organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1101-o1102

3-(4-Chloro­phen­­oxy)-1-(4-meth­­oxy­phen­yl)-4-(4-nitro­phen­yl)azetidin-2-one

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and cDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 6 April 2011; accepted 7 April 2011; online 13 April 2011)

In the title compound, C22H17ClN2O5, the nearly planar four-membered β-lactam ring [maximum deviation of 0.016 (1) for the N atom] makes dihedral angles of 53.07 (9), 73.19 (9) and 6.61 (9)° with the chloro-, nitro- and meth­oxy­benzene rings, respectively. The crystal structure is stabilized by C—H⋯O hydrogen bonds, a weak C—H⋯π inter­action and a ππ stacking inter­action [centroid–centroid distance = 3.6513 (8) Å] between the meth­oxy­benzene rings of inversion-related mol­ecules.

Related literature

For general background to β-lactams, see: Banik et al. (2004[Banik, B. K., Becker, F. F. & Banik, I. (2004). Bioorg. Med. Chem. 12, 2523-2528.]); Garud et al. (2009[Garud, D. R., Garud, D. D. & Koketsu, M. (2009). Org. Biomol. Chem. 7, 2591-2598.]); Jarrahpor & Khalili (2007[Jarrahpor, A. & Khalili, D. (2007). Tetrahedron Lett. 48, 7140-7143.]); Jarrahpour & Zarei (2006[Jarrahpour, A. & Zarei, M. (2006). Molecules 11, 49-58.], 2010[Jarrahpour, A. & Zarei, M. (2010). Tetrahedron, 66, 5017-5023.]). For some of our previous reports of the structures of β-lactams, see: Akkurt et al. (2008a[Akkurt, M., Jarrahpour, A., Ebrahimi, E., Gençaslan, M. & Büyükgüngör, O. (2008a). Acta Cryst. E64, o2466-o2467.],b[Akkurt, M., Karaca, S., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2008b). Acta Cryst. E64, o902-o903.], 2011a[Akkurt, M., Jarrahpour, A., Sharghi, H., Badrabady, S. A. T. & Büyükgüngör, O. (2011a). Acta Cryst. E67, o325.],b[Akkurt, M., Türktekin, S., Jarrahpour, A., Badrabady, S. A. T. & Büyükgüngör, O. (2011b). Acta Cryst. E67, o183.]); Baktır et al. (2009[Baktır, Z., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o1623-o1624.]); Yalçın et al. (2009[Yalçın, Ş. P., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o626-o627.]); Çelik et al. (2009[Çelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2522-o2523.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17ClN2O5

  • Mr = 424.83

  • Monoclinic, P 21 /n

  • a = 6.0863 (2) Å

  • b = 20.0855 (7) Å

  • c = 17.3819 (7) Å

  • β = 97.419 (4)°

  • V = 2107.09 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 123 K

  • 0.49 × 0.17 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, England.]) Tmin = 0.901, Tmax = 0.970

  • 20727 measured reflections

  • 10522 independent reflections

  • 7301 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.190

  • S = 1.08

  • 10522 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C16–C21 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O4i 1.00 2.45 3.287 (2) 141
C3—H3A⋯O1ii 1.00 2.29 3.2439 (17) 159
C20—H20A⋯O1iii 0.95 2.50 3.3086 (18) 144
C21—H21A⋯O1 0.95 2.52 3.1397 (18) 123
C6—H6ACg4iv 0.95 2.71 3.4145 (17) 131
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z; (iii) -x+2, -y+1, -z+1; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
The dihedral angles between the mean planes of the rings in the title mol­ecule (°)

  Ring 2 Ring 3 Ring 4
Ring 1 53.07 (9) 73.19 (9) 6.61 (9)
Ring 2   64.42 (7) 46.85 (7)
Ring 3     79.45 (7)
Ring 1 is the N1/C1–C3 β-lactam ring, ring 2 is the C4–C9 benzene ring, ring 3 is the C10–C15 benzene ring and ring 4 is C16–C21 benzene ring.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The β-lactam antibiotics consists of a strained, four-membered, heterocyclic ring, known as the β-lactam ring (Garud et al., 2009). The most literal definition of a β-lactam antibiotics are the monocyclic β-lactams that do not contain another ring fused to the β-lactam one (Jarrahpour & Zarei, 2006). The discovery of the monocyclic β-lactams suggesting that the biological activity of β-lactams was strictly correlated to the presence of a suitably functionalized β-lactam ring (Jarrahpour & Zarei, 2010; Banik et al., 2004). The β-lactam ring systems show many interesting biological properties, such as cholesterol absorption inhibitors, human cytomegalovirus (HCMV) protease inhibitors, thrombin inhibitors, antihyperglycemic, anti-tumour, anti-HIV, human leukocyte elastase (HLE), potential antimalarials, anti-influenza virus, and serine-dependent enzyme inhibitors (Jarrahpor & Khalili, 2007).

As an extension of our work (Baktır et al., 2009; Çelik et al., 2009; Yalçın et al., 2009; Akkurt et al., 2008a,b; Akkurt et al., 2011a,b) on structural characterization of the β-lactam compounds, we herein report on the X-ray crystal structure of the title compound.

In the title molecule, Fig. 1, the β-lactam ring (N1/C1–C3) is nearly planar, with maximum deviations of -0.016 (1) for N1 and 0.015 (1) Å for C1. The C1—N1—C16—C17, N1–C3—C10—C11, O1—C1—C2—O2, C3—C2—O2—C4 and C2—O2—C4—C5 torsion angles are -172.79 (14), -159.77 (12), -60.7 (2), 92.79 (14) and -168.40 (12) °, respectively. The dihedral angles between the ring planes are listed in Table 2.

In the crystal molecules are linked by intermolecular C—H···O hydrogen-bond interactions and a weak C—H···π interaction (Table 1 and Fig. 2). Furthermore, there is a π-π stacking interaction [Cg4···Cg4i = 3.6513 (8) Å, where Cg4 is a centroid of the C16–C21 benzene ring; symmetry code: (i) = 1 - x, 1 - y, 1 - z] between the benzene rings attached to the methoxy group of molecules related by an inversion center.

Related literature top

For general background to β-lactams, see: Banik et al. (2004); Garud et al. (2009); Jarrahpor & Khalili (2007); Jarrahpour & Zarei (2006, 2010). For some of our previous reports of the structures of β-lactams, see: Akkurt et al. (2008a,b, 2011a,b); Baktır et al. (2009); Yalçın et al. (2009); Çelik et al. (2009).

Experimental top

A solution of N-(4-nitrobenzylidene)-4-methoxybenzenamine (1.00 mmol) was stirred with 4-chlorophenoxy acetic acid (1.50 mmol), p-toluenesulfonyl chloride (1.50 mmol) and triethylamine (2.5 mmol) in dry CH2Cl2 at room temperature over night. Then it was washed with HCl 1 N (20 ml), saturated NaHCO3 (20 ml), brine (20 ml), dried over Na2SO4 and the solvent was evaporated under reduced pressure to give the crude product which was then purified by column chromatography over silica gel (7:3 hexane-EtOAc). (Yield 78%; mp: 415–417 K). Elemental analysis: Calc. for C22H17ClN2O5: C, 62.20; H, 4.03; N, 6.59%; Found: C, 62.15; H, 4.07; N, 6.65%.

Refinement top

All H atoms were placed in their calculated positions and refined using a riding model: C—H = 0.98, 1.00 and 0.95 Å, for methyl, methine, and aromatic H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for the methyl H-atoms and 1.2 for all other H-atoms. In the crystal structure there is an 89 Å3 void, but the low electron density (0.67 e.Å-3) in the difference Fourier map suggests no solvent molecule occupying this void.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing and C-H···O hydrogen-bond interactions (dashed lines) of the title compound viewed down the a axis.
3-(4-Chlorophenoxy)-1-(4-methoxyphenyl)-4-(4-nitrophenyl)azetidin-2-one top
Crystal data top
C22H17ClN2O5F(000) = 880
Mr = 424.83Dx = 1.339 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6350 reflections
a = 6.0863 (2) Åθ = 5.1–37.5°
b = 20.0855 (7) ŵ = 0.22 mm1
c = 17.3819 (7) ÅT = 123 K
β = 97.419 (4)°Needle, colourless
V = 2107.09 (13) Å30.49 × 0.17 × 0.14 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
10522 independent reflections
Radiation source: Enhance (Mo) X-ray Source7301 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 10.5081 pixels mm-1θmax = 37.6°, θmin = 5.2°
ω scansh = 106
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 3429
Tmin = 0.901, Tmax = 0.970l = 2927
20727 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0816P)2 + 0.3529P]
where P = (Fo2 + 2Fc2)/3
10522 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C22H17ClN2O5V = 2107.09 (13) Å3
Mr = 424.83Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.0863 (2) ŵ = 0.22 mm1
b = 20.0855 (7) ÅT = 123 K
c = 17.3819 (7) Å0.49 × 0.17 × 0.14 mm
β = 97.419 (4)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
10522 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
7301 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.970Rint = 0.041
20727 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 1.08Δρmax = 0.67 e Å3
10522 reflectionsΔρmin = 0.58 e Å3
272 parameters
Special details top

Experimental. Spectroscopic data for the title c ompound: IR (KBr, cm-1): 1744.5 (CO, β-lactam). 1H-NMR (250 MHz, CDCl3) δ (p.p.m.): 3.67 (OMe, s, 3H), 5.88 (H-4, d, 1H, J = 5.0), 5.95 (H-3, d, 1H, J = 5.0), 6.78–8.14 (aromatic protons as a doublet at 6.80, a doublet at 6.90, a doublet at 7.15, a doublet at 7.23, a doublet at 7.61, a doublet at 8.12, 12H). 13C-NMR (62.9 MHz, CDCl3) δ (p.p.m.): 55.6 (OMe), 60.3 (C-4), 81.3 (C-3), 115.1–156.6 (aromatic carbons), 161.8 (CO, β-lactam).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.37871 (8)1.01738 (2)0.70470 (3)0.0430 (1)
O10.95577 (17)0.64289 (6)0.55371 (7)0.0251 (3)
O20.74828 (16)0.75343 (5)0.65041 (6)0.0193 (2)
O30.5101 (3)0.65839 (9)0.99331 (8)0.0549 (6)
O40.1603 (3)0.67723 (9)0.95892 (8)0.0507 (5)
O50.54345 (18)0.33051 (5)0.59384 (7)0.0258 (3)
N10.62898 (18)0.60647 (6)0.60078 (7)0.0175 (3)
N20.3499 (3)0.66717 (8)0.94411 (8)0.0341 (4)
C10.7794 (2)0.65032 (7)0.57845 (8)0.0184 (3)
C20.6374 (2)0.71011 (7)0.59484 (8)0.0176 (3)
C30.4744 (2)0.65738 (7)0.62320 (8)0.0170 (3)
C40.6499 (2)0.81410 (7)0.66070 (8)0.0175 (3)
C50.7820 (2)0.86043 (7)0.70490 (8)0.0222 (3)
C60.6991 (3)0.92302 (8)0.71847 (9)0.0258 (4)
C70.4823 (3)0.93834 (8)0.68819 (10)0.0266 (4)
C80.3492 (2)0.89266 (8)0.64457 (10)0.0263 (4)
C90.4332 (2)0.82983 (7)0.63096 (9)0.0224 (3)
C100.4462 (2)0.65906 (7)0.70792 (7)0.0165 (3)
C110.2574 (2)0.68941 (7)0.72993 (8)0.0202 (3)
C120.2254 (2)0.69232 (8)0.80772 (8)0.0229 (4)
C130.3852 (3)0.66479 (7)0.86185 (8)0.0223 (3)
C140.5750 (3)0.63433 (8)0.84242 (8)0.0232 (3)
C150.6038 (2)0.63173 (7)0.76442 (8)0.0202 (3)
C160.6116 (2)0.53648 (7)0.59893 (7)0.0166 (3)
C170.4208 (2)0.50585 (7)0.61868 (8)0.0196 (3)
C180.4028 (2)0.43687 (7)0.61633 (8)0.0207 (3)
C190.5751 (2)0.39828 (7)0.59468 (8)0.0193 (3)
C200.7656 (2)0.42899 (7)0.57502 (8)0.0203 (3)
C210.7837 (2)0.49782 (7)0.57686 (8)0.0194 (3)
C220.7363 (3)0.29027 (8)0.59211 (10)0.0280 (4)
H2A0.572700.733700.546500.0210*
H3A0.328900.656300.589200.0200*
H5A0.929200.849100.725800.0270*
H6A0.789000.955000.748000.0310*
H8A0.201700.904000.624100.0320*
H9A0.342800.797900.601500.0270*
H11A0.150100.708200.691500.0240*
H12A0.097100.712700.823100.0270*
H14A0.681900.615800.881200.0280*
H15A0.732300.611100.749500.0240*
H17A0.303500.532100.633700.0230*
H18A0.272800.416000.629500.0250*
H20A0.883200.402700.560300.0240*
H21A0.913200.518700.563100.0230*
H22A0.695500.243200.593900.0420*
H22B0.845300.300900.637000.0420*
H22C0.800300.299100.544200.0420*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0412 (2)0.0256 (2)0.0610 (3)0.0126 (2)0.0016 (2)0.0114 (2)
O10.0172 (4)0.0272 (5)0.0331 (5)0.0022 (4)0.0115 (4)0.0070 (4)
O20.0166 (4)0.0173 (4)0.0233 (4)0.0020 (3)0.0005 (3)0.0029 (3)
O30.0564 (9)0.0853 (13)0.0211 (6)0.0004 (9)0.0024 (6)0.0015 (7)
O40.0568 (9)0.0691 (11)0.0309 (7)0.0223 (8)0.0234 (6)0.0011 (6)
O50.0219 (5)0.0174 (5)0.0383 (6)0.0011 (4)0.0049 (4)0.0006 (4)
N10.0132 (4)0.0185 (5)0.0218 (5)0.0004 (4)0.0063 (4)0.0034 (4)
N20.0454 (8)0.0378 (8)0.0200 (6)0.0035 (7)0.0076 (6)0.0022 (5)
C10.0154 (5)0.0212 (6)0.0191 (5)0.0009 (4)0.0039 (4)0.0037 (4)
C20.0159 (5)0.0188 (5)0.0184 (5)0.0001 (4)0.0029 (4)0.0021 (4)
C30.0125 (4)0.0196 (6)0.0190 (5)0.0020 (4)0.0027 (4)0.0026 (4)
C40.0168 (5)0.0166 (5)0.0193 (5)0.0010 (4)0.0027 (4)0.0002 (4)
C50.0217 (6)0.0207 (6)0.0230 (6)0.0017 (5)0.0015 (5)0.0030 (5)
C60.0273 (6)0.0210 (6)0.0277 (7)0.0020 (6)0.0020 (5)0.0049 (5)
C70.0288 (7)0.0198 (6)0.0312 (7)0.0055 (6)0.0034 (6)0.0038 (5)
C80.0194 (6)0.0236 (7)0.0352 (8)0.0047 (5)0.0008 (5)0.0014 (6)
C90.0165 (5)0.0206 (6)0.0294 (7)0.0008 (5)0.0006 (5)0.0025 (5)
C100.0136 (4)0.0170 (5)0.0190 (5)0.0001 (4)0.0030 (4)0.0021 (4)
C110.0163 (5)0.0228 (6)0.0221 (6)0.0035 (5)0.0045 (4)0.0009 (5)
C120.0224 (6)0.0261 (7)0.0216 (6)0.0028 (5)0.0080 (5)0.0027 (5)
C130.0277 (6)0.0219 (6)0.0180 (5)0.0021 (5)0.0059 (5)0.0033 (5)
C140.0245 (6)0.0235 (6)0.0208 (6)0.0003 (5)0.0002 (5)0.0006 (5)
C150.0168 (5)0.0216 (6)0.0219 (6)0.0026 (5)0.0016 (4)0.0008 (5)
C160.0139 (4)0.0176 (5)0.0185 (5)0.0003 (4)0.0028 (4)0.0032 (4)
C170.0134 (4)0.0201 (6)0.0257 (6)0.0011 (4)0.0046 (4)0.0020 (5)
C180.0147 (5)0.0216 (6)0.0260 (6)0.0010 (5)0.0035 (4)0.0006 (5)
C190.0178 (5)0.0190 (6)0.0208 (6)0.0002 (5)0.0013 (4)0.0014 (4)
C200.0175 (5)0.0210 (6)0.0233 (6)0.0027 (5)0.0056 (4)0.0029 (5)
C210.0157 (5)0.0204 (6)0.0231 (6)0.0004 (5)0.0063 (4)0.0028 (5)
C220.0270 (7)0.0204 (6)0.0372 (8)0.0041 (6)0.0069 (6)0.0013 (6)
Geometric parameters (Å, º) top
Cl1—C71.7456 (17)C13—C141.387 (2)
O1—C11.2160 (16)C14—C151.390 (2)
O2—C21.4061 (17)C16—C171.3957 (18)
O2—C41.3795 (17)C16—C211.3968 (18)
O3—N21.224 (2)C17—C181.390 (2)
O4—N21.231 (3)C18—C191.3943 (18)
O5—C191.3746 (17)C19—C201.3942 (18)
O5—C221.429 (2)C20—C211.387 (2)
N1—C11.3625 (18)C2—H2A1.0000
N1—C31.4756 (18)C3—H3A1.0000
N1—C161.4098 (19)C5—H5A0.9500
N2—C131.474 (2)C6—H6A0.9500
C1—C21.5277 (19)C8—H8A0.9500
C2—C31.5733 (19)C9—H9A0.9500
C3—C101.5048 (18)C11—H11A0.9500
C4—C51.3940 (19)C12—H12A0.9500
C4—C91.3894 (18)C14—H14A0.9500
C5—C61.386 (2)C15—H15A0.9500
C6—C71.391 (3)C17—H17A0.9500
C7—C81.384 (2)C18—H18A0.9500
C8—C91.393 (2)C20—H20A0.9500
C10—C111.3971 (18)C21—H21A0.9500
C10—C151.3938 (18)C22—H22A0.9800
C11—C121.3920 (19)C22—H22B0.9800
C12—C131.379 (2)C22—H22C0.9800
C2—O2—C4117.25 (10)O5—C19—C18116.37 (12)
C19—O5—C22116.49 (11)O5—C19—C20123.73 (12)
C1—N1—C395.86 (11)C18—C19—C20119.90 (13)
C1—N1—C16133.57 (12)C19—C20—C21120.10 (12)
C3—N1—C16130.43 (11)C16—C21—C20120.02 (12)
O3—N2—O4124.14 (15)O2—C2—H2A113.00
O3—N2—C13118.06 (17)C1—C2—H2A113.00
O4—N2—C13117.79 (15)C3—C2—H2A113.00
O1—C1—N1132.67 (14)N1—C3—H3A112.00
O1—C1—C2135.15 (13)C2—C3—H3A112.00
N1—C1—C292.17 (10)C10—C3—H3A112.00
O2—C2—C1112.44 (10)C4—C5—H5A120.00
O2—C2—C3117.87 (11)C6—C5—H5A120.00
C1—C2—C385.64 (10)C5—C6—H6A121.00
N1—C3—C286.24 (9)C7—C6—H6A120.00
N1—C3—C10115.54 (11)C7—C8—H8A120.00
C2—C3—C10116.60 (11)C9—C8—H8A120.00
O2—C4—C5115.60 (11)C4—C9—H9A120.00
O2—C4—C9124.03 (12)C8—C9—H9A120.00
C5—C4—C9120.36 (13)C10—C11—H11A120.00
C4—C5—C6120.17 (13)C12—C11—H11A120.00
C5—C6—C7119.00 (15)C11—C12—H12A121.00
Cl1—C7—C6118.97 (13)C13—C12—H12A121.00
Cl1—C7—C8119.66 (13)C13—C14—H14A121.00
C6—C7—C8121.37 (15)C15—C14—H14A121.00
C7—C8—C9119.47 (13)C10—C15—H15A120.00
C4—C9—C8119.62 (13)C14—C15—H15A120.00
C3—C10—C11118.66 (11)C16—C17—H17A120.00
C3—C10—C15121.71 (11)C18—C17—H17A120.00
C11—C10—C15119.63 (12)C17—C18—H18A120.00
C10—C11—C12120.50 (12)C19—C18—H18A120.00
C11—C12—C13118.11 (13)C19—C20—H20A120.00
N2—C13—C12118.08 (15)C21—C20—H20A120.00
N2—C13—C14118.74 (14)C16—C21—H21A120.00
C12—C13—C14123.17 (13)C20—C21—H21A120.00
C13—C14—C15117.90 (14)O5—C22—H22A109.00
C10—C15—C14120.69 (13)O5—C22—H22B109.00
N1—C16—C17119.76 (12)O5—C22—H22C109.00
N1—C16—C21120.26 (11)H22A—C22—H22B109.00
C17—C16—C21119.99 (13)H22A—C22—H22C109.00
C16—C17—C18119.81 (12)H22B—C22—H22C110.00
C17—C18—C19120.19 (12)
C4—O2—C2—C1170.01 (11)C2—C3—C10—C11101.14 (14)
C4—O2—C2—C392.79 (14)C2—C3—C10—C1578.33 (17)
C2—O2—C4—C5168.40 (12)O2—C4—C5—C6179.78 (13)
C2—O2—C4—C912.45 (19)C9—C4—C5—C61.0 (2)
C22—O5—C19—C18163.97 (13)O2—C4—C9—C8179.94 (13)
C22—O5—C19—C2016.4 (2)C5—C4—C9—C81.0 (2)
C3—N1—C1—O1178.91 (16)C4—C5—C6—C70.8 (2)
C3—N1—C1—C22.36 (11)C5—C6—C7—Cl1179.53 (12)
C16—N1—C1—O15.2 (3)C5—C6—C7—C80.5 (2)
C16—N1—C1—C2173.55 (14)Cl1—C7—C8—C9179.44 (12)
C1—N1—C3—C22.30 (11)C6—C7—C8—C90.4 (3)
C1—N1—C3—C10115.47 (12)C7—C8—C9—C40.6 (2)
C16—N1—C3—C2173.81 (13)C3—C10—C11—C12179.70 (13)
C16—N1—C3—C1068.42 (18)C15—C10—C11—C120.2 (2)
C1—N1—C16—C17172.79 (14)C3—C10—C15—C14179.50 (13)
C1—N1—C16—C216.7 (2)C11—C10—C15—C140.0 (2)
C3—N1—C16—C171.9 (2)C10—C11—C12—C130.3 (2)
C3—N1—C16—C21178.63 (13)C11—C12—C13—N2179.27 (14)
O3—N2—C13—C12162.24 (17)C11—C12—C13—C140.2 (2)
O3—N2—C13—C1418.6 (2)N2—C13—C14—C15179.09 (14)
O4—N2—C13—C1218.5 (2)C12—C13—C14—C150.0 (2)
O4—N2—C13—C14160.65 (17)C13—C14—C15—C100.1 (2)
O1—C1—C2—O260.7 (2)N1—C16—C17—C18179.53 (12)
O1—C1—C2—C3179.12 (17)C21—C16—C17—C180.0 (2)
N1—C1—C2—O2120.62 (12)N1—C16—C21—C20179.90 (12)
N1—C1—C2—C32.21 (10)C17—C16—C21—C200.4 (2)
O2—C2—C3—N1115.16 (12)C16—C17—C18—C190.3 (2)
O2—C2—C3—C101.60 (17)C17—C18—C19—O5179.93 (13)
C1—C2—C3—N12.04 (9)C17—C18—C19—C200.3 (2)
C1—C2—C3—C10114.72 (12)O5—C19—C20—C21179.54 (13)
N1—C3—C10—C11159.77 (12)C18—C19—C20—C210.1 (2)
N1—C3—C10—C1520.76 (18)C19—C20—C21—C160.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C16–C21 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O4i1.002.453.287 (2)141
C3—H3A···O1ii1.002.293.2439 (17)159
C15—H15A···N10.952.582.9127 (18)101
C20—H20A···O1iii0.952.503.3086 (18)144
C21—H21A···O10.952.523.1397 (18)123
C6—H6A···Cg4iv0.952.713.4145 (17)131
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x1, y, z; (iii) x+2, y+1, z+1; (iv) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC22H17ClN2O5
Mr424.83
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)6.0863 (2), 20.0855 (7), 17.3819 (7)
β (°) 97.419 (4)
V3)2107.09 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.49 × 0.17 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.901, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
20727, 10522, 7301
Rint0.041
(sin θ/λ)max1)0.858
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.190, 1.08
No. of reflections10522
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.58

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C16–C21 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O4i1.002.453.287 (2)141
C3—H3A···O1ii1.002.293.2439 (17)159
C20—H20A···O1iii0.952.503.3086 (18)144
C21—H21A···O10.952.523.1397 (18)123
C6—H6A···Cg4iv0.952.713.4145 (17)131
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x1, y, z; (iii) x+2, y+1, z+1; (iv) x+3/2, y+1/2, z+3/2.
The dihedral angles between the mean planes of the rings in the title molecule (°) top
Ring 2Ring 3Ring 4
Ring 153.07 (9)73.19 (9)6.61 (9)
Ring 264.42 (7)46.85 (7)
Ring 379.45 (7)
Ring 1 is the N1/C1–C3 β-lactam ring, ring 2 is the C4–C9 benzene ring, ring 3 is the C10–C15 benzene ring and ring 4 is C16–C21 benzene ring.
 

Acknowledgements

AJ and SATB thank the Shiraz University Research Council for financial support (grant No. 89-GR–SC-23).

References

First citationAkkurt, M., Jarrahpour, A., Ebrahimi, E., Gençaslan, M. & Büyükgüngör, O. (2008a). Acta Cryst. E64, o2466–o2467.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAkkurt, M., Jarrahpour, A., Sharghi, H., Badrabady, S. A. T. & Büyükgüngör, O. (2011a). Acta Cryst. E67, o325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Karaca, S., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2008b). Acta Cryst. E64, o902–o903.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAkkurt, M., Türktekin, S., Jarrahpour, A., Badrabady, S. A. T. & Büyükgüngör, O. (2011b). Acta Cryst. E67, o183.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBaktır, Z., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o1623–o1624.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBanik, B. K., Becker, F. F. & Banik, I. (2004). Bioorg. Med. Chem. 12, 2523–2528.  Web of Science CrossRef PubMed CAS Google Scholar
First citationÇelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2522–o2523.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGarud, D. R., Garud, D. D. & Koketsu, M. (2009). Org. Biomol. Chem. 7, 2591–2598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJarrahpor, A. & Khalili, D. (2007). Tetrahedron Lett. 48, 7140–7143.  Google Scholar
First citationJarrahpour, A. & Zarei, M. (2006). Molecules 11, 49-58.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJarrahpour, A. & Zarei, M. (2010). Tetrahedron, 66, 5017–5023.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYalçın, Ş. P., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o626–o627.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1101-o1102
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds