)1571.48 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.51 × 0.17 × 0.16
Data collection
DiffractometerBruker–Nonius Kappa X8 APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.823, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
59573, 6723, 4514
Rint0.054
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.113, 1.02
No. of reflections6723
No. of parameters281
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.80, 0.45

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), cif2tables.py (Boyle, 2008).

 

Acknowledgements

This work was funded by the US DOE BATT Program (contract DE-AC02-05-CH11231). JLA would like to thank the SMART Scholarship Program and the American Society for Engineering Education (ASEE) for the award of a SMART Graduate Research Fellowship.

References

First citationAbouimrane, A., Belharouak, I. & Amine, K. (2009). Electrochem. Commun. 11, 1073–1076.  CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBoyle, P. D. (2008). http://www.xray.ncsu .edu/PyCIFUtils/  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z., Liu, J. & Amine, K. (2007). Electrochem. Solid-State Lett. 10, A45–A47.  CrossRef CAS Google Scholar
First citationDella Monica, M., Jannelli, L. & Lamanna, U. (1968). J. Phys. Chem. 72, 1068–1071.  CrossRef CAS Google Scholar
First citationDomanska, U., Moollan, W. & Letcher, T. (1996). J. Chem. Eng. Data, 41, 261–265.  CAS Google Scholar
First citationDudley, J. T., Wilkinson, D. P., Thomas, G., LeVau, R., Woo, S., Blom, H., Horvath, C., Juzkow, M. W., Denis, B., Juric, P., Aghakian, P. & Dahn, J. R. (1991). J. Power Sources, 35, 59–82.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFu, M., Huang, K., Liu, S., Liu, J. & Li, Y. (2010). J. Power Sources, 195, 862–866.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, X. & Angell, C. A. (2009). Electrochem. Commun. 11, 1418–1421.  CrossRef CAS Google Scholar
First citationXu, K. & Angell, C. A. (2002). J. Electrochem. Soc. 149, A920–A926.  CrossRef CAS Google Scholar
First citationZhang, S. S. (2007). J. Power Sources, 163, 713–718.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds