metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m584-m585

Tetra­kis(μ-3-aza­niumylbenzoato)-κ3O:O,O′;κ3O,O′:O;κ4O:O′-bis­­[tetra­aqua­neodymium(III)] hexa­chloride tetra­hydrate

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri de Constantine, 25000 Constantine, Algeria, and bLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
*Correspondence e-mail: b_meriem80@yahoo.fr

(Received 16 March 2011; accepted 5 April 2011; online 13 April 2011)

The structure of the title compound, [Nd2(C7H7NO2)4(H2O)8]Cl6·4H2O, consists of dimeric cationic units related by an inversion centre. The two NdIII atoms are linked by two bridging bidentate carboxyl­ate groups and two bidentate chelating bridging carboxyl­ate groups, with an Nd⋯Nd separation of 4.1259 (4) Å. Each NdIII atom is nine-coordin­ated by five O atoms from the carboxyl­ate groups of the zwitterionic azaniumylbenzoate ligands and four from water mol­ecules. They adopt a distorted tricapped trigonal–prismatic arrangement. The dihedral angle between the mean planes of the benzene ring and the carboxlate groups are 7.7 (6) and 24.4 (5)°. The two carboxyl­ate groups are almost perpendicular to one another with a dihedral angle of 84.0 (7)°, while the two benzene rings are inclined to one another by 81.8 (2)°. The mol­ecular packing is stabilized by O—Hwater⋯Cl, O—Hwater⋯N, N—H⋯Cl, N—H⋯O, and O—Hwater⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance = 3.500 (3) Å] between symmetry-related benzene rings. All of the Cl anions and the uncoordinated water molecules are disordered over two sets of sites with different occupancy ratios.

Related literature

For applications of lanthanide complexes, see: Yan et al. (1997[Yan, B., Zhang, H.-J., Wang, S.-B. & Ni, J.-Z. (1997). Mater. Chem. Phys. 51, 92-96.]); Scott & Horrocks (1992[Scott, L. K. & Horrocks, W. D. (1992). J. Inorg. Biochem. 46, 193-205.]). For lanthanide complexes with aromatic carb­oxy­lic acids, see: Ma et al. (1994[Ma, J.-F., Jin, Z.-S. & Ni, J.-Z. (1994). Acta Cryst. C50, 1010-1012.]). For similar complexes, see: Qin et al. (2005[Qin, C., Wang, X.-L., Wang, E.-B. & Xu, L. (2005). Inorg. Chem. Commun. 8, 669-672.], 2006[Qin, C., Wang, X.-L., Wang, E.-B. & Xu, L. (2006). Inorg. Chim. Acta, 359, 417-423.]); Sun et al. (2002[Sun, Z.-G., Ren, Y.-P., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2002). Inorg. Chem. Commun. 5, 629-632.]); Benslimane et al. (2011[Benslimane, M., Merazig, H. & Daran, J.-C. (2011). Acta Cryst. E67, m115-m116.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd2(C7H7NO2)4(H2O)8]Cl6·4H2O

  • Mr = 1265.92

  • Monoclinic, P 21 /c

  • a = 12.1717 (1) Å

  • b = 19.8544 (1) Å

  • c = 10.5170 (1) Å

  • β = 112.018 (1)°

  • V = 2356.19 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.59 mm−1

  • T = 293 K

  • 0.30 × 0.24 × 0.16 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: multi-scan (Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.410, Tmax = 0.444

  • 7192 measured reflections

  • 6852 independent reflections

  • 4724 reflections with I > 2σ(I)

  • Rint = 0.031

  • 2 standard reflections every 60 min intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.096

  • S = 1.02

  • 6852 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −1.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O6WA 0.89 2.16 3.007 (12) 160
N1—H1B⋯Cl1 0.89 2.30 3.174 (5) 168
N1—H1C⋯O6WAi 0.89 1.98 2.828 (12) 159
N2—H2A⋯O4ii 0.89 2.22 2.967 (6) 141
N2—H2B⋯Cl2iii 0.89 2.31 3.166 (5) 161
N2—H2C⋯Cl3Aiv 0.89 2.26 3.129 (5) 167
O1W—H11⋯Cl2v 0.97 2.21 3.170 (4) 172
O2W—H12⋯O5W 1.04 2.28 2.960 (7) 121
O2W—H12⋯Cl2v 1.04 2.65 3.443 (5) 132
O3W—H13⋯Cl2 0.95 2.26 3.190 (5) 169
O4W—H14⋯Cl3Avi 0.86 2.58 3.240 (5) 134
O5W—H15W⋯Cl1vii 0.85 2.68 3.208 (7) 122
O1W—H21⋯Cl1iv 0.78 2.52 3.215 (4) 148
O2W—H22⋯Cl2 0.90 2.26 3.104 (4) 156
O3W—H23⋯Cl3A 0.80 2.56 3.244 (4) 144
O4W—H24⋯Cl1viii 0.93 2.23 3.134 (5) 163
O5W—H25W⋯N1iii 0.85 2.52 3.247 (8) 144
C10—H01⋯Cl1iv 0.93 2.81 3.724 (6) 169
C14—H04⋯O2Wiii 0.93 2.59 3.504 (7) 170
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+2, -y+1, -z+1; (vi) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, much research has been done on lanthanide coordination compounds with some organic ligands, which have chelated structures and exhibit photophysical properties for the application in luminescence probes for chemical or biological macromolecules and the active center for molecular based luminescent materials (Yan et al., 1997; Scott et al., 1992). Especially lanthanide complexes with aromatic carboxylic acids show higher thermal and luminescent stability for practical applications than other lanthanide complexes because they readily form dimer or infinite chain polymeric structures (Ma et al., 1994).We report herein on the preparation and crystal structure of the title compound.

The molecular structure of the title compound consists of dimeric units related by an inversion centre (Fig. 1). The two NdIII atoms are linked by two bridging bidentate carboxylate groups and two bidentate chelating bridging carboxylate groups. Each NdIII atom is nine-coordinated by five O atoms from carboxylate groups of the 3-ammoniumbenzoate, and four O atoms from the water molecules. They adopt a distorted tricapped trigonal-prismatic arrangement. A similar coordination environment was observed previously for lanthanoid(III) complexes, such as [(pyridine-3,4-dicarboxylate)2(NO3)2(H2O)3] (Qin et al., 2006) and [Ln2(imidazole-4,5-dicarboxylate)2(H2O)3]1.5H2O (Ln = Sm and Eu; Qin et al., 2005). The Nd-O distances involving the carboxylate groups range from 2.394 (3) Å to 2.458 (4) Å and those of the Nd-Owater bonds from 2.506 (4)Å to 2.525 (4) Å. The Nd1-O1-Nd1i (Symmetry codes: (i) -x+1, -y+1, -z+1) angle is 101.96 (13)°, the resulting Nd···Nd intradimer separation is 4.1259 (4) Å indicates that the metal···metal distances are primarily governed by the nature and mode of the coordination of the bridging groups (Sun et al., 2002). The carboxylate group shows a distortion from the molecular plane; the dihedral angle between the mean-planes of the benzene ring (C2-C7; plane 1) and the carboxlate group (O2/C1/O3i) is 7.7 (6)°, and that between the mean-planes of benzene ring (C9-C14; plane 2) and the O1/C8/O4 carboxlate group is 24.4 (5)°. The two carboxylate groups are almost perpendicular to one another with a dihedral angle of 84.0 (7) °, and planes 1 and 2 are inclined to one another by 81.8 (2) ° compared with the corresponding value found in the complex [La2(C7H7NO2)4Cl2(H2O)6]Cl4.2H2O [(Benslimane et al., 2011) 80.0 (2)].

In the crystal hydrogen bonds involving the free and the coordinated water molecules, the ammonium group NH3 and the Cl atoms build up a three dimensionnal network (Fig. 2, Table 1). There is also slipped π -π stacking interactions between the symetry related C9—C14 phenyl ring (Table 2). Both hydrogen-bonding and π-π interactions combine to stabilize the three-dimensional network.

Related literature top

For applications of lanthanide complexes, see: Yan et al. (1997); Scott & Horrocks (1992). For lanthanide complexes with aromatic carboxylic acids, see: Ma et al. (1994). For similar complexes, see: Qin et al. (2005, 2006); Sun et al. (2002); Benslimane et al. (2011).

Experimental top

NdCl3(0.25 g, 1mmol) was dissolved in an aqueous solution of NaOH (0.5 M, 25 ml) with constant stirring. 3-aminobenzoic acid (0.14 g, 1 mmol) was added to the mixture and the pH was adjusted to ca. 3 using 4M HCl. The mixture was refluxed at 353K for about 1 h and then cooled to room temperature. Slow evaporation of the solvent at room temperature lead to the formation of prismatic purple crystals of the title compound.

Refinement top

The chloride anion Cl3 is disordered over three sites, Cl3A, Cl3B and Cl3C, which were refined with occupancies of 0.75, 0.15 and 0.10, respectively. The water molecule O6W is also disordered over two positions (O6WA and O6WB), which were refined with occupancy factors 0.72/0.28, so no H-atoms could be reliably defined. All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and N—H = 0.89 Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(N). The H-atoms of the coordinated water molecules were initially refined using distance restraints [O—H = 0.85 (2) Å, and H···H = 1.40 (2) Å] with Uiso(H) = 1.5Ueq(O). However, in the last cycles of refinement, they were treated as riding on their parent O atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [Symmetry code: (i) -x + 1, -y + 1, -z + 1; Hydrogen atoms have been omitted for clarity].
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately down the a axis. Hydrogen bonds are shown as dashed lines [see Table 1 for details; hydrogen atoms not involved in hydrogen bonding have been omitted for clarity].
Tetrakis(µ-3-azaniumylbenzoato)-κ3O:O,O'; κ3O,O':O;κ4O:O'- bis[tetraaquaneodymium(III)] hexachloride tetrahydrate top
Crystal data top
[Nd2(C7H7NO2)4(H2O)8]Cl6·4H2OF(000) = 1260
Mr = 1265.92Dx = 1.784 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7192 reflections
a = 12.1717 (1) Åθ = 1.0–30.0°
b = 19.8544 (1) ŵ = 2.59 mm1
c = 10.5170 (1) ÅT = 293 K
β = 112.018 (1)°Prism, violet
V = 2356.19 (4) Å30.30 × 0.24 × 0.16 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.031
Graphite monochromatorθmax = 30.0°, θmin = 1.8°
non–profiled ω/2τ scansh = 1517
Absorption correction: multi-scan
(Blessing, 1997)
k = 270
Tmin = 0.410, Tmax = 0.444l = 140
7192 measured reflections2 standard reflections every 60 min
6852 independent reflections intensity decay: 3%
4724 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0201P)2]
where P = (Fo2 + 2Fc2)/3
6852 reflections(Δ/σ)max = 0.002
300 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 1.15 e Å3
Crystal data top
[Nd2(C7H7NO2)4(H2O)8]Cl6·4H2OV = 2356.19 (4) Å3
Mr = 1265.92Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.1717 (1) ŵ = 2.59 mm1
b = 19.8544 (1) ÅT = 293 K
c = 10.5170 (1) Å0.30 × 0.24 × 0.16 mm
β = 112.018 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
4724 reflections with I > 2σ(I)
Absorption correction: multi-scan
(Blessing, 1997)
Rint = 0.031
Tmin = 0.410, Tmax = 0.4442 standard reflections every 60 min
7192 measured reflections intensity decay: 3%
6852 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.02Δρmax = 0.81 e Å3
6852 reflectionsΔρmin = 1.15 e Å3
300 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nd10.67791 (2)0.47629 (1)0.58312 (3)0.0236 (1)
O10.5246 (3)0.48149 (15)0.3573 (4)0.0328 (10)
O1W0.8553 (3)0.53988 (16)0.7384 (4)0.0470 (13)
O20.5576 (2)0.38174 (14)0.5941 (4)0.0338 (12)
O2W0.7992 (3)0.51554 (18)0.4499 (5)0.0522 (14)
O30.6299 (3)0.59263 (14)0.5323 (4)0.0318 (10)
O3W0.7348 (3)0.37860 (16)0.4667 (5)0.0516 (16)
O40.6548 (3)0.50923 (15)0.7970 (4)0.0336 (13)
O4W0.8127 (3)0.40099 (16)0.7663 (5)0.0518 (16)
N10.1193 (4)0.2246 (2)0.5525 (7)0.063 (2)
N20.2428 (3)0.5776 (2)0.9569 (5)0.0432 (16)
C10.4479 (4)0.36950 (19)0.5480 (5)0.0264 (14)
C20.4066 (4)0.30648 (19)0.5946 (5)0.0265 (14)
C30.4840 (4)0.2636 (2)0.6904 (6)0.0334 (16)
C40.4435 (5)0.2104 (2)0.7436 (6)0.0422 (18)
C50.3240 (5)0.1978 (2)0.7016 (7)0.0450 (19)
C60.2491 (4)0.2391 (2)0.6034 (7)0.0410 (18)
C70.2861 (4)0.2928 (2)0.5493 (6)0.0354 (16)
C80.5479 (4)0.5265 (2)0.7622 (5)0.0258 (14)
C90.5114 (4)0.5576 (2)0.8680 (5)0.0266 (14)
C100.5955 (4)0.5888 (2)0.9817 (6)0.0315 (14)
C110.5631 (4)0.6181 (2)1.0799 (6)0.0391 (19)
C120.4470 (4)0.6159 (2)1.0698 (6)0.0410 (19)
C130.3648 (4)0.5835 (2)0.9597 (6)0.0332 (14)
C140.3941 (4)0.5556 (2)0.8575 (6)0.0300 (14)
O5W0.9028 (5)0.6248 (3)0.3390 (7)0.126 (3)
Cl10.08111 (11)0.07403 (8)0.44309 (19)0.0593 (6)
Cl20.93715 (13)0.40966 (10)0.3509 (2)0.0708 (7)
Cl3A0.8142 (3)0.22254 (14)0.4682 (4)0.0718 (12)0.750
O6WA0.0280 (8)0.2247 (5)0.7815 (11)0.081 (4)0.720
Cl3B0.7983 (15)0.2369 (6)0.5423 (16)0.068 (5)0.150
Cl3C0.8035 (14)0.2679 (7)0.731 (3)0.076 (8)0.100
O6WB0.042 (2)0.2654 (13)0.750 (3)0.101 (11)0.280
H010.674400.589800.990800.0380*
H1A0.091300.235800.616600.0940*
H1B0.107200.180900.533700.0940*
H1C0.082100.248400.476800.0940*
H20.619800.639601.154200.0470*
H020.424700.635901.136400.0490*
H2A0.239000.543201.009400.0650*
H2B0.192800.570500.871100.0650*
H2C0.223100.615400.988400.0650*
H30.565100.271000.719200.0400*
H040.336300.535500.782100.0360*
H40.497200.182600.808600.0500*
H50.295400.162500.738600.0540*
H70.231700.319800.483200.0420*
H110.924300.554200.720500.0700*
H120.843300.561200.482000.0790*
H130.787200.386700.420900.0770*
H140.798800.359000.771000.0500*
H210.877300.532000.817000.0700*
H220.836600.477500.441800.0790*
H230.740800.340600.494700.0770*
H240.888000.417700.817500.0500*
H15W0.944700.635300.293100.1890*
H25W0.863900.659600.344200.1890*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.0204 (1)0.0285 (1)0.0211 (2)0.0019 (1)0.0066 (1)0.0007 (1)
O10.0360 (16)0.0417 (17)0.019 (2)0.0037 (14)0.0085 (16)0.0053 (16)
O1W0.0292 (16)0.069 (2)0.037 (3)0.0175 (15)0.0057 (18)0.0001 (19)
O20.0273 (15)0.0316 (16)0.040 (3)0.0036 (12)0.0097 (16)0.0021 (15)
O2W0.064 (2)0.054 (2)0.052 (3)0.0250 (18)0.037 (2)0.020 (2)
O30.0314 (15)0.0278 (15)0.031 (2)0.0023 (12)0.0057 (16)0.0001 (14)
O3W0.073 (2)0.0372 (19)0.064 (4)0.0064 (17)0.048 (3)0.0026 (19)
O40.0321 (16)0.0421 (18)0.028 (3)0.0005 (13)0.0129 (17)0.0040 (15)
O4W0.0349 (17)0.047 (2)0.056 (4)0.0004 (15)0.003 (2)0.007 (2)
N10.047 (3)0.061 (3)0.082 (6)0.023 (2)0.026 (3)0.004 (3)
N20.041 (2)0.055 (3)0.041 (3)0.0043 (19)0.024 (2)0.002 (2)
C10.035 (2)0.0224 (19)0.025 (3)0.0056 (16)0.015 (2)0.0054 (18)
C20.031 (2)0.025 (2)0.024 (3)0.0044 (16)0.011 (2)0.0034 (18)
C30.037 (2)0.028 (2)0.031 (4)0.0027 (17)0.008 (2)0.007 (2)
C40.059 (3)0.028 (2)0.034 (4)0.000 (2)0.011 (3)0.003 (2)
C50.059 (3)0.035 (3)0.045 (4)0.010 (2)0.024 (3)0.006 (2)
C60.037 (2)0.041 (3)0.050 (4)0.012 (2)0.022 (3)0.008 (3)
C70.032 (2)0.032 (2)0.040 (4)0.0040 (18)0.011 (2)0.000 (2)
C80.032 (2)0.0269 (19)0.019 (3)0.0076 (18)0.010 (2)0.005 (2)
C90.036 (2)0.026 (2)0.017 (3)0.0001 (17)0.009 (2)0.0003 (18)
C100.032 (2)0.037 (2)0.025 (3)0.0012 (18)0.010 (2)0.004 (2)
C110.045 (3)0.045 (3)0.026 (4)0.006 (2)0.012 (3)0.016 (2)
C120.051 (3)0.045 (3)0.028 (4)0.007 (2)0.016 (3)0.010 (2)
C130.034 (2)0.037 (2)0.031 (3)0.0070 (19)0.015 (2)0.003 (2)
C140.034 (2)0.033 (2)0.021 (3)0.0010 (18)0.008 (2)0.001 (2)
O5W0.140 (5)0.124 (5)0.118 (7)0.037 (4)0.052 (5)0.024 (5)
Cl10.0401 (7)0.0667 (9)0.0549 (13)0.0080 (6)0.0009 (8)0.0083 (8)
Cl20.0441 (8)0.1218 (14)0.0541 (14)0.0135 (8)0.0270 (9)0.0161 (11)
Cl3A0.0611 (13)0.0457 (14)0.099 (3)0.0090 (11)0.0190 (19)0.0111 (15)
O6WA0.058 (4)0.129 (8)0.060 (7)0.000 (5)0.027 (5)0.006 (6)
Cl3B0.093 (10)0.023 (5)0.056 (11)0.000 (5)0.008 (9)0.007 (5)
Cl3C0.071 (10)0.042 (8)0.12 (2)0.013 (7)0.042 (12)0.001 (9)
O6WB0.086 (15)0.15 (2)0.07 (2)0.007 (16)0.034 (14)0.029 (18)
Geometric parameters (Å, º) top
Nd1—O12.411 (4)N1—H1A0.8900
Nd1—O1W2.506 (4)N2—H2A0.8900
Nd1—O22.410 (3)N2—H2B0.8900
Nd1—O2W2.510 (4)N2—H2C0.8900
Nd1—O32.394 (3)C1—C21.498 (6)
Nd1—O3W2.525 (4)C2—C31.384 (7)
Nd1—O42.458 (4)C2—C71.389 (7)
Nd1—O4W2.504 (4)C3—C41.371 (7)
Nd1—O1i2.886 (4)C4—C51.375 (9)
O1—C8i1.246 (6)C5—C61.365 (8)
O2—C11.262 (6)C6—C71.362 (7)
O3—C1i1.255 (6)C8—C91.479 (7)
O4—C81.260 (6)C9—C141.391 (8)
O1W—H110.9700C9—C101.394 (7)
O1W—H210.7800C10—C111.366 (8)
O2W—H121.0400C11—C121.378 (8)
O2W—H220.9000C12—C131.374 (8)
O3W—H230.8000C13—C141.370 (8)
O3W—H130.9500C3—H30.9300
O4W—H140.8600C4—H40.9300
O4W—H240.9300C5—H50.9300
O5W—H25W0.8500C7—H70.9300
O5W—H15W0.8500C10—H010.9300
N1—C61.494 (8)C11—H20.9300
N2—C131.479 (7)C12—H020.9300
N1—H1C0.8900C14—H040.9300
N1—H1B0.8900
O1—Nd1—O1W141.27 (11)C6—N1—H1C109.00
O1—Nd1—O279.67 (12)C6—N1—H1A110.00
O1—Nd1—O2W80.61 (14)C6—N1—H1B109.00
O1—Nd1—O372.82 (12)H1A—N1—H1B109.00
O1—Nd1—O3W78.87 (13)H1B—N1—H1C109.00
O1—Nd1—O4125.33 (13)H1A—N1—H1C110.00
O1—Nd1—O4W145.66 (11)H2B—N2—H2C110.00
O1—Nd1—O1i78.04 (12)H2A—N2—H2B109.00
O1W—Nd1—O2138.75 (12)C13—N2—H2A109.00
O1W—Nd1—O2W70.36 (14)C13—N2—H2B109.00
O1W—Nd1—O374.80 (12)H2A—N2—H2C109.00
O1W—Nd1—O3W112.16 (13)C13—N2—H2C110.00
O1W—Nd1—O468.64 (13)O2—C1—C2118.2 (4)
O1W—Nd1—O4W69.11 (12)O2—C1—O3i124.5 (4)
O1i—Nd1—O1W108.03 (11)O3i—C1—C2117.4 (4)
O2—Nd1—O2W139.79 (12)C3—C2—C7118.2 (4)
O2—Nd1—O3131.34 (12)C1—C2—C3122.1 (5)
O2—Nd1—O3W72.96 (12)C1—C2—C7119.5 (4)
O2—Nd1—O483.30 (12)C2—C3—C4121.4 (5)
O2—Nd1—O4W74.50 (12)C3—C4—C5120.5 (5)
O1i—Nd1—O268.41 (9)C4—C5—C6117.4 (5)
O2W—Nd1—O373.81 (13)N1—C6—C5118.2 (5)
O2W—Nd1—O3W69.04 (12)N1—C6—C7118.2 (5)
O2W—Nd1—O4136.16 (13)C5—C6—C7123.7 (5)
O2W—Nd1—O4W105.19 (14)C2—C7—C6118.8 (5)
O1i—Nd1—O2W139.46 (11)O1i—C8—O4121.5 (5)
O3—Nd1—O3W136.17 (14)O1i—C8—C9120.9 (5)
O3—Nd1—O481.11 (12)O4—C8—C9117.6 (4)
O3—Nd1—O4W141.52 (13)C10—C9—C14118.9 (5)
O1i—Nd1—O367.12 (11)C8—C9—C14121.2 (4)
O3W—Nd1—O4142.60 (12)C8—C9—C10120.0 (5)
O3W—Nd1—O4W72.23 (14)C9—C10—C11120.7 (5)
O1i—Nd1—O3W137.75 (11)C10—C11—C12120.5 (5)
O4—Nd1—O4W73.83 (13)C11—C12—C13118.8 (5)
O1i—Nd1—O447.46 (12)N2—C13—C14120.5 (5)
O1i—Nd1—O4W111.90 (12)C12—C13—C14122.0 (5)
Nd1—O1—Nd1i101.96 (13)N2—C13—C12117.6 (5)
Nd1—O1—C8i169.3 (3)C9—C14—C13119.2 (5)
Nd1i—O1—C8i85.2 (3)C2—C3—H3119.00
Nd1—O2—C1134.9 (3)C4—C3—H3119.00
Nd1—O3—C1i142.0 (3)C5—C4—H4120.00
Nd1—O4—C8105.5 (3)C3—C4—H4120.00
H11—O1W—H21107.00C4—C5—H5121.00
Nd1—O1W—H11128.00C6—C5—H5121.00
Nd1—O1W—H21117.00C6—C7—H7121.00
H12—O2W—H22123.00C2—C7—H7121.00
Nd1—O2W—H22102.00C9—C10—H01120.00
Nd1—O2W—H12115.00C11—C10—H01120.00
Nd1—O3W—H23123.00C12—C11—H2120.00
H13—O3W—H23111.00C10—C11—H2120.00
Nd1—O3W—H13118.00C11—C12—H02121.00
Nd1—O4W—H24117.00C13—C12—H02121.00
H14—O4W—H24119.00C9—C14—H04120.00
Nd1—O4W—H14123.00C13—C14—H04120.00
H15W—O5W—H25W108.00
O1W—Nd1—O1—Nd1i103.98 (19)O4W—Nd1—O4—C8146.0 (3)
O2—Nd1—O1—Nd1i69.90 (11)O1i—Nd1—O4—C83.6 (2)
O2W—Nd1—O1—Nd1i145.32 (12)Nd1—O1i—C8—C9173.3 (4)
O3—Nd1—O1—Nd1i69.49 (12)Nd1—O1i—C8—O45.9 (4)
O3W—Nd1—O1—Nd1i144.37 (13)Nd1—O2—C1—O3i6.6 (8)
O4—Nd1—O1—Nd1i4.17 (16)Nd1—O2—C1—C2171.7 (3)
O4W—Nd1—O1—Nd1i111.5 (2)Nd1i—O3i—C1—C2142.4 (4)
O1i—Nd1—O1—Nd1i0.00 (9)Nd1i—O3i—C1—O235.9 (9)
O1i—Nd1i—O1—Nd10.00 (11)Nd1—O4—C8—O1i7.1 (5)
O1Wi—Nd1i—O1—Nd1140.33 (11)Nd1—O4—C8—C9172.1 (3)
O2i—Nd1i—O1—Nd183.50 (13)O3i—C1—C2—C70.6 (7)
O2Wi—Nd1i—O1—Nd159.7 (2)O2—C1—C2—C7177.8 (5)
O3i—Nd1i—O1—Nd176.21 (13)O2—C1—C2—C33.0 (7)
O3Wi—Nd1i—O1—Nd158.2 (2)O3i—C1—C2—C3175.4 (5)
O4i—Nd1i—O1—Nd1175.39 (17)C1—C2—C3—C4172.4 (5)
O4Wi—Nd1i—O1—Nd1145.54 (12)C1—C2—C7—C6173.3 (5)
O1—Nd1—O2—C136.4 (4)C7—C2—C3—C42.4 (8)
O1W—Nd1—O2—C1137.8 (4)C3—C2—C7—C61.7 (7)
O2W—Nd1—O2—C198.2 (5)C2—C3—C4—C50.7 (8)
O3—Nd1—O2—C119.5 (5)C3—C4—C5—C61.6 (8)
O3W—Nd1—O2—C1117.8 (5)C4—C5—C6—N1177.7 (5)
O4—Nd1—O2—C191.4 (4)C4—C5—C6—C72.4 (9)
O4W—Nd1—O2—C1166.5 (5)C5—C6—C7—C20.7 (9)
O1i—Nd1—O2—C144.7 (4)N1—C6—C7—C2179.3 (5)
O1—Nd1—O3—C1i15.9 (5)O4—C8—C9—C1023.0 (6)
O1W—Nd1—O3—C1i174.4 (6)O1i—C8—C9—C1424.7 (6)
O2—Nd1—O3—C1i42.6 (6)O4—C8—C9—C14156.1 (4)
O2W—Nd1—O3—C1i100.9 (6)O1i—C8—C9—C10156.2 (4)
O3W—Nd1—O3—C1i68.0 (6)C8—C9—C10—C11179.6 (4)
O4—Nd1—O3—C1i115.5 (6)C14—C9—C10—C111.3 (7)
O4W—Nd1—O3—C1i165.0 (5)C8—C9—C14—C13178.3 (4)
O1i—Nd1—O3—C1i68.1 (6)C10—C9—C14—C130.8 (6)
O1—Nd1—O4—C82.0 (3)C9—C10—C11—C121.5 (7)
O1W—Nd1—O4—C8140.5 (3)C10—C11—C12—C130.3 (7)
O2—Nd1—O4—C870.3 (3)C11—C12—C13—N2175.6 (4)
O2W—Nd1—O4—C8118.7 (3)C11—C12—C13—C142.5 (7)
O3—Nd1—O4—C863.5 (3)N2—C13—C14—C9175.3 (4)
O3W—Nd1—O4—C8120.5 (3)C12—C13—C14—C92.7 (7)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6WA0.892.163.007 (12)160
N1—H1B···Cl10.892.303.174 (5)168
N1—H1C···O6WAii0.891.982.828 (12)159
N2—H2A···O4iii0.892.222.967 (6)141
N2—H2B···Cl2i0.892.313.166 (5)161
N2—H2C···Cl3Aiv0.892.263.129 (5)167
O1W—H11···Cl2v0.972.213.170 (4)172
O2W—H12···O5W1.042.282.960 (7)121
O2W—H12···Cl2v1.042.653.443 (5)132
O3W—H13···Cl20.952.263.190 (5)169
O4W—H14···Cl3Avi0.862.583.240 (5)134
O5W—H15W···Cl1vii0.852.683.208 (7)122
O1W—H21···Cl1iv0.782.523.215 (4)148
O2W—H22···Cl20.902.263.104 (4)156
O3W—H23···Cl3A0.802.563.244 (4)144
O4W—H24···Cl1viii0.932.233.134 (5)163
O5W—H25W···N1i0.852.523.247 (8)144
C10—H01···Cl1iv0.932.813.724 (6)169
C14—H04···O2Wi0.932.593.504 (7)170
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+2; (iv) x+1, y+1/2, z+3/2; (v) x+2, y+1, z+1; (vi) x, y+1/2, z+1/2; (vii) x+1, y+1/2, z+1/2; (viii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Nd2(C7H7NO2)4(H2O)8]Cl6·4H2O
Mr1265.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.1717 (1), 19.8544 (1), 10.5170 (1)
β (°) 112.018 (1)
V3)2356.19 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.59
Crystal size (mm)0.30 × 0.24 × 0.16
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionMulti-scan
(Blessing, 1997)
Tmin, Tmax0.410, 0.444
No. of measured, independent and
observed [I > 2σ(I)] reflections
7192, 6852, 4724
Rint0.031
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.096, 1.02
No. of reflections6852
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 1.15

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6WA0.892.163.007 (12)160
N1—H1B···Cl10.892.303.174 (5)168
N1—H1C···O6WAi0.891.982.828 (12)159
N2—H2A···O4ii0.892.222.967 (6)141
N2—H2B···Cl2iii0.892.313.166 (5)161
N2—H2C···Cl3Aiv0.892.263.129 (5)167
O1W—H11···Cl2v0.972.213.170 (4)172
O2W—H12···O5W1.042.282.960 (7)121
O2W—H12···Cl2v1.042.653.443 (5)132
O3W—H13···Cl20.952.263.190 (5)169
O4W—H14···Cl3Avi0.862.583.240 (5)134
O5W—H15W···Cl1vii0.852.683.208 (7)122
O1W—H21···Cl1iv0.782.523.215 (4)148
O2W—H22···Cl20.902.263.104 (4)156
O3W—H23···Cl3A0.802.563.244 (4)144
O4W—H24···Cl1viii0.932.233.134 (5)163
O5W—H25W···N1iii0.852.523.247 (8)144
C10—H01···Cl1iv0.932.813.724 (6)169
C14—H04···O2Wiii0.932.593.504 (7)170
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+3/2; (v) x+2, y+1, z+1; (vi) x, y+1/2, z+1/2; (vii) x+1, y+1/2, z+1/2; (viii) x+1, y+1/2, z+1/2.
Table 2 π-π stacking interactions (Å) top
Cg1 is the centroid of the C9—C14 ring.
CgICgJCgI···CgJaCgI···P(J)bCgJ···P(I)cSlippage
Cg1Cg1ii3.499 (2)3.2720 (18)3.2721 (18)1.240
Symmetry code: (ii) 1-x,1-y,2-z. Notes: (a) Distance between centroids; (b) Perpendicular distance of CgI on ring plan J; (c) Perpendicular distance of CgJ on ring plan I. Slippage = vertical displacement between ring centroids.
 

Acknowledgements

This work was supported by Mentouri-Constantine University, Algeria.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBenslimane, M., Merazig, H. & Daran, J.-C. (2011). Acta Cryst. E67, m115–m116.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMa, J.-F., Jin, Z.-S. & Ni, J.-Z. (1994). Acta Cryst. C50, 1010–1012.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationQin, C., Wang, X.-L., Wang, E.-B. & Xu, L. (2005). Inorg. Chem. Commun. 8, 669-672.  Web of Science CSD CrossRef CAS Google Scholar
First citationQin, C., Wang, X.-L., Wang, E.-B. & Xu, L. (2006). Inorg. Chim. Acta, 359, 417–423.  CrossRef CAS Google Scholar
First citationScott, L. K. & Horrocks, W. D. (1992). J. Inorg. Biochem. 46, 193–205.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Z.-G., Ren, Y.-P., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2002). Inorg. Chem. Commun. 5, 629-632.  Web of Science CSD CrossRef CAS Google Scholar
First citationYan, B., Zhang, H.-J., Wang, S.-B. & Ni, J.-Z. (1997). Mater. Chem. Phys. 51, 92–96.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m584-m585
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds