organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1141-o1142

(22E,24R)-3β,5α,9α-Trihy­dr­oxy­ergosta-7,22-dien-6-one monohydrate

aKey Laboratory of Marine Drugs of the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, People's Republic of China
*Correspondence e-mail: weimingzhu@ouc.edu.cn

(Received 7 April 2011; accepted 11 April 2011; online 16 April 2011)

The title ergosterol compound, C28H44O4·H2O, is composed of four fused rings (three six-membered and one five-membered) and a side chain. It is a derivative of ergosterol and was isolated from a marine-derived halotolerant fungus, Cladosporium cladosporioides PXP-49. In the crystal, mol­ecules are assembled by classical O—H⋯O hydrogen bonds, forming a two-dimensional network, with base vectors [100] and [010]. The absolute configuration was assigned from the measured optical rotation and reference to the literature. An intra­molecular O—H⋯O hydrogen bond occurs.

Related literature

For general background to the cytotoxic activity of similar compounds, see: Valisolalao et al. (1983[Valisolalao, J., Luu, B. & Ourisson, G. (1983). Tetrahedron, 39, 2779-2785.]); Kawagishi et al. (1988[Kawagishi, H., Katsumi, R., Sazawa, T., Mizuno, T., Hagiwara, T. & Nakamura, T. (1988). Phytochemistry, 27, 2777-2779.]); Takaishi et al. (1991[Takaishi, Y., Uda, M., Ohashi, T., Nakano, K., Murakami, K. & Tomimatsu, T. (1991). Phytochemistry, 30, 4117-4120.]); Ishizuka et al. (1997[Ishizuka, T., Yaoita, Y. & Kikuchi, M. (1997). Chem. Pharm. Bull. 45, 1756-1760.]); Yaoita et al. (1998[Yaoita, Y., Amemiya, K., Ohnuma, H., Furumura, K., Masaki, A., Matsuki, T. & Kikuchi, M. (1998). Chem. Pharm. Bull. 46, 944-950.]); Sun et al. (2006[Sun, Y., Tian, L., Huang, J., Li, W. & Pei, Y. H. (2006). Nat. Prod. Res. 20, 381-384.]); Tang et al. (2007[Tang, H., Cheng, P., Lin, H., Gao, W. & Lu, Y. (2007). Zhong Yao Cai, 30, 655-657.]); Cui et al. (2010[Cui, C. M., Li, X. M., Meng, L., Li, C. S., Huang, C. G. & Wang, B. G. (2010). J. Nat. Prod. 73, 1780-1784.]). For details of ring conformations and puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Baginski et al. (1989[Baginski, M., Tempczyk, A. & Borowski, E. (1989). Eur. Biophys. J. 17, 159-166.]); Gonzalez et al. (2002[Gonzalez, A. G., Leon, F., Rivera, A., Padron, J. I., Gonzalez-Plata, J., Zuluaga, J. C., Quintana, J., Estevez, F. & Bermejo, J. (2002). J. Nat. Prod. 65, 417-421.]).

[Scheme 1]

Experimental

Crystal data
  • C28H44O4·H2O

  • Mr = 462.65

  • Monoclinic, P 21

  • a = 6.7605 (8) Å

  • b = 7.2626 (11) Å

  • c = 28.461 (2) Å

  • β = 96.083 (1)°

  • V = 1389.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.40 × 0.35 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.988

  • 7040 measured reflections

  • 2641 independent reflections

  • 1557 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.108

  • S = 1.02

  • 2641 reflections

  • 304 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5i 0.82 1.93 2.749 (4) 180
O2—H2⋯O5 0.82 1.90 2.716 (4) 177
O4—H4⋯O2 0.82 1.97 2.642 (4) 139
O5—H5C⋯O1ii 0.85 1.81 2.642 (4) 165
O5—H5D⋯O3iii 0.85 1.93 2.761 (4) 165
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title ergosterol compound was first isolated from the fungus Polyporus versicolor as a cytotoxic principle to hepatoma cells (Valisolalao et al., 1983). This compound, and other related compounds from different genera of mushrooms, for eg. Bugula neritina L., and endophytic fungi derived from marine red alga, are of interest due to their cytotoxic activity (Kawagishi et al., 1988; Ishizuka et al., 1997; Takaishi et al., 1991; Yaoita et al., 1998; Sun et al., 2006; Tang et al., 2007; Cui et al., 2010). We isolated the title compound as part of our ongoing studies on characterizing bioactive metabolites from marine-derived halotolerant fungi, and we report herein on its crystal structure.

As illustrated in Fig. 1 the title compound is composed of four fused rings, three six-membered and one five-membered, and a side chain in which the terminal methyl groups undergo a certain amount of thermal motion. One of the six-membered rings (C1-C5,C10) adopts a chair conformation, with puckering parameters (Cremer & Pople, 1975) of Q = 0.559 (4) Å, θ = 0.1 (4) ° and ϕ = 109 (19) °, the second six-membered ring (C5-C10) adopts a half-chair conformation, with puckering parameters Q = 0.500 (4) Å, θ = 51.1 (5) ° and ϕ = 326.3 (6) °, while the third six-membered ring (C8,C9,C11-C14) adopts a boat conformation, the puckering parameters are Q = 0.541 (4) Å, θ = 13.1 (4) ° and ϕ = 233 (2) °. The five-membered ring (C13-C17) has an envelope conformation on atom C13 (Baginski et al., 1989; Gonzalez et al., 2002), the corresponding puckering parameters are Q = 0.435 (4) Å and ϕ = 187.6 (6) °.

In the crystal the molecules are linked, via the water molecule of crystallization, by classical O—H···O hydrogen bonds to form a two-dimensional network with base vectors [100] and [010] (Fig. 2 and Table 1).

Related literature top

For general background to the cytotoxic activity of similar compounds, see: Valisolalao et al. (1983); Kawagishi et al. (1988); Takaishi et al. (1991); Ishizuka et al. (1997); Yaoita et al. (1998); Sun et al. (2006); Tang et al. (2007); Cui et al. (2010). For details of ring conformations and puckering parameters, see: Cremer & Pople (1975); Baginski et al. (1989); Gonzalez et al. (2002).

Experimental top

The isolated halotolerant fugal strain Cladosporium cladosporioides PXP-49, was isolated from roots of Rhizophora stylosa collected in the mangrove conservation area of Wenchang, Hainan, China. The working strain was cultured under static conditions at 298 K for 45 days in two hundred 1 L conical flasks containing the liquid medium (300 ml/flask) composed of maltose (20 g/L), mannitol (20 g/L), glucose (10 g/L), monosodium glutamate (10 g/L), KH2PO4 (5 g/L), MgSO4 (0.3 g/L), yeast extract (3 g/L), corn steep liquor (1 g/L), NaCl (100 g/L) after adjusting its pH to 10.0. The fermented whole broth (60 L) was filtered through cheese cloth to separate into supernatant and mycelia. The mycelia was extracted three times with acetone. The acetone solution was concentrated under reduced pressure to afford an aqueous solution. The aqueous solution was extracted three times with ethyl acetate to give an ethyl acetate solution which was concentrated under reduced pressure to give a crude extract (28 g).The crude extract was subjected to chromatography over silica gel column using a stepwise gradient elution of CHCl3-petroleum ether (0–100%) and then MeOH-CHCl3 (0–50%), to yield five fractions (Fr.1-Fr.5). The Fr.2 was further purified by another silica gel column using a step gradient elution of petroleum ether:acetone, followed by chromatographing on a Sephadex LH-20 eluting with CHCl3—MeOH (1:1) to afford three subfractions (Fr.2–6-1-Fr.2–6-3). The title compound (5.5 mg) was purified by extensive preparative HPLC using MeOH-H2O (9:1) from Fr.2–6-1. The single crystals were obtained by slow evaporation of CHCl3—MeOH (1:1) solution at 298 K.

Refinement top

All the H-atoms were positioned geometrically and allowed to ride on their parent atom: O-Hwater = 0.85 Å, O-Hhydroxyl = 0.82 Å, C-H = 0.93, 096, 0.97 and 0.98 Å for CH(allyl), CH3, CH2, and CH(methine) H-atoms, respectively, with Uiso(H) = k × Ueq(O,C), where k = 1.5 for OHhydroxyl and CH3 H-atoms, and k = 1.2 for all other H-atoms. The terminal methyl groups of the side chain undergo a certain amount of thermal motion. As mentioned above, the absolute configuration could not be determined crystallographically and the Friedel pairs were merged. The absolute configuration was assigned from the measured optical rotation and reference to the literature.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate the O-H···O hydrogen bonds (see Table 1 for details).
[Figure 2] Fig. 2. A view along the b-axis of the two-dimensional hydrogen-bonded network of the title compound, formed by O—H···O hydrogen bonds [dashed lines; see Table 1 for details; H-atoms not involved in hydrogen bonding have been omitted for clarity; Symmetry codes:(i) 1 + x, y, z; (ii) 1 - x, 1/2 + y, 1 - z; (iii) 1 - x, -1/2 + y, 1 - z].
(22E,24R)-3β,5α,9α-Trihydroxyergosta-7,22-dien-6-one monohydrate top
Crystal data top
C28H44O4·H2OF(000) = 508
Mr = 462.65Dx = 1.106 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1224 reflections
a = 6.7605 (8) Åθ = 2.9–18.6°
b = 7.2626 (11) ŵ = 0.07 mm1
c = 28.461 (2) ÅT = 298 K
β = 96.083 (1)°Needle, colourless
V = 1389.5 (3) Å30.40 × 0.35 × 0.17 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2641 independent reflections
Radiation source: fine-focus sealed tube1557 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.971, Tmax = 0.988k = 88
7040 measured reflectionsl = 2233
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.036P)2]
where P = (Fo2 + 2Fc2)/3
2641 reflections(Δ/σ)max = 0.001
304 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C28H44O4·H2OV = 1389.5 (3) Å3
Mr = 462.65Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.7605 (8) ŵ = 0.07 mm1
b = 7.2626 (11) ÅT = 298 K
c = 28.461 (2) Å0.40 × 0.35 × 0.17 mm
β = 96.083 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2641 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1557 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.988Rint = 0.057
7040 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0511 restraint
wR(F2) = 0.108H-atom parameters constrained
S = 1.02Δρmax = 0.14 e Å3
2641 reflectionsΔρmin = 0.15 e Å3
304 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8875 (4)0.0054 (4)0.52563 (10)0.0738 (10)
H10.99090.06240.52350.111*
O20.4476 (4)0.2358 (4)0.60388 (9)0.0554 (8)
H20.38630.22700.57750.083*
O30.5562 (4)0.6238 (4)0.55751 (10)0.0686 (9)
O40.4840 (4)0.2365 (4)0.69723 (9)0.0618 (8)
H40.42120.21080.67180.093*
O50.2328 (4)0.1982 (4)0.51822 (8)0.0572 (8)
H5C0.18250.30000.50820.069*
H5D0.30380.15710.49760.069*
C10.8286 (7)0.1178 (6)0.65380 (14)0.0609 (12)
H1A0.92110.10580.68210.073*
H1B0.71490.03990.65760.073*
C20.9293 (6)0.0501 (6)0.61159 (15)0.0665 (13)
H2A1.05130.11880.60970.080*
H2B0.96400.07870.61610.080*
C30.7952 (6)0.0726 (6)0.56552 (15)0.0595 (12)
H30.67580.00190.56800.071*
C40.7289 (6)0.2714 (6)0.55897 (13)0.0515 (11)
H4A0.63750.28160.53040.062*
H4B0.84370.34780.55510.062*
C50.6271 (6)0.3417 (5)0.60092 (13)0.0469 (11)
C60.5590 (6)0.5400 (6)0.59528 (15)0.0506 (11)
C70.4882 (6)0.6255 (6)0.63688 (13)0.0513 (11)
H70.41960.73640.63310.062*
C80.5173 (6)0.5519 (5)0.67999 (14)0.0454 (10)
C90.6322 (6)0.3742 (5)0.69000 (14)0.0481 (11)
C100.7588 (6)0.3185 (5)0.64904 (14)0.0477 (11)
C110.7618 (7)0.3829 (6)0.73789 (14)0.0615 (13)
H11A0.80540.25920.74670.074*
H11B0.87950.45540.73400.074*
C120.6586 (7)0.4650 (6)0.77811 (14)0.0663 (13)
H12A0.75310.47360.80610.080*
H12B0.55190.38380.78520.080*
C130.5735 (6)0.6555 (6)0.76590 (13)0.0510 (11)
C140.4259 (6)0.6303 (6)0.72149 (13)0.0469 (10)
H140.33120.53690.73000.056*
C150.3080 (6)0.8098 (6)0.71665 (14)0.0564 (12)
H15A0.17460.78870.70140.068*
H15B0.37380.89960.69840.068*
C160.3026 (7)0.8755 (6)0.76823 (15)0.0661 (13)
H16A0.16740.87270.77670.079*
H16B0.35231.00050.77190.079*
C170.4362 (6)0.7424 (6)0.80017 (14)0.0596 (12)
H170.35030.64410.81010.072*
C180.5296 (7)0.8390 (7)0.84525 (15)0.0718 (14)
H180.60670.94390.83540.086*
C190.3696 (8)0.9138 (8)0.87252 (16)0.0796 (15)
H190.28870.82640.88480.096*
C200.3289 (8)1.0835 (8)0.88128 (17)0.0869 (16)
H200.41261.17090.87000.104*
C210.1657 (9)1.1575 (9)0.90707 (19)0.1016 (19)
H210.10191.05470.92190.122*
C220.2406 (12)1.2938 (10)0.9449 (2)0.131 (3)
H220.30671.39490.92990.157*
C230.0845 (14)1.3730 (13)0.9714 (3)0.211 (4)
H23A0.00141.27600.98110.316*
H23B0.00521.45780.95160.316*
H23C0.14541.43660.99880.316*
C240.9393 (6)0.4470 (6)0.64853 (14)0.0608 (12)
H24A1.04170.40930.67250.091*
H24B0.90000.57110.65460.091*
H24C0.98880.44090.61820.091*
C250.7358 (6)0.7927 (6)0.75607 (15)0.0681 (14)
H25A0.79810.75270.72910.102*
H25B0.83350.79960.78310.102*
H25C0.67750.91200.74990.102*
C260.6712 (9)0.7170 (9)0.87720 (17)0.110 (2)
H26A0.70940.77980.90640.165*
H26B0.78760.69090.86170.165*
H26C0.60550.60380.88350.165*
C270.0112 (11)1.2509 (12)0.8717 (2)0.186 (4)
H27A0.06811.35950.85930.280*
H27B0.10281.28430.88720.280*
H27C0.02851.16750.84620.280*
C280.3933 (12)1.1993 (12)0.9799 (2)0.175 (3)
H28A0.33761.08800.99100.262*
H28B0.42931.28001.00610.262*
H28C0.50951.17050.96460.262*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.081 (2)0.070 (2)0.076 (2)0.0171 (19)0.0347 (17)0.0278 (17)
O20.0557 (18)0.0629 (19)0.0479 (16)0.0209 (16)0.0069 (13)0.0030 (14)
O30.092 (2)0.068 (2)0.0496 (18)0.0010 (18)0.0244 (17)0.0116 (16)
O40.081 (2)0.0486 (18)0.0589 (18)0.0105 (17)0.0215 (16)0.0065 (14)
O50.0665 (19)0.0589 (18)0.0477 (16)0.0020 (15)0.0129 (14)0.0026 (14)
C10.073 (3)0.053 (3)0.058 (3)0.005 (3)0.010 (2)0.002 (2)
C20.073 (3)0.055 (3)0.075 (3)0.007 (3)0.022 (3)0.002 (3)
C30.062 (3)0.060 (3)0.061 (3)0.005 (2)0.023 (2)0.014 (2)
C40.053 (3)0.056 (3)0.048 (3)0.013 (2)0.012 (2)0.007 (2)
C50.054 (3)0.041 (3)0.047 (3)0.011 (2)0.011 (2)0.001 (2)
C60.056 (3)0.047 (3)0.049 (3)0.011 (2)0.009 (2)0.004 (2)
C70.062 (3)0.048 (3)0.046 (3)0.000 (2)0.013 (2)0.001 (2)
C80.050 (3)0.041 (3)0.045 (3)0.010 (2)0.006 (2)0.001 (2)
C90.055 (3)0.042 (3)0.048 (3)0.001 (2)0.009 (2)0.005 (2)
C100.056 (3)0.041 (2)0.047 (3)0.004 (2)0.010 (2)0.0045 (19)
C110.075 (3)0.060 (3)0.049 (3)0.012 (3)0.002 (2)0.003 (2)
C120.084 (3)0.066 (3)0.048 (3)0.008 (3)0.004 (2)0.000 (2)
C130.058 (3)0.054 (3)0.042 (2)0.006 (2)0.008 (2)0.004 (2)
C140.049 (2)0.046 (3)0.047 (2)0.009 (2)0.009 (2)0.001 (2)
C150.060 (3)0.054 (3)0.056 (3)0.003 (2)0.009 (2)0.007 (2)
C160.065 (3)0.071 (3)0.065 (3)0.008 (3)0.016 (3)0.017 (3)
C170.066 (3)0.061 (3)0.054 (3)0.003 (3)0.014 (2)0.007 (2)
C180.087 (4)0.078 (3)0.051 (3)0.003 (3)0.008 (3)0.012 (3)
C190.101 (4)0.084 (4)0.056 (3)0.005 (4)0.018 (3)0.014 (3)
C200.111 (4)0.089 (4)0.063 (3)0.007 (4)0.016 (3)0.018 (3)
C210.125 (5)0.109 (5)0.072 (4)0.042 (4)0.017 (4)0.019 (4)
C220.160 (7)0.132 (6)0.102 (5)0.053 (5)0.025 (5)0.033 (5)
C230.236 (10)0.210 (10)0.191 (9)0.069 (9)0.052 (7)0.078 (8)
C240.058 (3)0.065 (3)0.060 (3)0.008 (3)0.007 (2)0.013 (2)
C250.059 (3)0.082 (4)0.064 (3)0.009 (3)0.009 (2)0.020 (3)
C260.128 (5)0.132 (5)0.066 (3)0.040 (5)0.008 (3)0.022 (4)
C270.166 (7)0.252 (11)0.135 (6)0.113 (8)0.015 (5)0.017 (7)
C280.214 (9)0.195 (9)0.111 (5)0.036 (8)0.004 (6)0.038 (6)
Geometric parameters (Å, º) top
O1—C31.438 (4)C14—H140.9800
O1—H10.8200C15—C161.548 (5)
O2—C51.447 (4)C15—H15A0.9700
O2—H20.8200C15—H15B0.9700
O3—C61.234 (4)C16—C171.550 (6)
O4—C91.446 (5)C16—H16A0.9700
O4—H40.8200C16—H16B0.9700
O5—H5C0.8500C17—C181.538 (5)
O5—H5D0.8500C17—H170.9800
C1—C21.524 (5)C18—C191.498 (6)
C1—C101.533 (5)C18—C261.531 (7)
C1—H1A0.9700C18—H180.9800
C1—H1B0.9700C19—C201.293 (6)
C2—C31.522 (6)C19—H190.9300
C2—H2A0.9700C20—C211.489 (7)
C2—H2B0.9700C20—H200.9300
C3—C41.517 (6)C21—C221.510 (8)
C3—H30.9800C21—C271.531 (8)
C4—C51.528 (5)C21—H210.9800
C4—H4A0.9700C22—C231.478 (9)
C4—H4B0.9700C22—C281.520 (9)
C5—C61.516 (6)C22—H220.9800
C5—C101.561 (5)C23—H23A0.9600
C6—C71.461 (5)C23—H23B0.9600
C7—C81.334 (5)C23—H23C0.9600
C7—H70.9300C24—H24A0.9600
C8—C141.502 (5)C24—H24B0.9600
C8—C91.518 (5)C24—H24C0.9600
C9—C111.542 (5)C25—H25A0.9600
C9—C101.571 (5)C25—H25B0.9600
C10—C241.537 (5)C25—H25C0.9600
C11—C121.524 (5)C26—H26A0.9600
C11—H11A0.9700C26—H26B0.9600
C11—H11B0.9700C26—H26C0.9600
C12—C131.524 (6)C27—H27A0.9600
C12—H12A0.9700C27—H27B0.9600
C12—H12B0.9700C27—H27C0.9600
C13—C251.529 (6)C28—H28A0.9600
C13—C141.536 (5)C28—H28B0.9600
C13—C171.551 (5)C28—H28C0.9600
C14—C151.527 (5)
C3—O1—H1109.5C14—C15—C16104.0 (3)
C5—O2—H2109.5C14—C15—H15A111.0
C9—O4—H4109.5C16—C15—H15A111.0
H5C—O5—H5D108.0C14—C15—H15B111.0
C2—C1—C10113.3 (4)C16—C15—H15B111.0
C2—C1—H1A108.9H15A—C15—H15B109.0
C10—C1—H1A108.9C15—C16—C17107.1 (3)
C2—C1—H1B108.9C15—C16—H16A110.3
C10—C1—H1B108.9C17—C16—H16A110.3
H1A—C1—H1B107.7C15—C16—H16B110.3
C3—C2—C1111.7 (4)C17—C16—H16B110.3
C3—C2—H2A109.3H16A—C16—H16B108.6
C1—C2—H2A109.3C18—C17—C16111.5 (4)
C3—C2—H2B109.3C18—C17—C13119.3 (4)
C1—C2—H2B109.3C16—C17—C13103.6 (3)
H2A—C2—H2B107.9C18—C17—H17107.3
O1—C3—C4111.9 (4)C16—C17—H17107.3
O1—C3—C2112.0 (3)C13—C17—H17107.3
C4—C3—C2110.4 (3)C19—C18—C26110.0 (4)
O1—C3—H3107.4C19—C18—C17110.0 (4)
C4—C3—H3107.4C26—C18—C17114.0 (4)
C2—C3—H3107.4C19—C18—H18107.5
C3—C4—C5111.9 (3)C26—C18—H18107.5
C3—C4—H4A109.2C17—C18—H18107.5
C5—C4—H4A109.2C20—C19—C18128.7 (6)
C3—C4—H4B109.2C20—C19—H19115.6
C5—C4—H4B109.2C18—C19—H19115.6
H4A—C4—H4B107.9C19—C20—C21128.5 (6)
O2—C5—C6105.3 (3)C19—C20—H20115.7
O2—C5—C4108.5 (3)C21—C20—H20115.7
C6—C5—C4113.1 (3)C20—C21—C22112.2 (5)
O2—C5—C10107.2 (3)C20—C21—C27109.0 (5)
C6—C5—C10109.5 (3)C22—C21—C27109.4 (6)
C4—C5—C10112.8 (3)C20—C21—H21108.7
O3—C6—C7121.4 (4)C22—C21—H21108.7
O3—C6—C5122.5 (4)C27—C21—H21108.7
C7—C6—C5116.1 (4)C23—C22—C21114.6 (7)
C8—C7—C6123.1 (4)C23—C22—C28108.2 (7)
C8—C7—H7118.4C21—C22—C28108.9 (6)
C6—C7—H7118.4C23—C22—H22108.3
C7—C8—C14122.6 (4)C21—C22—H22108.3
C7—C8—C9122.4 (4)C28—C22—H22108.3
C14—C8—C9114.8 (3)C22—C23—H23A109.5
O4—C9—C8105.4 (3)C22—C23—H23B109.5
O4—C9—C11103.9 (3)H23A—C23—H23B109.5
C8—C9—C11111.3 (3)C22—C23—H23C109.5
O4—C9—C10111.6 (3)H23A—C23—H23C109.5
C8—C9—C10112.8 (3)H23B—C23—H23C109.5
C11—C9—C10111.3 (3)C10—C24—H24A109.5
C1—C10—C24109.9 (3)C10—C24—H24B109.5
C1—C10—C5108.8 (3)H24A—C24—H24B109.5
C24—C10—C5107.8 (3)C10—C24—H24C109.5
C1—C10—C9111.5 (3)H24A—C24—H24C109.5
C24—C10—C9110.2 (3)H24B—C24—H24C109.5
C5—C10—C9108.6 (3)C13—C25—H25A109.5
C12—C11—C9114.7 (4)C13—C25—H25B109.5
C12—C11—H11A108.6H25A—C25—H25B109.5
C9—C11—H11A108.6C13—C25—H25C109.5
C12—C11—H11B108.6H25A—C25—H25C109.5
C9—C11—H11B108.6H25B—C25—H25C109.5
H11A—C11—H11B107.6C18—C26—H26A109.5
C11—C12—C13112.1 (3)C18—C26—H26B109.5
C11—C12—H12A109.2H26A—C26—H26B109.5
C13—C12—H12A109.2C18—C26—H26C109.5
C11—C12—H12B109.2H26A—C26—H26C109.5
C13—C12—H12B109.2H26B—C26—H26C109.5
H12A—C12—H12B107.9C21—C27—H27A109.5
C12—C13—C25111.9 (4)C21—C27—H27B109.5
C12—C13—C14106.0 (3)H27A—C27—H27B109.5
C25—C13—C14110.1 (3)C21—C27—H27C109.5
C12—C13—C17117.5 (3)H27A—C27—H27C109.5
C25—C13—C17109.8 (3)H27B—C27—H27C109.5
C14—C13—C17100.7 (3)C22—C28—H28A109.5
C8—C14—C15120.5 (3)C22—C28—H28B109.5
C8—C14—C13114.0 (3)H28A—C28—H28B109.5
C15—C14—C13105.1 (3)C22—C28—H28C109.5
C8—C14—H14105.3H28A—C28—H28C109.5
C15—C14—H14105.3H28B—C28—H28C109.5
C13—C14—H14105.3
C10—C1—C2—C356.2 (5)C8—C9—C10—C545.5 (4)
C1—C2—C3—O1178.8 (3)C11—C9—C10—C5171.4 (3)
C1—C2—C3—C455.8 (5)O4—C9—C11—C1269.0 (4)
O1—C3—C4—C5178.9 (3)C8—C9—C11—C1244.0 (5)
C2—C3—C4—C555.6 (4)C10—C9—C11—C12170.8 (4)
C3—C4—C5—O263.5 (4)C9—C11—C12—C1354.7 (5)
C3—C4—C5—C6179.9 (3)C11—C12—C13—C2561.0 (5)
C3—C4—C5—C1055.2 (4)C11—C12—C13—C1459.0 (5)
O2—C5—C6—O3106.8 (4)C11—C12—C13—C17170.6 (4)
C4—C5—C6—O311.5 (5)C7—C8—C14—C155.1 (6)
C10—C5—C6—O3138.2 (4)C9—C8—C14—C15179.3 (3)
O2—C5—C6—C770.7 (4)C7—C8—C14—C13131.5 (4)
C4—C5—C6—C7170.9 (3)C9—C8—C14—C1353.0 (4)
C10—C5—C6—C744.3 (5)C12—C13—C14—C858.9 (4)
O3—C6—C7—C8169.0 (4)C25—C13—C14—C862.3 (5)
C5—C6—C7—C813.4 (6)C17—C13—C14—C8178.2 (3)
C6—C7—C8—C14173.5 (3)C12—C13—C14—C15167.1 (3)
C6—C7—C8—C91.7 (6)C25—C13—C14—C1571.7 (4)
C7—C8—C9—O4106.3 (4)C17—C13—C14—C1544.1 (4)
C14—C8—C9—O469.2 (4)C8—C14—C15—C16161.5 (3)
C7—C8—C9—C11141.6 (4)C13—C14—C15—C1631.2 (4)
C14—C8—C9—C1142.8 (4)C14—C15—C16—C175.9 (4)
C7—C8—C9—C1015.7 (5)C15—C16—C17—C18150.7 (4)
C14—C8—C9—C10168.7 (3)C15—C16—C17—C1321.1 (4)
C2—C1—C10—C2464.8 (4)C12—C13—C17—C1881.5 (5)
C2—C1—C10—C553.0 (5)C25—C13—C17—C1847.9 (5)
C2—C1—C10—C9172.7 (3)C14—C13—C17—C18164.0 (4)
O2—C5—C10—C167.0 (4)C12—C13—C17—C16153.8 (4)
C6—C5—C10—C1179.2 (3)C25—C13—C17—C1676.8 (4)
C4—C5—C10—C152.4 (4)C14—C13—C17—C1639.3 (4)
O2—C5—C10—C24173.8 (3)C16—C17—C18—C1958.6 (5)
C6—C5—C10—C2460.1 (4)C13—C17—C18—C19179.4 (4)
C4—C5—C10—C2466.8 (4)C16—C17—C18—C26177.3 (4)
O2—C5—C10—C954.4 (4)C13—C17—C18—C2656.5 (6)
C6—C5—C10—C959.3 (4)C26—C18—C19—C20119.0 (6)
C4—C5—C10—C9173.8 (3)C17—C18—C19—C20114.6 (6)
O4—C9—C10—C146.7 (4)C18—C19—C20—C21177.8 (5)
C8—C9—C10—C1165.2 (3)C19—C20—C21—C22130.0 (7)
C11—C9—C10—C168.8 (4)C19—C20—C21—C27108.7 (8)
O4—C9—C10—C24169.1 (3)C20—C21—C22—C23179.5 (6)
C8—C9—C10—C2472.4 (4)C27—C21—C22—C2358.5 (9)
C11—C9—C10—C2453.5 (4)C20—C21—C22—C2859.1 (8)
O4—C9—C10—C573.0 (4)C27—C21—C22—C28179.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.821.932.749 (4)180
O2—H2···O50.821.902.716 (4)177
O4—H4···O20.821.972.642 (4)139
O5—H5C···O1ii0.851.812.642 (4)165
O5—H5D···O3iii0.851.932.761 (4)165
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1; (iii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC28H44O4·H2O
Mr462.65
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)6.7605 (8), 7.2626 (11), 28.461 (2)
β (°) 96.083 (1)
V3)1389.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.35 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.971, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
7040, 2641, 1557
Rint0.057
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.108, 1.02
No. of reflections2641
No. of parameters304
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.821.932.749 (4)180
O2—H2···O50.821.902.716 (4)177
O4—H4···O20.821.972.642 (4)139
O5—H5C···O1ii0.851.812.642 (4)165
O5—H5D···O3iii0.851.932.761 (4)165
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1; (iii) x+1, y1/2, z+1.
 

Acknowledgements

This work was supported by grants from the Special Fund for Marine Scientific Research in the Public Inter­est of China (No. 2010418022–3) and from the PCSIRT (No. IRT0944).

References

First citationBaginski, M., Tempczyk, A. & Borowski, E. (1989). Eur. Biophys. J. 17, 159–166.  CAS PubMed Web of Science Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCui, C. M., Li, X. M., Meng, L., Li, C. S., Huang, C. G. & Wang, B. G. (2010). J. Nat. Prod. 73, 1780–1784.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGonzalez, A. G., Leon, F., Rivera, A., Padron, J. I., Gonzalez-Plata, J., Zuluaga, J. C., Quintana, J., Estevez, F. & Bermejo, J. (2002). J. Nat. Prod. 65, 417–421.  Web of Science PubMed CAS Google Scholar
First citationIshizuka, T., Yaoita, Y. & Kikuchi, M. (1997). Chem. Pharm. Bull. 45, 1756–1760.  CrossRef CAS Google Scholar
First citationKawagishi, H., Katsumi, R., Sazawa, T., Mizuno, T., Hagiwara, T. & Nakamura, T. (1988). Phytochemistry, 27, 2777–2779.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSun, Y., Tian, L., Huang, J., Li, W. & Pei, Y. H. (2006). Nat. Prod. Res. 20, 381–384.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTakaishi, Y., Uda, M., Ohashi, T., Nakano, K., Murakami, K. & Tomimatsu, T. (1991). Phytochemistry, 30, 4117–4120.  CrossRef CAS Google Scholar
First citationTang, H., Cheng, P., Lin, H., Gao, W. & Lu, Y. (2007). Zhong Yao Cai, 30, 655–657.  PubMed CAS Google Scholar
First citationValisolalao, J., Luu, B. & Ourisson, G. (1983). Tetrahedron, 39, 2779–2785.  CrossRef CAS Google Scholar
First citationYaoita, Y., Amemiya, K., Ohnuma, H., Furumura, K., Masaki, A., Matsuki, T. & Kikuchi, M. (1998). Chem. Pharm. Bull. 46, 944–950.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1141-o1142
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds