organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1189

3,4-Bis(2-pyrid­yl)-5-(3-pyrid­yl)-4H-1,2,4-triazole

aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: tjnulicp@gmail.com

(Received 13 April 2011; accepted 15 April 2011; online 22 April 2011)

In the title mol­ecule, C17H12N6, the 2-pyridyl rings in the 3- and 4-positions and the 3-pyridyl ring in the 5-position make dihedral angles of 29.78 (16), 67.06 (16) and 32.97 (16)°, respectively, with the triazole group. The dihedral angle between the two 2-pyridyl rings is 65.72 (15)°. The dihedral angles between the 3-pyridyl ring and the two 2-pyridyl rings in the 3- and 4-positions are 61.28 (15) and 63.11 (15)°, respectively. In the crystal, C—H⋯π and ππ inter­actions [centroid-centroid distance = 3.6248 (19) Å] link the mol­ecules, forming a two-dimensional network.

Related literature

For the synthesis of the title compound, see: Klingele & Brooker (2004[Klingele, M. H. & Brooker, S. (2004). Eur. J. Org. Chem. pp. 3422-3434.]). For related structures and background references, see: Guo et al. (2010[Guo, W., Yang, Y.-Y. & Du, M. (2010). Inorg. Chem. Commun. 13 863-866.]); Yang et al. (2010[Yang, Y.-Y., Guo, W. & Du, M. (2010). Inorg. Chem. Commun. 13 1195-1198.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12N6

  • Mr = 300.33

  • Monoclinic, P 21 /c

  • a = 5.7621 (9) Å

  • b = 15.250 (3) Å

  • c = 16.640 (3) Å

  • β = 105.023 (5)°

  • V = 1412.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.982

  • 6865 measured reflections

  • 2496 independent reflections

  • 1407 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.129

  • S = 1.08

  • 2496 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the N1/C8–C12 and N6/C13–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg2i 0.93 2.94 3.765 (4) 149
C4—H4⋯Cg4 0.93 2.92 3.616 (3) 133
Symmetry code: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In continuation of our work on tripyridine-substituted triazole derivatives (Guo et al., 2010; Yang et al., 2010), we now describe the synthesis and crystal structure of the title compound. It consists of two 2-pyridyl groups and one 3-pyridyl ring attached to a triazole ring (Fig. 1).

The three pyridyl rings in the 3-, 4-, and 5-positions deviate from the triazole ring by 29.78 (16)°, 67.06 (16)°, and 32.97 (16)°, respectively. The dihedral angle between the two 2-pyridyl groups is 65.72 (15)°. In addition, the dihedral angles between the 3-pyridyl ring and the two 2-pyridyl rings in the 3- and 4-positions are 61.28 (15)° and 63.11 (15)°, respectively.

In the crystal, there exists a ππ interaction involving the 2-pyridyl rings in 3-positions of molecules related by an inversion center [centroid-centroid distance = 3.6248 (19) Å]. The molecular packing is also stabilized by two types of C—H···π interactions; the intramolecular C4—H4···Cg4 [Cg4 is the centroid of pyridine ring (N6/C13-C17)] and the intermolecular C3—H3···Cg2i [Cg2 is the centroid of pyridine ring (N1/C8-C12)] interactions (see Table 1 and Fig. 2 for details). This leads to the formation of a two-dimensional network.

Related literature top

For the synthesis of the title compound, see: Klingele & Brooker (2004). For related structures and background references, see: Guo et al. (2010); Yang et al. (2010).

Experimental top

The title compound was prepared from a mixture of N-(pyridin-2-yl)pyridine-2-carbothioamide and pyridine-3-carbohydrazide using the method described by Klingele et al. (2004).

Refinement top

All H atoms were initially located in a difference Fourier map. The C—H atoms were then constrained to ideal geometry and refined as riding atoms: C—H = 0.93 Å, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title molecule showing the numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the a axis of the C—H···π (red dashed lines) and ππ (green dashed lines) interactions in the crystal packing of the title compound (see Table 1 for details).
3,4-Bis(2-pyridyl)-5-(3-pyridyl)-4H-1,2,4-triazole top
Crystal data top
C17H12N6F(000) = 624
Mr = 300.33Dx = 1.413 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1374 reflections
a = 5.7621 (9) Åθ = 2.5–22.0°
b = 15.250 (3) ŵ = 0.09 mm1
c = 16.640 (3) ÅT = 296 K
β = 105.023 (5)°Block, colourless
V = 1412.2 (4) Å30.28 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2496 independent reflections
Radiation source: fine-focus sealed tube1407 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 56
Tmin = 0.975, Tmax = 0.982k = 1818
6865 measured reflectionsl = 1917
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.6358P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2496 reflectionsΔρmax = 0.15 e Å3
209 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0124 (17)
Crystal data top
C17H12N6V = 1412.2 (4) Å3
Mr = 300.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.7621 (9) ŵ = 0.09 mm1
b = 15.250 (3) ÅT = 296 K
c = 16.640 (3) Å0.28 × 0.22 × 0.20 mm
β = 105.023 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2496 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1407 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.982Rint = 0.046
6865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.08Δρmax = 0.15 e Å3
2496 reflectionsΔρmin = 0.16 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8676 (5)0.8964 (2)0.69324 (16)0.0620 (8)
N20.6880 (5)0.68510 (18)0.75149 (15)0.0531 (7)
N30.4816 (5)0.63917 (17)0.71292 (16)0.0525 (7)
N40.5220 (4)0.74876 (16)0.63138 (13)0.0402 (6)
N50.2135 (5)0.57144 (18)0.56487 (19)0.0646 (8)
N60.6492 (4)0.79687 (17)0.51665 (15)0.0527 (7)
C10.0072 (6)0.6053 (2)0.6135 (2)0.0524 (8)
H10.01950.60120.67100.063*
C20.2431 (6)0.5784 (2)0.4816 (2)0.0572 (9)
H20.38220.55570.44630.069*
C30.0776 (6)0.6174 (2)0.4471 (2)0.0585 (9)
H30.10550.62060.38960.070*
C40.1285 (5)0.6514 (2)0.49739 (19)0.0479 (8)
H40.24200.67810.47460.057*
C50.1657 (5)0.64570 (19)0.58214 (19)0.0436 (8)
C60.3855 (5)0.6773 (2)0.64142 (17)0.0418 (7)
C70.7095 (5)0.7501 (2)0.70183 (18)0.0438 (8)
C80.9078 (5)0.8133 (2)0.72220 (17)0.0449 (8)
C91.0537 (7)0.9537 (2)0.7146 (2)0.0653 (10)
H91.03031.01100.69510.078*
C101.2745 (6)0.9304 (3)0.7638 (2)0.0680 (10)
H101.39790.97150.77710.082*
C111.3130 (6)0.8464 (3)0.7933 (2)0.0639 (10)
H111.46200.82970.82680.077*
C121.1283 (5)0.7875 (2)0.77272 (19)0.0547 (9)
H121.15030.73030.79250.066*
C130.4854 (5)0.80537 (19)0.55974 (17)0.0395 (7)
C140.2895 (6)0.8593 (2)0.5398 (2)0.0525 (9)
H140.18110.86210.57260.063*
C150.2599 (7)0.9094 (2)0.4689 (2)0.0685 (11)
H150.13000.94750.45290.082*
C160.4233 (7)0.9027 (2)0.4218 (2)0.0689 (11)
H160.40530.93580.37370.083*
C170.6135 (6)0.8462 (2)0.4475 (2)0.0625 (10)
H170.72340.84170.41540.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0686 (19)0.064 (2)0.0505 (18)0.0029 (17)0.0101 (14)0.0032 (15)
N20.0565 (17)0.0589 (18)0.0425 (15)0.0064 (15)0.0106 (13)0.0061 (14)
N30.0548 (17)0.0546 (18)0.0482 (17)0.0043 (14)0.0133 (14)0.0059 (14)
N40.0393 (14)0.0462 (15)0.0344 (14)0.0038 (12)0.0082 (11)0.0007 (12)
N50.0652 (19)0.0567 (19)0.072 (2)0.0041 (15)0.0186 (17)0.0024 (16)
N60.0512 (16)0.0626 (19)0.0468 (16)0.0017 (13)0.0174 (13)0.0008 (14)
C10.059 (2)0.049 (2)0.053 (2)0.0062 (17)0.0216 (18)0.0058 (16)
C20.049 (2)0.058 (2)0.060 (2)0.0030 (17)0.0076 (18)0.0059 (18)
C30.054 (2)0.073 (3)0.049 (2)0.0043 (18)0.0135 (18)0.0028 (17)
C40.0454 (19)0.054 (2)0.0474 (19)0.0025 (16)0.0183 (16)0.0041 (15)
C50.0412 (18)0.0410 (19)0.0516 (19)0.0034 (15)0.0175 (16)0.0033 (15)
C60.0460 (18)0.0450 (19)0.0377 (17)0.0049 (16)0.0166 (14)0.0034 (15)
C70.0448 (18)0.0488 (19)0.0374 (17)0.0069 (16)0.0103 (14)0.0016 (16)
C80.0463 (18)0.051 (2)0.0362 (17)0.0074 (16)0.0092 (14)0.0033 (15)
C90.074 (3)0.060 (2)0.057 (2)0.011 (2)0.008 (2)0.0068 (18)
C100.061 (2)0.079 (3)0.064 (2)0.018 (2)0.016 (2)0.024 (2)
C110.050 (2)0.074 (3)0.062 (2)0.003 (2)0.0043 (18)0.019 (2)
C120.052 (2)0.058 (2)0.050 (2)0.0095 (18)0.0043 (16)0.0075 (16)
C130.0370 (16)0.0458 (19)0.0362 (16)0.0002 (15)0.0105 (14)0.0012 (14)
C140.0479 (19)0.059 (2)0.053 (2)0.0133 (17)0.0176 (16)0.0079 (17)
C150.065 (2)0.068 (3)0.067 (2)0.019 (2)0.008 (2)0.020 (2)
C160.072 (3)0.081 (3)0.050 (2)0.005 (2)0.010 (2)0.022 (2)
C170.065 (2)0.081 (3)0.047 (2)0.014 (2)0.0237 (18)0.0002 (19)
Geometric parameters (Å, º) top
N1—C81.354 (4)C4—H40.9300
N1—C91.357 (4)C5—C61.470 (4)
N2—C71.316 (4)C7—C81.467 (4)
N2—N31.386 (3)C8—C121.386 (4)
N3—C61.311 (3)C9—C101.369 (5)
N4—C71.373 (3)C9—H90.9300
N4—C61.379 (4)C10—C111.371 (5)
N4—C131.442 (3)C10—H100.9300
N5—C21.355 (4)C11—C121.366 (4)
N5—C11.355 (4)C11—H110.9300
N6—C131.331 (3)C12—H120.9300
N6—C171.345 (4)C13—C141.367 (4)
C1—C51.384 (4)C14—C151.378 (4)
C1—H10.9300C14—H140.9300
C2—C31.370 (4)C15—C161.376 (5)
C2—H20.9300C15—H150.9300
C3—C41.366 (4)C16—C171.373 (5)
C3—H30.9300C16—H160.9300
C4—C51.373 (4)C17—H170.9300
C8—N1—C9117.3 (3)N1—C8—C7118.8 (3)
C7—N2—N3107.4 (2)C12—C8—C7119.3 (3)
C6—N3—N2107.8 (2)N1—C9—C10122.6 (3)
C7—N4—C6104.8 (2)N1—C9—H9118.7
C7—N4—C13127.7 (2)C10—C9—H9118.7
C6—N4—C13127.4 (2)C9—C10—C11119.7 (3)
C2—N5—C1116.1 (3)C9—C10—H10120.2
C13—N6—C17115.7 (3)C11—C10—H10120.2
N5—C1—C5123.3 (3)C12—C11—C10118.8 (3)
N5—C1—H1118.3C12—C11—H11120.6
C5—C1—H1118.3C10—C11—H11120.6
N5—C2—C3123.1 (3)C11—C12—C8119.8 (3)
N5—C2—H2118.5C11—C12—H12120.1
C3—C2—H2118.5C8—C12—H12120.1
C4—C3—C2119.8 (3)N6—C13—C14125.8 (3)
C4—C3—H3120.1N6—C13—N4114.5 (2)
C2—C3—H3120.1C14—C13—N4119.7 (3)
C3—C4—C5118.9 (3)C13—C14—C15116.9 (3)
C3—C4—H4120.5C13—C14—H14121.6
C5—C4—H4120.5C15—C14—H14121.6
C4—C5—C1118.7 (3)C16—C15—C14119.7 (3)
C4—C5—C6123.1 (3)C16—C15—H15120.1
C1—C5—C6118.2 (3)C14—C15—H15120.1
N3—C6—N4109.9 (3)C17—C16—C15118.6 (3)
N3—C6—C5123.5 (3)C17—C16—H16120.7
N4—C6—C5126.6 (3)C15—C16—H16120.7
N2—C7—N4110.1 (3)N6—C17—C16123.4 (3)
N2—C7—C8123.0 (3)N6—C17—H17118.3
N4—C7—C8126.9 (3)C16—C17—H17118.3
N1—C8—C12121.8 (3)
C7—N2—N3—C60.2 (3)C9—N1—C8—C121.0 (4)
C2—N5—C1—C50.5 (5)C9—N1—C8—C7178.7 (3)
C1—N5—C2—C30.3 (5)N2—C7—C8—N1149.0 (3)
N5—C2—C3—C40.0 (5)N4—C7—C8—N130.4 (4)
C2—C3—C4—C50.1 (5)N2—C7—C8—C1228.8 (4)
C3—C4—C5—C10.2 (4)N4—C7—C8—C12151.7 (3)
C3—C4—C5—C6177.6 (3)C8—N1—C9—C100.4 (5)
N5—C1—C5—C40.5 (5)N1—C9—C10—C110.1 (5)
N5—C1—C5—C6178.0 (3)C9—C10—C11—C120.0 (5)
N2—N3—C6—N40.7 (3)C10—C11—C12—C80.5 (5)
N2—N3—C6—C5178.8 (3)N1—C8—C12—C111.1 (5)
C7—N4—C6—N30.8 (3)C7—C8—C12—C11178.8 (3)
C13—N4—C6—N3176.5 (3)C17—N6—C13—C140.3 (4)
C7—N4—C6—C5178.6 (3)C17—N6—C13—N4177.2 (3)
C13—N4—C6—C53.0 (4)C7—N4—C13—N665.1 (4)
C4—C5—C6—N3145.5 (3)C6—N4—C13—N6109.6 (3)
C1—C5—C6—N331.9 (4)C7—N4—C13—C14117.1 (3)
C4—C5—C6—N433.9 (5)C6—N4—C13—C1468.2 (4)
C1—C5—C6—N4148.7 (3)N6—C13—C14—C150.2 (5)
N3—N2—C7—N40.3 (3)N4—C13—C14—C15177.6 (3)
N3—N2—C7—C8179.8 (3)C13—C14—C15—C160.5 (5)
C6—N4—C7—N20.7 (3)C14—C15—C16—C170.4 (5)
C13—N4—C7—N2176.3 (3)C13—N6—C17—C160.5 (5)
C6—N4—C7—C8179.8 (3)C15—C16—C17—N60.2 (5)
C13—N4—C7—C84.2 (5)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the N1/C8–C12 and N6/C13–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg2i0.932.943.765 (4)149
C4—H4···Cg40.932.923.616 (3)133
Symmetry code: (i) x1, y+1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC17H12N6
Mr300.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.7621 (9), 15.250 (3), 16.640 (3)
β (°) 105.023 (5)
V3)1412.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
6865, 2496, 1407
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.129, 1.08
No. of reflections2496
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the N1/C8–C12 and N6/C13–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg2i0.932.943.765 (4)149
C4—H4···Cg40.932.923.616 (3)133
Symmetry code: (i) x1, y+1/2, z3/2.
 

Acknowledgements

This work was supported financially by Tianjin Normal University (52X09004).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, W., Yang, Y.-Y. & Du, M. (2010). Inorg. Chem. Commun. 13 863–866.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlingele, M. H. & Brooker, S. (2004). Eur. J. Org. Chem. pp. 3422–3434.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y.-Y., Guo, W. & Du, M. (2010). Inorg. Chem. Commun. 13 1195–1198.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1189
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds