metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m576-m577
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: cyclo-Tetra­kis­(μ2-3-sulfido­propyl-κ3C1,S:S)tetra­kis­[chloridocobalt(III)]

aPAEC, PO Box # 1114, Islamabad GPO 44000, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, cDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, and dDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 2 April 2011; accepted 7 April 2011; online 13 April 2011)

In the centrosymmetric title compound, [Co4Cl4(C3H6S)]4], the two independent CoIII ions are each coordinated in a distorted tetra­hedral geometry by one C, one Cl and two S atoms. The mol­ecules are stabilized by C—H⋯Cl hydrogen bonds. In the crystal, inter­molecular C—H⋯Cl and C—H⋯S hydrogen bonds with R22(8), R42(8) and R22(6) ring motifs generate a polymeric network.

Related literature

For related background see: Shahid et al. (2009[Shahid, M., Rüffer, T., Lang, H., Awan, S. A. & Ahmad, S. (2009). J. Coord. Chem. 62, 440-445.]); Altaf et al. (2010[Altaf, M., Stoeckli-Evans, H., Batool, S. S., Isab, A. A., Ahmad, S., Saleem, M., Awan, S. A. & Shaheen, M. A. (2010). J. Coord. Chem. 63, 1176-1185.]). For related structures, see: Duan et al. (1997[Duan, C.-Y., Liu, Z.-H., You, X.-Z., Xue, F. & Mak, T. C. W. (1997). Chem. Commun. pp. 381-382.]); Tremel et al. (1992[Tremel, W., Krebs, B., Greiwe, K., Simon, W., Stephan, H.-O. & Henkel, G. (1992). Z. Naturforsch. Teil B, 47, 1580-1592.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Co4Cl4(C3H6S)]4]

  • Mr = 674.07

  • Monoclinic, C 2/c

  • a = 23.6135 (12) Å

  • b = 7.8465 (3) Å

  • c = 16.8693 (9) Å

  • β = 130.440 (4)°

  • V = 2378.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.54 mm−1

  • T = 296 K

  • 0.24 × 0.16 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.675, Tmax = 0.683

  • 13736 measured reflections

  • 2152 independent reflections

  • 1782 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.125

  • S = 1.04

  • 2152 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Selected bond lengths (Å)

Co1—Cl1 2.228 (2)
Co1—S1 2.3570 (17)
Co1—S2 2.318 (2)
Co1—C3 2.038 (6)
Co2—Cl2 2.236 (3)
Co2—S1 2.305 (2)
Co2—S2i 2.3648 (16)
Co2—C6i 2.051 (6)
S1—C1 1.826 (7)
S2—C4 1.837 (8)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯S2ii 0.97 2.57 3.539 (8) 175
C3—H3B⋯Cl2iii 0.97 2.74 3.512 (7) 138
C3—H3B⋯Cl2iv 0.97 2.81 3.412 (6) 121
C6—H6A⋯Cl1i 0.97 2.62 3.379 (7) 135
C6—H6B⋯Cl1v 0.97 2.48 3.343 (7) 148
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y, -z+{\script{1\over 2}}]; (iv) [x, -y, z-{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Recently, we have reported the crystal structure of zinc(II) and mercury(II) complexes of pyrrolidinedithiocarbamate (PDTC) (Shahid et al., 2009) & (Altaf, et al., 2010). In the present study, we attempted to prepare a cobalt(II) complex with PDTC, but surprisingly the title compound (I, Fig. 1) was isolated, the crystal structure of which is being presented.

The crystal structure of (II) i.e, tetranuclear molecular square[Co(HL)]44+ [H2L = tetra(2-pyridyl)thiocarbazone] (Duan et al., 1997) and (III) i.e., bis(tetraethylammonium) hexakis(µ2-phenylthiolato)-tetrachloro-tetra -cobalt acetonitrile solvate (Tremel et al., 1992) have been published which are related to the title compound (I).

The crystal structure of the title compound (I) is centrosymmetric. The coordination around two independent Coiii ions is distorted tetrahedral from one C, Cl and two S-atoms. The range of Co—C [2.038 (6)–2.051 (6) Å] is shorter compared to Co—S [2.305 (2)–2.3648 (16) Å]. The Co—Cl bonds have values of 2.228 (2) and 2.236 (2) Å. The important bond distances are given in Table 1. The molecules are stabilized in the form of a polymeric network due to C—H···Cl and C—H···S intermolecular H-bonds (Table 2) forming R22(8), R42(8) and R22(6) ring motifs (Bernstein et al., 1995).

Related literature top

For related background see: Shahid et al. (2009); Altaf et al. (2010). For related structures, see: Duan et al. (1997); Tremel et al. (1992). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by adding two equivalents of ammonium pyrrolidinedithiocarbamate (PDTC) in 15 ml methanol to a solution of CoCl2.6H2O in 10 ml methanol. The addition of PDTC in the pink colored metal ion solution resulted in the formation of green precipitates immediately. After stirring for half an hour, the precipitates were filtered off and dried. The blackish brown crystals of the title compound (I) were prepared by dissolving 0.03 g precipitates in 3 ml DMSO on heating in a vial and then cooling the resulting solution at room temperature.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C), where x = 1.2 for all H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the centrosymmetric title compound. Symmetry code i = -x + 1/2, -y - 1/2, -z + 1. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form a polymeric network with ring motifs. H-atoms not involved in H-bondings are omitted for clarity.
cyclo-Tetrakis(µ2-3-sulfidopropyl- κ3C1,S:S)tetrakis[chloridocobalt(III)] top
Crystal data top
[Co4Cl4(C3H6S)]4]F(000) = 1344
Mr = 674.07Dx = 1.882 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1782 reflections
a = 23.6135 (12) Åθ = 2.3–25.2°
b = 7.8465 (3) ŵ = 3.54 mm1
c = 16.8693 (9) ÅT = 296 K
β = 130.440 (4)°Prisms, white
V = 2378.9 (2) Å30.24 × 0.16 × 0.14 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2152 independent reflections
Radiation source: fine-focus sealed tube1782 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 8.10 pixels mm-1θmax = 25.2°, θmin = 2.3°
ω scansh = 2828
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 98
Tmin = 0.675, Tmax = 0.683l = 2020
13736 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0653P)2 + 15.5359P]
where P = (Fo2 + 2Fc2)/3
2152 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Co4Cl4(C3H6S)]4]V = 2378.9 (2) Å3
Mr = 674.07Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.6135 (12) ŵ = 3.54 mm1
b = 7.8465 (3) ÅT = 296 K
c = 16.8693 (9) Å0.24 × 0.16 × 0.14 mm
β = 130.440 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2152 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1782 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.683Rint = 0.058
13736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0653P)2 + 15.5359P]
where P = (Fo2 + 2Fc2)/3
2152 reflectionsΔρmax = 0.70 e Å3
109 parametersΔρmin = 0.62 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.17597 (4)0.17781 (9)0.30876 (5)0.0323 (2)
Co20.14629 (4)0.12119 (9)0.50575 (5)0.0336 (2)
Cl10.09923 (9)0.3988 (2)0.25283 (12)0.0555 (5)
Cl20.07469 (11)0.0860 (3)0.49043 (15)0.0694 (7)
S10.21157 (8)0.0272 (2)0.45587 (11)0.0460 (4)
S20.28224 (8)0.2358 (2)0.33225 (11)0.0481 (5)
C10.1631 (4)0.1666 (8)0.3814 (5)0.066 (3)
C20.0959 (4)0.1316 (9)0.2708 (5)0.061 (2)
C30.1163 (3)0.0287 (7)0.2182 (4)0.0362 (17)
C40.3356 (4)0.0372 (9)0.3904 (6)0.064 (3)
C50.4140 (4)0.0689 (10)0.4862 (6)0.065 (3)
C60.4164 (3)0.1622 (7)0.5638 (4)0.0417 (17)
H1A0.147990.229140.414690.0787*
H1B0.197110.238110.382630.0787*
H2A0.059340.070310.268780.0733*
H2B0.073910.238550.234040.0733*
H3A0.145720.096900.208630.0435*
H3B0.071650.008200.150240.0435*
H4A0.335330.022420.339790.0769*
H4B0.311660.035590.407570.0769*
H5A0.439220.134600.468490.0783*
H5B0.439800.038940.515370.0783*
H6A0.396440.092000.588050.0502*
H6B0.467330.191680.623220.0502*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0275 (4)0.0399 (4)0.0300 (4)0.0012 (3)0.0189 (3)0.0025 (3)
Co20.0338 (4)0.0373 (4)0.0312 (4)0.0014 (3)0.0217 (3)0.0004 (3)
Cl10.0496 (9)0.0537 (9)0.0545 (9)0.0089 (7)0.0299 (8)0.0081 (7)
Cl20.0683 (11)0.0733 (11)0.0725 (12)0.0219 (9)0.0483 (10)0.0114 (9)
S10.0485 (8)0.0520 (8)0.0377 (7)0.0099 (7)0.0281 (7)0.0045 (6)
S20.0407 (8)0.0667 (10)0.0398 (8)0.0055 (7)0.0274 (7)0.0030 (7)
C10.091 (5)0.045 (4)0.054 (4)0.010 (4)0.044 (4)0.004 (3)
C20.066 (4)0.047 (4)0.056 (4)0.003 (3)0.033 (4)0.008 (3)
C30.034 (3)0.045 (3)0.030 (3)0.003 (2)0.021 (2)0.005 (2)
C40.056 (4)0.064 (4)0.074 (5)0.000 (3)0.043 (4)0.022 (4)
C50.056 (4)0.067 (4)0.074 (5)0.010 (3)0.043 (4)0.003 (4)
C60.038 (3)0.047 (3)0.037 (3)0.012 (2)0.023 (3)0.005 (2)
Geometric parameters (Å, º) top
Co1—Cl12.228 (2)C5—C61.469 (11)
Co1—S12.3570 (17)C1—H1A0.9700
Co1—S22.318 (2)C1—H1B0.9700
Co1—C32.038 (6)C2—H2A0.9700
Co2—Cl22.236 (3)C2—H2B0.9700
Co2—S12.305 (2)C3—H3A0.9700
Co2—S2i2.3648 (16)C3—H3B0.9700
Co2—C6i2.051 (6)C4—H4A0.9700
S1—C11.826 (7)C4—H4B0.9700
S2—C41.837 (8)C5—H5A0.9700
C1—C21.495 (10)C5—H5B0.9700
C2—C31.492 (11)C6—H6A0.9700
C4—C51.490 (13)C6—H6B0.9700
Co1···H4Aii3.3200S2···H4Aii3.0500
Cl1···C33.473 (6)C2···Cl2iv3.570 (7)
Cl1···C6iii3.343 (7)C3···Cl13.473 (6)
Cl1···C6i3.379 (7)C3···S13.103 (5)
Cl2···C13.623 (11)C3···S23.686 (7)
Cl2···C3iv3.512 (7)C3···C12.455 (9)
Cl2···C6i3.492 (6)C3···Cl2iv3.512 (7)
Cl2···C3v3.412 (6)C3···Cl2viii3.412 (6)
Cl2···S13.744 (4)C3···S2ix3.539 (8)
Cl2···C2iv3.570 (7)C6···Cl1i3.379 (7)
Cl1···H4Aii2.8900C6···Cl2i3.491 (6)
Cl1···H2Bvi2.8800C6···Cl1x3.343 (7)
Cl1···H6Ai2.6200H1A···Cl22.9600
Cl1···H6Biii2.4800H1B···H3A2.5900
Cl2···H1A2.9600H1B···S1vii3.1000
Cl2···H3Bv2.8100H2A···H2Aiv2.4400
Cl2···H3Biv2.7400H2B···Cl1xi2.8800
Cl2···H5Bvii2.9600H3A···H1B2.5900
S1···Cl23.744 (4)H3A···S2ix2.5700
S1···S23.785 (3)H3B···Cl2iv2.7400
S1···C22.774 (7)H3B···Cl2viii2.8100
S1···C33.103 (5)H4A···Co1ix3.3200
S1···Co1i3.8074 (16)H4A···Cl1ix2.8900
S1···S1i3.773 (2)H4A···S2ix3.0500
S2···C3ii3.539 (8)H4B···S13.0000
S2···S13.785 (3)H4B···H6A2.5200
S2···C33.686 (7)H5B···Cl2vii2.9600
S1···H4B3.0000H6A···H4B2.5200
S1···H1Bvii3.1000H6A···Cl1i2.6200
S2···H3Aii2.5700H6B···Cl1x2.4800
Cl1—Co1—S1118.22 (8)C2—C1—H1B109.00
Cl1—Co1—S2114.37 (8)H1A—C1—H1B108.00
Cl1—Co1—C3108.9 (2)C1—C2—H2A110.00
S1—Co1—S2108.14 (7)C1—C2—H2B109.00
S1—Co1—C389.52 (17)C3—C2—H2A110.00
S2—Co1—C3115.5 (2)C3—C2—H2B109.00
Cl2—Co2—S1111.09 (9)H2A—C2—H2B108.00
Cl2—Co2—S2i113.44 (8)Co1—C3—H3A110.00
Cl2—Co2—C6i109.0 (2)Co1—C3—H3B110.00
S1—Co2—S2i115.39 (8)C2—C3—H3A110.00
S1—Co2—C6i117.5 (2)C2—C3—H3B110.00
S2i—Co2—C6i88.68 (15)H3A—C3—H3B108.00
Co1—S1—Co2110.96 (8)S2—C4—H4A109.00
Co1—S1—C193.3 (2)S2—C4—H4B109.00
Co2—S1—C1104.4 (4)C5—C4—H4A109.00
Co1—S2—C4102.5 (4)C5—C4—H4B109.00
Co1—S2—Co2i99.94 (8)H4A—C4—H4B108.00
Co2i—S2—C493.3 (2)C4—C5—H5A110.00
S1—C1—C2113.0 (5)C4—C5—H5B110.00
C1—C2—C3110.6 (8)C6—C5—H5A109.00
Co1—C3—C2108.5 (4)C6—C5—H5B110.00
S2—C4—C5112.1 (5)H5A—C5—H5B108.00
C4—C5—C6110.6 (9)C5—C6—H6A110.00
Co2i—C6—C5107.9 (4)C5—C6—H6B110.00
S1—C1—H1A109.00H6A—C6—H6B108.00
S1—C1—H1B109.00Co2i—C6—H6A110.00
C2—C1—H1A109.00Co2i—C6—H6B110.00
Cl1—Co1—S1—Co27.06 (11)S2i—Co2—S1—C1148.1 (2)
Cl1—Co1—S1—C1113.8 (3)C6i—Co2—S1—Co110.1 (2)
S2—Co1—S1—Co2139.02 (7)C6i—Co2—S1—C1109.3 (3)
S2—Co1—S1—C1114.2 (3)Cl2—Co2—S2i—Co1i145.79 (9)
C3—Co1—S1—Co2104.3 (2)Cl2—Co2—S2i—C4i110.9 (4)
C3—Co1—S1—C12.5 (4)S1—Co2—S2i—Co1i16.01 (8)
Cl1—Co1—S2—C4174.3 (3)S1—Co2—S2i—C4i119.3 (4)
Cl1—Co1—S2—Co2i78.66 (7)Cl2—Co2—C6i—C5i87.1 (6)
S1—Co1—S2—C440.3 (3)S1—Co2—C6i—C5i145.4 (5)
S1—Co1—S2—Co2i55.34 (7)Co1—S1—C1—C230.3 (8)
C3—Co1—S2—C458.1 (3)Co2—S1—C1—C282.3 (7)
C3—Co1—S2—Co2i153.74 (17)Co1—S2—C4—C5130.1 (7)
Cl1—Co1—C3—C295.3 (5)Co2i—S2—C4—C529.2 (7)
S1—Co1—C3—C224.5 (5)S1—C1—C2—C356.3 (9)
S2—Co1—C3—C2134.5 (5)C1—C2—C3—Co151.0 (7)
Cl2—Co2—S1—Co1116.41 (8)S2—C4—C5—C657.7 (9)
Cl2—Co2—S1—C117.1 (2)C4—C5—C6—Co2i54.4 (7)
S2i—Co2—S1—Co1112.67 (7)
Symmetry codes: (i) x+1/2, y1/2, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x1/2, y1/2, z1/2; (iv) x, y, z+1/2; (v) x, y, z+1/2; (vi) x, y1, z; (vii) x+1/2, y+1/2, z+1; (viii) x, y, z1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x+1/2, y1/2, z+1/2; (xi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···S2ix0.972.573.539 (8)175
C3—H3B···Cl2iv0.972.743.512 (7)138
C3—H3B···Cl2viii0.972.813.412 (6)121
C6—H6A···Cl1i0.972.623.379 (7)135
C6—H6B···Cl1x0.972.483.343 (7)148
Symmetry codes: (i) x+1/2, y1/2, z+1; (iv) x, y, z+1/2; (viii) x, y, z1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co4Cl4(C3H6S)]4]
Mr674.07
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)23.6135 (12), 7.8465 (3), 16.8693 (9)
β (°) 130.440 (4)
V3)2378.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.54
Crystal size (mm)0.24 × 0.16 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.675, 0.683
No. of measured, independent and
observed [I > 2σ(I)] reflections
13736, 2152, 1782
Rint0.058
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.125, 1.04
No. of reflections2152
No. of parameters109
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0653P)2 + 15.5359P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.70, 0.62

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Co1—Cl12.228 (2)Co2—S12.305 (2)
Co1—S12.3570 (17)Co2—S2i2.3648 (16)
Co1—S22.318 (2)Co2—C6i2.051 (6)
Co1—C32.038 (6)S1—C11.826 (7)
Co2—Cl22.236 (3)S2—C41.837 (8)
Symmetry code: (i) x+1/2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···S2ii0.972.573.539 (8)175
C3—H3B···Cl2iii0.972.743.512 (7)138
C3—H3B···Cl2iv0.972.813.412 (6)121
C6—H6A···Cl1i0.972.623.379 (7)135
C6—H6B···Cl1v0.972.483.343 (7)148
Symmetry codes: (i) x+1/2, y1/2, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z+1/2; (iv) x, y, z1/2; (v) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationAltaf, M., Stoeckli-Evans, H., Batool, S. S., Isab, A. A., Ahmad, S., Saleem, M., Awan, S. A. & Shaheen, M. A. (2010). J. Coord. Chem. 63, 1176–1185.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDuan, C.-Y., Liu, Z.-H., You, X.-Z., Xue, F. & Mak, T. C. W. (1997). Chem. Commun. pp. 381–382.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShahid, M., Rüffer, T., Lang, H., Awan, S. A. & Ahmad, S. (2009). J. Coord. Chem. 62, 440–445.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTremel, W., Krebs, B., Greiwe, K., Simon, W., Stephan, H.-O. & Henkel, G. (1992). Z. Naturforsch. Teil B, 47, 1580–1592.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m576-m577
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds