organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1052

Methyl 4-(3-chloro­prop­­oxy)benzoate

aCollege of Food Science and Light Industry, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 9 March 2011; accepted 25 March 2011; online 7 April 2011)

In the crystal structure of the title compound, C11H13ClO3, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into zigzag chains along the c axis.

Related literature

The title compound is an inter­mediate in the synthesis of 4-(3-(dibutyl­amino)­prop­oxy)benzoyl chloride, which in turn is a useful pharmaceutical inter­mediate that can be used to prepare dronedarone [systematic name N-(2-butyl-3-(p-(3-(dibutyl­amino)­prop­oxy)benzo­yl)-5-benzofuran­yl)methane­sulfonamide]. For background to the biological activity of dronedarone and the preparation of the title compound, see: Jaseer et al. (2010[Jaseer, E. A., Prasad, D. J. C. & Sekar, G. (2010). Tetrahedron. 66, 2077-2082.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13ClO3

  • Mr = 228.66

  • Monoclinic, P 21 /n

  • a = 6.2400 (12) Å

  • b = 10.611 (2) Å

  • c = 17.189 (3) Å

  • β = 100.35 (3)°

  • V = 1119.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.909, Tmax = 0.968

  • 4391 measured reflections

  • 2063 independent reflections

  • 1470 reflections with I > 2σ(I)

  • Rint = 0.045

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.132

  • S = 1.00

  • 2063 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2i 0.97 2.45 3.351 (3) 154
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989)[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft. The Netherlands.]; cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, methyl 4-(3-chloropropoxy)benzoate, is a useful pharmaceutical intermediate in the preparation of precursors to dronedarone. (Jaseer et al., 2010).

We report here in the crystal structure of the title compound, methyl 2-amino-5-chlorobenzoate. In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal structure, intermolecular C-H1A···O2 hydrogen bonds link the molecules into zig-zag chains along the c axis, to form a stable structure (Fig. 2).

Related literature top

For background to the biological activity of dronedarone and the preparation of the title compound, see: Jaseer et al. (2010). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, methyl 4-(3-chloropropoxy)benzoate was prepared by a literature method (Jaseer et al. 2010). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) viewed down the b axis. Hydrogen bond are drawn as dashed lines.
Methyl 4-(3-chloropropoxy)benzoate top
Crystal data top
C11H13ClO3F(000) = 480
Mr = 228.66Dx = 1.357 Mg m3
Monoclinic, P21/nMelting point: 328 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.2400 (12) ÅCell parameters from 25 reflections
b = 10.611 (2) Åθ = 9–14°
c = 17.189 (3) ŵ = 0.33 mm1
β = 100.35 (3)°T = 293 K
V = 1119.6 (4) Å3Block, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1470 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 25.4°, θmin = 2.3°
ω/2θ scansh = 07
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.909, Tmax = 0.968l = 2020
4391 measured reflections3 standard reflections every 200 reflections
2063 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.078P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2063 reflectionsΔρmax = 0.24 e Å3
137 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (3)
Crystal data top
C11H13ClO3V = 1119.6 (4) Å3
Mr = 228.66Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.2400 (12) ŵ = 0.33 mm1
b = 10.611 (2) ÅT = 293 K
c = 17.189 (3) Å0.30 × 0.20 × 0.10 mm
β = 100.35 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1470 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.045
Tmin = 0.909, Tmax = 0.9683 standard reflections every 200 reflections
4391 measured reflections intensity decay: 1%
2063 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.00Δρmax = 0.24 e Å3
2063 reflectionsΔρmin = 0.19 e Å3
137 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.18566 (11)0.25211 (6)0.23318 (4)0.0652 (3)
O10.6595 (3)0.50541 (15)0.39148 (9)0.0564 (5)
C10.3616 (4)0.3834 (2)0.26514 (16)0.0607 (7)
H1A0.36350.43970.22080.073*
H1B0.30460.42980.30560.073*
O21.0386 (3)0.94288 (18)0.62662 (11)0.0759 (6)
C20.5887 (4)0.3415 (2)0.29744 (15)0.0580 (6)
H2A0.64630.29640.25660.070*
H2B0.58610.28380.34100.070*
O31.3033 (3)0.92169 (16)0.55628 (10)0.0597 (5)
C30.7360 (4)0.4500 (2)0.32576 (14)0.0560 (6)
H3A0.88470.42070.34180.067*
H3B0.73280.51150.28380.067*
C40.7766 (3)0.5999 (2)0.43188 (13)0.0455 (5)
C50.6944 (4)0.6495 (2)0.49502 (14)0.0536 (6)
H5A0.56520.61800.50710.064*
C60.8022 (4)0.7447 (2)0.53971 (14)0.0520 (6)
H6A0.74460.77790.58160.062*
C70.9978 (3)0.7924 (2)0.52298 (12)0.0444 (5)
C81.0772 (4)0.7424 (2)0.45955 (13)0.0494 (6)
H8A1.20660.77360.44750.059*
C90.9695 (4)0.6480 (2)0.41406 (13)0.0520 (6)
H9A1.02530.61620.37140.062*
C101.1089 (4)0.8931 (2)0.57411 (13)0.0488 (5)
C111.4283 (4)1.0149 (2)0.60542 (15)0.0660 (7)
H11A1.56451.02790.58810.099*
H11B1.45530.98640.65930.099*
H11C1.34851.09270.60170.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0545 (4)0.0718 (5)0.0679 (4)0.0158 (3)0.0069 (3)0.0037 (3)
O10.0519 (10)0.0640 (11)0.0561 (9)0.0138 (8)0.0172 (8)0.0071 (8)
C10.0523 (14)0.0559 (14)0.0691 (16)0.0074 (12)0.0018 (12)0.0098 (12)
O20.0740 (13)0.0836 (13)0.0768 (12)0.0177 (10)0.0311 (11)0.0280 (10)
C20.0509 (14)0.0593 (14)0.0628 (14)0.0006 (11)0.0079 (12)0.0079 (11)
O30.0512 (10)0.0704 (11)0.0576 (10)0.0181 (8)0.0101 (8)0.0101 (8)
C30.0453 (13)0.0651 (15)0.0586 (14)0.0031 (11)0.0121 (11)0.0075 (11)
C40.0407 (12)0.0467 (12)0.0490 (12)0.0051 (10)0.0080 (10)0.0032 (10)
C50.0455 (13)0.0605 (14)0.0592 (13)0.0101 (11)0.0214 (11)0.0004 (12)
C60.0490 (13)0.0584 (14)0.0524 (13)0.0049 (11)0.0195 (11)0.0010 (11)
C70.0389 (11)0.0507 (12)0.0428 (11)0.0003 (10)0.0054 (9)0.0071 (10)
C80.0380 (12)0.0580 (13)0.0538 (13)0.0081 (11)0.0128 (10)0.0027 (11)
C90.0447 (13)0.0645 (14)0.0501 (12)0.0056 (11)0.0172 (10)0.0036 (11)
C100.0445 (13)0.0535 (13)0.0478 (12)0.0042 (11)0.0068 (10)0.0072 (10)
C110.0602 (16)0.0682 (17)0.0667 (16)0.0193 (14)0.0035 (13)0.0076 (13)
Geometric parameters (Å, º) top
Cl—C11.798 (2)C4—C51.385 (3)
O1—C41.356 (3)C4—C91.391 (3)
O1—C31.430 (3)C5—C61.370 (3)
C1—C21.494 (3)C5—H5A0.9300
C1—H1A0.9700C6—C71.398 (3)
C1—H1B0.9700C6—H6A0.9300
O2—C101.195 (3)C7—C81.382 (3)
C2—C31.499 (3)C7—C101.476 (3)
C2—H2A0.9700C8—C91.370 (3)
C2—H2B0.9700C8—H8A0.9300
O3—C101.338 (3)C9—H9A0.9300
O3—C111.436 (3)C11—H11A0.9600
C3—H3A0.9700C11—H11B0.9600
C3—H3B0.9700C11—H11C0.9600
C4—O1—C3118.88 (17)C6—C5—H5A119.8
C2—C1—Cl111.69 (17)C4—C5—H5A119.8
C2—C1—H1A109.3C5—C6—C7120.7 (2)
Cl—C1—H1A109.3C5—C6—H6A119.7
C2—C1—H1B109.3C7—C6—H6A119.7
Cl—C1—H1B109.3C8—C7—C6118.3 (2)
H1A—C1—H1B107.9C8—C7—C10123.4 (2)
C1—C2—C3112.2 (2)C6—C7—C10118.3 (2)
C1—C2—H2A109.2C9—C8—C7121.5 (2)
C3—C2—H2A109.2C9—C8—H8A119.3
C1—C2—H2B109.2C7—C8—H8A119.3
C3—C2—H2B109.2C8—C9—C4119.8 (2)
H2A—C2—H2B107.9C8—C9—H9A120.1
C10—O3—C11116.09 (19)C4—C9—H9A120.1
O1—C3—C2107.46 (19)O2—C10—O3123.0 (2)
O1—C3—H3A110.2O2—C10—C7125.0 (2)
C2—C3—H3A110.2O3—C10—C7112.1 (2)
O1—C3—H3B110.2O3—C11—H11A109.5
C2—C3—H3B110.2O3—C11—H11B109.5
H3A—C3—H3B108.5H11A—C11—H11B109.5
O1—C4—C5116.15 (19)O3—C11—H11C109.5
O1—C4—C9124.5 (2)H11A—C11—H11C109.5
C5—C4—C9119.4 (2)H11B—C11—H11C109.5
C6—C5—C4120.4 (2)
Cl—C1—C2—C3178.88 (17)C10—C7—C8—C9179.4 (2)
C4—O1—C3—C2174.81 (19)C7—C8—C9—C40.5 (3)
C1—C2—C3—O165.1 (3)O1—C4—C9—C8178.9 (2)
C3—O1—C4—C5179.9 (2)C5—C4—C9—C80.8 (3)
C3—O1—C4—C90.1 (3)C11—O3—C10—O21.4 (3)
O1—C4—C5—C6179.5 (2)C11—O3—C10—C7177.2 (2)
C9—C4—C5—C60.2 (3)C8—C7—C10—O2175.7 (2)
C4—C5—C6—C70.7 (4)C6—C7—C10—O24.4 (4)
C5—C6—C7—C81.0 (3)C8—C7—C10—O35.7 (3)
C5—C6—C7—C10178.8 (2)C6—C7—C10—O3174.1 (2)
C6—C7—C8—C90.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.972.453.351 (3)154
Symmetry code: (i) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H13ClO3
Mr228.66
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.2400 (12), 10.611 (2), 17.189 (3)
β (°) 100.35 (3)
V3)1119.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.909, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
4391, 2063, 1470
Rint0.045
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.132, 1.00
No. of reflections2063
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.972.453.351 (3)154
Symmetry code: (i) x1/2, y+3/2, z1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft. The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJaseer, E. A., Prasad, D. J. C. & Sekar, G. (2010). Tetrahedron. 66, 2077–2082.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1052
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds