organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1183-o1184

7-(4-Fluoro­benzyl­amino)-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine methanol disolvate

aSchool of Pharmacy, Faculty of Health Sciences, Curtin University of Technology, GPO Box U1987, Perth 6845, Western Australia, Australia, bDepartment of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore, cPerm State Pharmaceutical Academy, 2 Polevaya Street, Perm 614990, Russian Federation, and dDepartment of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
*Correspondence e-mail: anton.dolzhenko@curtin.edu.au

(Received 12 April 2011; accepted 15 April 2011; online 22 April 2011)

The 1,2,4-triazolo[1,5-a][1,3,5]triazine system in the title compound, C17H14FN7·2CH3OH, is essentially planar, with an r.m.s. deviation of 0.0215 Å. The attached phenyl ring lies almost in the mean plane of the heterocyclic core [dihedral angle = 3.56 (4)°]. In the crystal, centrosymmetric inversion dimers connected via inter­molecular N—H⋯N hydrogen bonds between H atom of the primary amino group and the triazine N atom [R22(8) graph-set motif] form sheets parallel to (010). A second set of dimers connected via N—H⋯F hydrogen bonds between the other H atom of the primary amino group and the F atom forms an R22(24) graph-set motif linking the sheets. Methanol solvent mol­ecules are packed in channels running along the [010] direction.

Related literature

For a review of the synthesis and biological activity of 1,2,4-triazolo[1,5-a][1,3,5]triazines, see: Dolzhenko et al. (2006[Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2006). Heterocycles, 68, 1723-1759.]). For our work on the synthesis and biological activity of 1,2,4-triazolo[1,5-a][1,3,5]triazines, see: Dolzhenko et al. (2007a[Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007a). Heterocycles, 71, 429-436.],b[Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007b). Tetrahedron, 63, 12888-12895.], 2008a[Dolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2008a). Tetrahedron Lett. 49, 7180-7183.],b[Dolzhenko, A. V., Tan, B. J., Dolzhenko, A. V., Chiu, G. N. C. & Chui, W. K. (2008b). J. Fluorine Chem. 129, 429-434.], 2011a[Dolzhenko, A. V., Bai, S., Dolzhenko, A. V. & Chui, W. K. (2011a). J. Heterocycl. Chem. 48. In the press. doi:10.1002/jhet.851.]). For the crystal structures of similar 1,2,4-triazolo[1,5-a][1,3,5]triazines, see: Dolzhenko et al. (2007c[Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2007c). Acta Cryst. E63, o2796.],d[Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2007d). Acta Cryst. E63, o2797.], 2008c[Dolzhenko, A. V., Tan, G. K., Koh, L. L., Woo, S. F. & Chui, W. K. (2008c). Acta Cryst. E64, o2021.], 2011b[Dolzhenko, A. V., Tan, G. K., Dolzhenko, A. V., Koh, L. L. & Chui, W. K. (2011b). Acta Cryst. E67, o85-o86.]); Gilardi (1973[Gilardi, R. D. (1973). Acta Cryst. B29, 2089-2095.]); Khankischpur et al. (2010[Khankischpur, M., Hansen, F. K. & Geffken, D. (2010). Synthesis, pp. 1645-1648.]). For a review on the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14FN7·2CH4O

  • Mr = 399.44

  • Monoclinic, C 2/c

  • a = 27.516 (3) Å

  • b = 7.0091 (8) Å

  • c = 20.778 (3) Å

  • β = 104.380 (3)°

  • V = 3881.7 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.56 × 0.18 × 0.02 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.946, Tmax = 0.998

  • 11861 measured reflections

  • 3820 independent reflections

  • 2876 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.183

  • S = 1.20

  • 3820 reflections

  • 275 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6B⋯O2Si 0.87 (2) 2.52 (3) 3.033 (4) 118 (3)
N6—H6B⋯F1ii 0.87 (2) 2.48 (2) 3.307 (3) 159 (3)
N6—H6A⋯N5i 0.90 (2) 2.13 (2) 3.025 (4) 178 (3)
N7—H7N⋯O1Siii 0.88 (2) 1.96 (2) 2.797 (4) 158 (3)
O1S—H1S⋯O2S 0.84 1.86 2.690 (3) 169
O2S—H2S⋯N2 0.84 1.91 2.731 (4) 166
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 1,2,4-triazolo[1,5-a]triazine heterocyclic system has been well recognized as a promising scaffold for the construction of compounds with diverse biological effects (Dolzhenko et al., 2006). In our search for potential therapeutic agents in this class of compounds we devised a number of effective methods for the preparation of 1,2,4-triazolo[1,5-a]triazines (Dolzhenko et al., 2007a,b; Dolzhenko et al., 2008a,b). The structural investigations of 1,2,4-triazolo[1,5-a]triazines include an earlier report (Gilardi, 1973) of the 5,7-bis(dimethylamino)-2-methylthio-1,2,4-triazolo[1,5-a]triazine structure, our publications regarding structures of various amino substituted 1,2,4-triazolo[1,5-a]triazines (Dolzhenko et al., 2007c,d; Dolzhenko et al., 2008c; Dolzhenko et al., 2011b), and a recent paper (Khankischpur et al., 2010) mentioning the 2-amino-5-(2-phenylethyl)[1,2,4]triazolo[1,5-a] [1,3,5]triazin-7(6H)-one structure. In continuation of our program on the synthesis and structural investigation of potentially bioactive 1,2,4-triazolo[1,5-a]triazines, we synthesized 7-(4-fluorobenzylamino)-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazine-5-amine using a recently developed method (Dolzhenko et al., 2008a) and report herein its molecular and crystal structure.

7-(4-Fluorobenzylamino)-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazine-5-amine crystallizes together with two methanol molecules (Fig. 1 & 2). The closely similar 7-dimethylamino-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine reported earlier (Dolzhenko et al., 2008c) also crystallized in the form of a methanol solvate. The 1,2,4-triazolo[1,5-a][1,3,5]triazine heterocyclic system is essentially planar with an r.m.s. deviation of 0.0215 Å. The phenyl ring mean plane C5—C10 makes a small dihedral angle of 3.56 (4)° with the mean plane of the 1,2,4-triazolo[1,5-a][1,3,5]triazine system. The amino group nitrogen atoms N6 and N7 are located practically in the plane of the heterocyclic core with slight deviations of 0.0861 (41) Å above and 0.0663 (41) Å below the mean plane, correspondingly. The molecule is twisted at the aminomethyl bridge N7—C11 [C3—N7—C11—C12 torsion angle is 100.38 (36)°].

In the crystal, molecules of 7-(4-fluorobenzylamino)-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazine-5-amine form two types of centrosymmetric inversion dimers (Fig. 2). The triazine N5 atom is connected with amino group N6—H6A of a neighbouring molecule by intermolecular N–H···N hydrogen bond making R22(8) graph-set motif (Bernstein et al., 1995) arranging the molecules in sheets parallel to the (010) plane. A second set of dimers connected via N–H···F hydrogen bonding between the N6—H6A amino group and the F1 atom of an adjacent molecule forms a R22(24) graph-set motif linking the sheets. The methanol molecules are packed in channels running along the [010] direction and also participate in linking the sheets via O–H···N and N–H···O contacts.

Related literature top

For a review of the synthesis and biological activity of 1,2,4-triazolo[1,5-a][1,3,5]triazines, see: Dolzhenko et al. (2006). For our work on the synthesis and biological activity of 1,2,4-triazolo[1,5-a][1,3,5]triazines, see: Dolzhenko et al. (2007a,b, 2008a,b, 2011a). For the crystal structures of similar 1,2,4-triazolo[1,5-a][1,3,5]triazines, see: Dolzhenko et al. (2007c,d, 2008c, 2011b); Gilardi (1973); Khankischpur et al. (2010). For a review on the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared according to the previously reported general method (Dolzhenko et al., 2008a). 2-Phenyl-7-trichloromethyl-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine (0.66 g, 2.0 mmol) was added to a solution of 4-fluorobenzylamine (0.28 ml, 2.5 mmol) in DMF (5 ml) and the mixture was heated at 70–80 °C with stirring for 3 h. After cooling, ice-cold water (40 ml) was added and the product was filtered and recrystallized from methanol.

Refinement top

All C-bound H atoms were positioned geometrically and included in the refinement using the riding-motion approximation [0.95 Å for CH of aromatic rings, 0.99 Å for methylene protons, 0.98 Å for methyl groups, and 0.84 Å for hydroxyl groups; Uiso(H) = 1.2Ueq(CAr, Cmethylenic) and Uiso(H) = 1.5Ueq(O,CMe)] while the amino group H atoms were located in a difference map and refined with restraints on the bond lengths and thermal parameters.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of 7-(4-fluorobenzylamino)-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazine-5-amine methanol disolvate showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing in the cell (view along axis b).
7-(4-Fluorobenzylamino)-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazin-5- amine methanol disolvate top
Crystal data top
C17H14FN7·2CH4OF(000) = 1680
Mr = 399.44Dx = 1.367 Mg m3
Monoclinic, C2/cMelting point: 523 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 27.516 (3) ÅCell parameters from 653 reflections
b = 7.0091 (8) Åθ = 2.8–23.5°
c = 20.778 (3) ŵ = 0.10 mm1
β = 104.380 (3)°T = 100 K
V = 3881.7 (8) Å3Thin plate, colourless
Z = 80.56 × 0.18 × 0.02 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3820 independent reflections
Radiation source: fine-focus sealed tube2876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 3133
Tmin = 0.946, Tmax = 0.998k = 88
11861 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.067P)2 + 5.3197P]
where P = (Fo2 + 2Fc2)/3
3820 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.41 e Å3
3 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H14FN7·2CH4OV = 3881.7 (8) Å3
Mr = 399.44Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.516 (3) ŵ = 0.10 mm1
b = 7.0091 (8) ÅT = 100 K
c = 20.778 (3) Å0.56 × 0.18 × 0.02 mm
β = 104.380 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3820 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2876 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.998Rint = 0.066
11861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0843 restraints
wR(F2) = 0.183H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.41 e Å3
3820 reflectionsΔρmin = 0.27 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.55659 (7)0.8048 (3)0.40137 (10)0.0281 (5)
N10.31099 (10)0.1280 (4)0.27731 (12)0.0158 (6)
N20.23799 (10)0.1664 (4)0.30860 (13)0.0154 (6)
N30.31934 (10)0.1366 (4)0.34551 (12)0.0147 (6)
N40.36437 (10)0.1522 (4)0.45512 (13)0.0167 (6)
N50.27356 (10)0.1770 (4)0.42739 (13)0.0163 (6)
N60.32075 (11)0.1989 (4)0.53427 (14)0.0211 (7)
H6A0.2925 (10)0.233 (5)0.5459 (17)0.025*
H6B0.3506 (9)0.196 (5)0.5615 (15)0.025*
N70.40528 (10)0.1013 (4)0.37144 (13)0.0176 (6)
H7N0.4053 (13)0.084 (5)0.3297 (10)0.021*
C10.26169 (12)0.1470 (4)0.25817 (15)0.0139 (7)
C20.27519 (12)0.1601 (5)0.36343 (16)0.0162 (7)
C30.36411 (12)0.1303 (5)0.39200 (15)0.0150 (7)
C40.31899 (12)0.1752 (4)0.46998 (15)0.0151 (7)
C50.23498 (12)0.1490 (5)0.18730 (15)0.0150 (7)
C60.18294 (12)0.1645 (5)0.16728 (16)0.0187 (7)
H60.16410.17170.19980.022*
C70.15854 (13)0.1694 (5)0.10072 (16)0.0209 (8)
H70.12300.18050.08760.025*
C80.18578 (13)0.1582 (5)0.05306 (16)0.0205 (8)
H80.16900.16360.00720.025*
C90.23750 (14)0.1392 (5)0.07209 (16)0.0225 (8)
H90.25610.12930.03940.027*
C100.26205 (13)0.1346 (5)0.13909 (16)0.0189 (7)
H100.29750.12160.15210.023*
C110.45495 (12)0.1136 (5)0.41539 (16)0.0192 (8)
H11A0.47560.00750.40520.023*
H11B0.45240.09690.46170.023*
C120.48156 (12)0.3013 (5)0.41021 (15)0.0161 (7)
C130.52866 (12)0.3337 (5)0.45154 (16)0.0196 (8)
H130.54390.23710.48200.024*
C140.55430 (12)0.5031 (5)0.44964 (16)0.0195 (8)
H140.58640.52510.47870.023*
C150.53142 (13)0.6384 (5)0.40394 (17)0.0209 (8)
C160.48547 (13)0.6132 (5)0.36150 (16)0.0223 (8)
H160.47110.70920.33030.027*
C170.46011 (13)0.4430 (5)0.36504 (16)0.0200 (8)
H170.42780.42330.33630.024*
O1S0.07528 (9)0.4762 (4)0.24754 (11)0.0271 (6)
H1S0.09900.40610.26770.041*
C1S0.12533 (14)0.0350 (6)0.31845 (18)0.0310 (9)
H1S10.13640.01670.36350.047*
H1S20.13950.04160.28810.047*
H1S30.08860.03110.30410.047*
O2S0.14190 (9)0.2264 (4)0.31791 (12)0.0250 (6)
H2S0.17200.22760.31600.037*
C2S0.06242 (18)0.6058 (6)0.2930 (2)0.0419 (11)
H2S10.09200.63150.32930.063*
H2S20.03590.55010.31110.063*
H2S30.05040.72530.27010.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0251 (12)0.0258 (12)0.0301 (11)0.0071 (9)0.0004 (9)0.0057 (10)
N10.0165 (15)0.0191 (15)0.0120 (13)0.0012 (12)0.0037 (11)0.0003 (12)
N20.0127 (14)0.0177 (15)0.0139 (13)0.0010 (11)0.0002 (11)0.0008 (12)
N30.0129 (14)0.0170 (15)0.0131 (13)0.0014 (11)0.0011 (11)0.0006 (11)
N40.0138 (14)0.0184 (15)0.0163 (14)0.0000 (11)0.0010 (11)0.0006 (12)
N50.0143 (14)0.0204 (16)0.0148 (13)0.0011 (11)0.0048 (11)0.0021 (12)
N60.0152 (16)0.0319 (18)0.0147 (15)0.0005 (13)0.0007 (12)0.0026 (13)
N70.0131 (14)0.0277 (17)0.0109 (13)0.0019 (12)0.0008 (11)0.0006 (12)
C10.0154 (17)0.0081 (16)0.0177 (16)0.0018 (12)0.0031 (13)0.0010 (13)
C20.0189 (17)0.0117 (17)0.0184 (17)0.0014 (13)0.0052 (14)0.0007 (14)
C30.0170 (17)0.0117 (16)0.0158 (16)0.0037 (13)0.0034 (13)0.0009 (13)
C40.0173 (17)0.0123 (17)0.0127 (15)0.0007 (13)0.0017 (13)0.0002 (13)
C50.0202 (18)0.0114 (16)0.0125 (16)0.0012 (13)0.0024 (13)0.0015 (13)
C60.0196 (18)0.0182 (19)0.0183 (17)0.0015 (14)0.0048 (14)0.0030 (14)
C70.0156 (18)0.0212 (19)0.0219 (18)0.0011 (14)0.0030 (14)0.0017 (15)
C80.028 (2)0.0187 (19)0.0119 (16)0.0035 (15)0.0005 (14)0.0009 (14)
C90.032 (2)0.022 (2)0.0171 (17)0.0009 (16)0.0130 (15)0.0038 (15)
C100.0168 (17)0.0211 (19)0.0170 (17)0.0009 (14)0.0011 (14)0.0031 (15)
C110.0147 (17)0.0240 (19)0.0183 (17)0.0013 (14)0.0032 (14)0.0014 (15)
C120.0156 (17)0.0228 (19)0.0129 (15)0.0015 (14)0.0092 (13)0.0034 (14)
C130.0158 (17)0.027 (2)0.0157 (16)0.0011 (14)0.0030 (13)0.0026 (15)
C140.0111 (17)0.026 (2)0.0186 (17)0.0029 (14)0.0023 (13)0.0000 (15)
C150.0234 (19)0.0201 (19)0.0214 (17)0.0002 (15)0.0099 (15)0.0005 (15)
C160.0226 (19)0.024 (2)0.0169 (17)0.0037 (15)0.0018 (14)0.0031 (15)
C170.0159 (17)0.027 (2)0.0162 (16)0.0003 (15)0.0017 (14)0.0002 (15)
O1S0.0222 (14)0.0407 (17)0.0166 (12)0.0037 (12)0.0014 (10)0.0019 (12)
C1S0.026 (2)0.044 (3)0.025 (2)0.0040 (18)0.0104 (17)0.0041 (18)
O2S0.0158 (13)0.0364 (16)0.0235 (13)0.0028 (11)0.0062 (11)0.0015 (12)
C2S0.065 (3)0.027 (2)0.038 (2)0.006 (2)0.020 (2)0.0071 (19)
Geometric parameters (Å, º) top
F1—C151.364 (4)C9—C101.389 (5)
N1—C11.322 (4)C9—H90.9500
N1—N31.379 (3)C10—H100.9500
N2—C21.330 (4)C11—C121.523 (5)
N2—C11.371 (4)C11—H11A0.9900
N3—C31.364 (4)C11—H11B0.9900
N3—C21.366 (4)C12—C131.384 (5)
N4—C31.319 (4)C12—C171.393 (5)
N4—C41.368 (4)C13—C141.387 (5)
N5—C41.340 (4)C13—H130.9500
N5—C21.346 (4)C14—C151.378 (5)
N6—C41.335 (4)C14—H140.9500
N6—H6A0.900 (18)C15—C161.362 (5)
N6—H6B0.874 (18)C16—C171.393 (5)
N7—C31.322 (4)C16—H160.9500
N7—C111.445 (4)C17—H170.9500
N7—H7N0.877 (18)O1S—C2S1.418 (5)
C1—C51.473 (4)O1S—H1S0.8400
C5—C61.392 (5)C1S—O2S1.418 (5)
C5—C101.393 (4)C1S—H1S10.9800
C6—C71.380 (5)C1S—H1S20.9800
C6—H60.9500C1S—H1S30.9800
C7—C81.385 (5)O2S—H2S0.8400
C7—H70.9500C2S—H2S10.9800
C8—C91.386 (5)C2S—H2S20.9800
C8—H80.9500C2S—H2S30.9800
C1—N1—N3101.6 (2)C9—C10—H10119.8
C2—N2—C1103.9 (3)C5—C10—H10119.8
C3—N3—C2121.2 (3)N7—C11—C12113.7 (3)
C3—N3—N1128.1 (3)N7—C11—H11A108.8
C2—N3—N1110.7 (2)C12—C11—H11A108.8
C3—N4—C4117.3 (3)N7—C11—H11B108.8
C4—N5—C2113.4 (3)C12—C11—H11B108.8
C4—N6—H6A119 (2)H11A—C11—H11B107.7
C4—N6—H6B116 (2)C13—C12—C17118.4 (3)
H6A—N6—H6B124 (3)C13—C12—C11119.4 (3)
C3—N7—C11122.6 (3)C17—C12—C11122.2 (3)
C3—N7—H7N124 (2)C12—C13—C14121.8 (3)
C11—N7—H7N114 (2)C12—C13—H13119.1
N1—C1—N2115.3 (3)C14—C13—H13119.1
N1—C1—C5121.4 (3)C15—C14—C13117.4 (3)
N2—C1—C5123.3 (3)C15—C14—H14121.3
N2—C2—N5129.5 (3)C13—C14—H14121.3
N2—C2—N3108.5 (3)C16—C15—F1119.0 (3)
N5—C2—N3122.0 (3)C16—C15—C14123.3 (3)
N4—C3—N7123.1 (3)F1—C15—C14117.7 (3)
N4—C3—N3118.8 (3)C15—C16—C17118.3 (3)
N7—C3—N3118.1 (3)C15—C16—H16120.9
N6—C4—N5117.1 (3)C17—C16—H16120.9
N6—C4—N4115.6 (3)C12—C17—C16120.8 (3)
N5—C4—N4127.3 (3)C12—C17—H17119.6
C6—C5—C10119.0 (3)C16—C17—H17119.6
C6—C5—C1121.3 (3)C2S—O1S—H1S109.5
C10—C5—C1119.7 (3)O2S—C1S—H1S1109.5
C7—C6—C5120.7 (3)O2S—C1S—H1S2109.5
C7—C6—H6119.7H1S1—C1S—H1S2109.5
C5—C6—H6119.7O2S—C1S—H1S3109.5
C6—C7—C8120.0 (3)H1S1—C1S—H1S3109.5
C6—C7—H7120.0H1S2—C1S—H1S3109.5
C8—C7—H7120.0C1S—O2S—H2S109.5
C7—C8—C9120.1 (3)O1S—C2S—H2S1109.5
C7—C8—H8120.0O1S—C2S—H2S2109.5
C9—C8—H8120.0H2S1—C2S—H2S2109.5
C8—C9—C10119.8 (3)O1S—C2S—H2S3109.5
C8—C9—H9120.1H2S1—C2S—H2S3109.5
C10—C9—H9120.1H2S2—C2S—H2S3109.5
C9—C10—C5120.4 (3)
C1—N1—N3—C3177.9 (3)N1—C1—C5—C6178.5 (3)
C1—N1—N3—C20.0 (3)N2—C1—C5—C62.3 (5)
N3—N1—C1—N20.2 (4)N1—C1—C5—C101.4 (5)
N3—N1—C1—C5179.1 (3)N2—C1—C5—C10177.9 (3)
C2—N2—C1—N10.4 (4)C10—C5—C6—C71.3 (5)
C2—N2—C1—C5179.0 (3)C1—C5—C6—C7178.9 (3)
C1—N2—C2—N5178.2 (3)C5—C6—C7—C80.2 (5)
C1—N2—C2—N30.3 (3)C6—C7—C8—C91.0 (5)
C4—N5—C2—N2176.2 (3)C7—C8—C9—C101.1 (5)
C4—N5—C2—N32.2 (4)C8—C9—C10—C50.0 (5)
C3—N3—C2—N2178.3 (3)C6—C5—C10—C91.2 (5)
N1—N3—C2—N20.2 (4)C1—C5—C10—C9179.0 (3)
C3—N3—C2—N50.4 (5)C3—N7—C11—C12100.4 (4)
N1—N3—C2—N5178.4 (3)N7—C11—C12—C13177.6 (3)
C4—N4—C3—N7178.0 (3)N7—C11—C12—C172.4 (4)
C4—N4—C3—N31.6 (4)C17—C12—C13—C141.0 (5)
C11—N7—C3—N47.6 (5)C11—C12—C13—C14179.0 (3)
C11—N7—C3—N3172.8 (3)C12—C13—C14—C151.1 (5)
C2—N3—C3—N41.7 (5)C13—C14—C15—C160.2 (5)
N1—N3—C3—N4176.0 (3)C13—C14—C15—F1179.4 (3)
C2—N3—C3—N7177.9 (3)F1—C15—C16—C17179.6 (3)
N1—N3—C3—N74.4 (5)C14—C15—C16—C170.8 (5)
C2—N5—C4—N6177.4 (3)C13—C12—C17—C160.0 (5)
C2—N5—C4—N42.4 (5)C11—C12—C17—C16179.9 (3)
C3—N4—C4—N6179.3 (3)C15—C16—C17—C120.9 (5)
C3—N4—C4—N50.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6B···O2Si0.87 (2)2.52 (3)3.033 (4)118 (3)
N6—H6B···F1ii0.87 (2)2.48 (2)3.307 (3)159 (3)
N6—H6A···N5i0.90 (2)2.13 (2)3.025 (4)178 (3)
N7—H7N···N10.88 (2)2.57 (3)2.841 (4)99 (2)
N7—H7N···O1Siii0.88 (2)1.96 (2)2.797 (4)158 (3)
O1S—H1S···O2S0.841.862.690 (3)169
O2S—H2S···N20.841.912.731 (4)166
N7—H7N···N10.88 (2)2.57 (3)2.841 (4)99 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H14FN7·2CH4O
Mr399.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)27.516 (3), 7.0091 (8), 20.778 (3)
β (°) 104.380 (3)
V3)3881.7 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.56 × 0.18 × 0.02
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.946, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
11861, 3820, 2876
Rint0.066
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.183, 1.20
No. of reflections3820
No. of parameters275
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.27

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6B···O2Si0.874 (18)2.52 (3)3.033 (4)118 (3)
N6—H6B···F1ii0.874 (18)2.48 (2)3.307 (3)159 (3)
N6—H6A···N5i0.900 (18)2.125 (19)3.025 (4)178 (3)
N7—H7N···N10.877 (18)2.57 (3)2.841 (4)99 (2)
N7—H7N···O1Siii0.877 (18)1.96 (2)2.797 (4)158 (3)
O1S—H1S···O2S0.841.862.690 (3)169
O2S—H2S···N20.841.912.731 (4)166
N7—H7N···N10.877 (18)2.57 (3)2.841 (4)99 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z+1/2.
 

Footnotes

Part 19 in the series Fused heterocyclic systems with an s-triazine ring, for Part 18 see Dolzhenko et al. (2011a).

Thomson Reuters ResearcherID: B-1130-2008.

Acknowledgements

This work was supported by the School of Pharmacy, Curtin University of Technology, and the National Medical Research Council, Singapore (NMRC/NIG/0019/2008).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationDolzhenko, A. V., Bai, S., Dolzhenko, A. V. & Chui, W. K. (2011a). J. Heterocycl. Chem. 48. In the press. doi:10.1002/jhet.851.  Google Scholar
First citationDolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2006). Heterocycles, 68, 1723–1759.  CAS Google Scholar
First citationDolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007a). Heterocycles, 71, 429–436.  CAS Google Scholar
First citationDolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007b). Tetrahedron, 63, 12888–12895.  Web of Science CrossRef CAS Google Scholar
First citationDolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2008a). Tetrahedron Lett. 49, 7180–7183.  CrossRef CAS Google Scholar
First citationDolzhenko, A. V., Tan, B. J., Dolzhenko, A. V., Chiu, G. N. C. & Chui, W. K. (2008b). J. Fluorine Chem. 129, 429–434.  CrossRef CAS Google Scholar
First citationDolzhenko, A. V., Tan, G. K., Dolzhenko, A. V., Koh, L. L. & Chui, W. K. (2011b). Acta Cryst. E67, o85–o86.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2007c). Acta Cryst. E63, o2796.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2007d). Acta Cryst. E63, o2797.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolzhenko, A. V., Tan, G. K., Koh, L. L., Woo, S. F. & Chui, W. K. (2008c). Acta Cryst. E64, o2021.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGilardi, R. D. (1973). Acta Cryst. B29, 2089–2095.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKhankischpur, M., Hansen, F. K. & Geffken, D. (2010). Synthesis, pp. 1645–1648.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1183-o1184
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds