organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1226

3-(4-Chloro­phenyl­sulfon­yl)-5-iso­propyl-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 19 April 2011; accepted 20 April 2011; online 29 April 2011)

In the title mol­ecule, C18H17ClO3S, the 4-chloro­phenyl ring makes a dihedral angle of 77.03 (5)° with the mean plane of the benzofuran fragment. In the crystal structure, the mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the structures of related 3-aryl­sulfonyl-5-isopropyl-2-methyl-1-benzofuran derivatives, see: Choi et al. (2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1257.], 2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1067.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17ClO3S

  • Mr = 348.83

  • Monoclinic, P 21 /c

  • a = 11.4851 (4) Å

  • b = 11.3194 (4) Å

  • c = 13.0600 (4) Å

  • β = 101.475 (2)°

  • V = 1663.92 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.29 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.660, Tmax = 0.746

  • 14572 measured reflections

  • 3643 independent reflections

  • 3109 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.08

  • 3643 reflections

  • 211 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12C⋯O3i 0.96 2.57 3.489 (3) 160
C11—H11BCgii 0.96 2.81 3.562 (3) 136
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds containing a benzofuran ring have recently drawn considerable attention due to their interesting pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009; Galal et al., 2009; Khan et al., 2005). These compounds occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing program of the substituent effect on the solid state structures of 3-arylsulfonyl-5-isopropyl-2-methyl-1-benzofuran analogues (Choi et al., 2008, 2010), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the 4-chlorophenyl ring and the mean plane of the benzofuran fragment is 77.03 (5)°. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds between a methyl H atom and the O atom of the sulfonyl group (Table 1; C12—H12C···O3i). The crystal packing (Fig. 3) is further stabilized by intermolecular C—H···π interactions between a methyl H atom of the isopropyl group and the benzene ring of an adjacent molecule (Table 1; C10—H11B···Cgii, Cg is the centroid of the C2–C7 benzene ring).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the structures of related 3-arylsulfonyl-5-isopropyl-2-methyl-1-benzofuran derivatives, see: Choi et al. (2008, 2010).

Experimental top

77% 3-chloroperoxybenzoic acid (560 mg, 2.5 mmol) was added in small portions to a stirred solution of 3-(4-chlorophenylsulfanyl)-5-isopropyl-2-methyl-1-benzofuran (380 mg, 1.2 mmol) in dichloromethane (40 ml) at 273 K. After being stirred at room temperature for 6 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (benzene) to afford the title compound as a colourless solid [yield 71%, m.p. 409–410 K; Rf = 0.65 (benzene)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model: C—H = 0.93 Å for aryl, 0.98 Å for methine, and 0.96 Å for methyl H atoms, with Uiso(H) = 1.2Ueq(C) for aryl and methine, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view along the a axis of the C—H···O interactions (dotted lines) in the crystal structure of the title compound. [See Table 1 for details; Symmetry codes: (i) x, -y + 1/2, z + 1/2; (iii) x, -y + 1/2, z - 1/2]
[Figure 3] Fig. 3. A view along the c axis of the C—H···π interactions (dotted lines) in the crystal structure of the title compound. [See Table 1 for details; Symmetry codes: (ii) - x + 1, y -1/2, - z + 1/2; (iv) -x + 1, y + 1/2, -z + 1/2]
3-(4-Chlorophenylsulfonyl)-5-isopropyl-2-methyl-1-benzofuran top
Crystal data top
C18H17ClO3SF(000) = 728
Mr = 348.83Dx = 1.392 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5946 reflections
a = 11.4851 (4) Åθ = 2.4–28.3°
b = 11.3194 (4) ŵ = 0.37 mm1
c = 13.0600 (4) ÅT = 296 K
β = 101.475 (2)°Block, colourless
V = 1663.92 (10) Å30.29 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3643 independent reflections
Radiation source: rotating anode3109 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.040
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 1.8°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1414
Tmin = 0.660, Tmax = 0.746l = 1616
14572 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.120H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.8346P]
where P = (Fo2 + 2Fc2)/3
3643 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.67 e Å3
1 restraintΔρmin = 0.65 e Å3
Crystal data top
C18H17ClO3SV = 1663.92 (10) Å3
Mr = 348.83Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4851 (4) ŵ = 0.37 mm1
b = 11.3194 (4) ÅT = 296 K
c = 13.0600 (4) Å0.29 × 0.20 × 0.18 mm
β = 101.475 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3643 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3109 reflections with I > 2σ(I)
Tmin = 0.660, Tmax = 0.746Rint = 0.040
14572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.120H-atom parameters constrained
S = 1.08Δρmax = 0.67 e Å3
3643 reflectionsΔρmin = 0.65 e Å3
211 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.26041 (5)0.75171 (5)0.02985 (5)0.04730 (19)
S10.05170 (4)0.34612 (5)0.20282 (4)0.02918 (16)
O10.28084 (13)0.32071 (12)0.46858 (10)0.0284 (3)
O20.04776 (13)0.39127 (15)0.24196 (13)0.0410 (4)
O30.03725 (14)0.24367 (13)0.13660 (12)0.0364 (4)
C10.16557 (17)0.31448 (17)0.30843 (15)0.0259 (4)
C20.26193 (16)0.23122 (16)0.30977 (14)0.0234 (4)
C30.29613 (17)0.15214 (17)0.23947 (15)0.0267 (4)
H30.25210.14540.17180.032*
C40.39669 (18)0.08375 (18)0.27190 (15)0.0276 (4)
C50.46245 (17)0.09257 (17)0.37270 (14)0.0290 (4)
H50.52920.04520.39300.035*
C60.42883 (17)0.17475 (17)0.44745 (14)0.0279 (4)
H60.47200.18270.51530.033*
C70.32941 (17)0.23906 (16)0.41025 (14)0.0242 (4)
C80.18122 (18)0.36468 (18)0.40469 (16)0.0287 (4)
C90.4355 (2)0.0030 (2)0.19646 (17)0.0356 (5)
H90.37470.00180.13210.043*
C100.5518 (3)0.0338 (3)0.1676 (3)0.0635 (8)
H10A0.54440.11240.13950.095*
H10B0.57080.01970.11630.095*
H10C0.61400.03200.22880.095*
C110.4420 (3)0.1283 (2)0.2381 (2)0.0586 (8)
H11A0.50580.13440.29780.088*
H11B0.45600.18180.18480.088*
H11C0.36840.14820.25810.088*
C120.1135 (2)0.4515 (2)0.45385 (18)0.0420 (6)
H12A0.05300.48650.40130.063*
H12B0.16620.51190.48740.063*
H12C0.07720.41240.50480.063*
C130.10801 (17)0.46178 (18)0.13593 (16)0.0289 (4)
C140.1036 (2)0.5775 (2)0.17029 (17)0.0358 (5)
H140.06930.59440.22740.043*
C150.1502 (2)0.6673 (2)0.11922 (19)0.0383 (5)
H150.14840.74500.14190.046*
C160.19963 (18)0.6399 (2)0.03376 (18)0.0339 (5)
C170.2032 (2)0.5257 (2)0.00179 (18)0.0368 (5)
H170.23630.50920.05970.044*
C180.15686 (19)0.4358 (2)0.04978 (16)0.0336 (5)
H180.15850.35830.02670.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0377 (3)0.0432 (4)0.0619 (4)0.0010 (2)0.0123 (3)0.0175 (3)
S10.0243 (3)0.0286 (3)0.0343 (3)0.00487 (19)0.0049 (2)0.0052 (2)
O10.0352 (7)0.0273 (7)0.0242 (7)0.0024 (6)0.0093 (6)0.0011 (5)
O20.0282 (8)0.0458 (10)0.0512 (9)0.0108 (7)0.0136 (7)0.0117 (8)
O30.0346 (8)0.0310 (8)0.0399 (8)0.0000 (6)0.0015 (7)0.0003 (6)
C10.0260 (9)0.0242 (9)0.0283 (9)0.0041 (7)0.0076 (7)0.0036 (8)
C20.0235 (9)0.0224 (9)0.0247 (9)0.0009 (7)0.0057 (7)0.0031 (7)
C30.0297 (10)0.0274 (10)0.0222 (9)0.0030 (8)0.0034 (8)0.0001 (7)
C40.0303 (10)0.0250 (10)0.0288 (9)0.0043 (8)0.0092 (8)0.0019 (8)
C50.0251 (9)0.0283 (11)0.0336 (10)0.0041 (8)0.0056 (8)0.0052 (8)
C60.0281 (9)0.0292 (10)0.0246 (9)0.0026 (8)0.0012 (8)0.0031 (8)
C70.0282 (9)0.0221 (9)0.0238 (9)0.0024 (7)0.0090 (7)0.0014 (7)
C80.0327 (10)0.0245 (10)0.0319 (10)0.0034 (8)0.0133 (8)0.0041 (8)
C90.0426 (12)0.0338 (12)0.0312 (10)0.0136 (9)0.0095 (9)0.0016 (9)
C100.073 (2)0.0551 (18)0.077 (2)0.0068 (14)0.0497 (17)0.0074 (15)
C110.096 (2)0.0326 (13)0.0543 (16)0.0061 (14)0.0326 (16)0.0058 (11)
C120.0532 (14)0.0375 (13)0.0400 (12)0.0143 (11)0.0209 (11)0.0020 (10)
C130.0253 (9)0.0287 (10)0.0321 (10)0.0072 (8)0.0041 (8)0.0051 (8)
C140.0398 (11)0.0320 (12)0.0373 (11)0.0078 (9)0.0117 (9)0.0019 (9)
C150.0431 (12)0.0269 (11)0.0455 (12)0.0044 (9)0.0101 (10)0.0010 (9)
C160.0254 (10)0.0342 (12)0.0412 (12)0.0041 (8)0.0045 (8)0.0100 (9)
C170.0351 (11)0.0397 (13)0.0384 (11)0.0087 (9)0.0141 (9)0.0055 (9)
C180.0355 (11)0.0306 (11)0.0354 (11)0.0091 (9)0.0086 (9)0.0017 (9)
Geometric parameters (Å, º) top
Cl1—C161.735 (2)C9—C101.517 (4)
S1—O21.4352 (15)C9—H90.9800
S1—O31.4364 (16)C10—H10A0.9600
S1—C11.739 (2)C10—H10B0.9600
S1—C131.766 (2)C10—H10C0.9600
O1—C81.369 (2)C11—H11A0.9600
O1—C71.384 (2)C11—H11B0.9600
C1—C81.359 (3)C11—H11C0.9600
C1—C21.451 (3)C12—H12A0.9600
C2—C71.388 (3)C12—H12B0.9600
C2—C31.394 (3)C12—H12C0.9600
C3—C41.385 (3)C13—C181.385 (3)
C3—H30.9300C13—C141.388 (3)
C4—C51.385 (3)C14—C151.381 (3)
C4—C91.519 (3)C14—H140.9300
C5—C61.4551 (17)C15—C161.384 (3)
C5—H50.9300C15—H150.9300
C6—C71.360 (3)C16—C171.377 (3)
C6—H60.9300C17—C181.383 (3)
C8—C121.477 (3)C17—H170.9300
C9—C111.516 (3)C18—H180.9300
O2—S1—O3119.81 (10)C9—C10—H10A109.5
O2—S1—C1108.49 (9)C9—C10—H10B109.5
O3—S1—C1106.86 (9)H10A—C10—H10B109.5
O2—S1—C13107.93 (9)C9—C10—H10C109.5
O3—S1—C13108.09 (10)H10A—C10—H10C109.5
C1—S1—C13104.68 (9)H10B—C10—H10C109.5
C8—O1—C7106.68 (15)C9—C11—H11A109.5
C8—C1—C2107.47 (17)C9—C11—H11B109.5
C8—C1—S1126.02 (15)H11A—C11—H11B109.5
C2—C1—S1126.50 (15)C9—C11—H11C109.5
C7—C2—C3119.10 (17)H11A—C11—H11C109.5
C7—C2—C1104.54 (16)H11B—C11—H11C109.5
C3—C2—C1136.35 (18)C8—C12—H12A109.5
C4—C3—C2119.01 (18)C8—C12—H12B109.5
C4—C3—H3120.5H12A—C12—H12B109.5
C2—C3—H3120.5C8—C12—H12C109.5
C3—C4—C5120.95 (17)H12A—C12—H12C109.5
C3—C4—C9119.83 (18)H12B—C12—H12C109.5
C5—C4—C9119.22 (17)C18—C13—C14120.6 (2)
C4—C5—C6121.10 (17)C18—C13—S1119.47 (17)
C4—C5—H5119.4C14—C13—S1119.90 (16)
C6—C5—H5119.4C15—C14—C13119.7 (2)
C7—C6—C5114.74 (17)C15—C14—H14120.1
C7—C6—H6122.6C13—C14—H14120.1
C5—C6—H6122.6C14—C15—C16119.0 (2)
C6—C7—O1124.24 (17)C14—C15—H15120.5
C6—C7—C2125.10 (17)C16—C15—H15120.5
O1—C7—C2110.65 (16)C17—C16—C15121.8 (2)
C1—C8—O1110.66 (17)C17—C16—Cl1118.80 (17)
C1—C8—C12134.1 (2)C15—C16—Cl1119.43 (18)
O1—C8—C12115.19 (18)C16—C17—C18119.1 (2)
C11—C9—C10111.3 (2)C16—C17—H17120.5
C11—C9—C4111.85 (18)C18—C17—H17120.5
C10—C9—C4111.7 (2)C17—C18—C13119.8 (2)
C11—C9—H9107.2C17—C18—H18120.1
C10—C9—H9107.2C13—C18—H18120.1
C4—C9—H9107.2
O2—S1—C1—C824.7 (2)S1—C1—C8—O1179.01 (14)
O3—S1—C1—C8155.17 (18)C2—C1—C8—C12177.8 (2)
C13—S1—C1—C890.33 (19)S1—C1—C8—C123.0 (4)
O2—S1—C1—C2156.20 (17)C7—O1—C8—C10.3 (2)
O3—S1—C1—C225.73 (19)C7—O1—C8—C12178.10 (17)
C13—S1—C1—C288.77 (18)C3—C4—C9—C11122.0 (2)
C8—C1—C2—C70.0 (2)C5—C4—C9—C1157.6 (3)
S1—C1—C2—C7179.20 (14)C3—C4—C9—C10112.5 (2)
C8—C1—C2—C3178.7 (2)C5—C4—C9—C1067.9 (3)
S1—C1—C2—C32.0 (3)O2—S1—C13—C18146.81 (17)
C7—C2—C3—C40.1 (3)O3—S1—C13—C1815.87 (19)
C1—C2—C3—C4178.8 (2)C1—S1—C13—C1897.77 (18)
C2—C3—C4—C50.4 (3)O2—S1—C13—C1433.5 (2)
C2—C3—C4—C9179.98 (18)O3—S1—C13—C14164.47 (17)
C3—C4—C5—C60.6 (3)C1—S1—C13—C1481.89 (18)
C9—C4—C5—C6179.76 (18)C18—C13—C14—C151.2 (3)
C4—C5—C6—C70.5 (3)S1—C13—C14—C15178.50 (17)
C5—C6—C7—O1178.91 (16)C13—C14—C15—C160.6 (3)
C5—C6—C7—C20.2 (3)C14—C15—C16—C170.2 (3)
C8—O1—C7—C6178.93 (18)C14—C15—C16—Cl1179.07 (17)
C8—O1—C7—C20.3 (2)C15—C16—C17—C180.5 (3)
C3—C2—C7—C60.0 (3)Cl1—C16—C17—C18178.81 (17)
C1—C2—C7—C6179.07 (18)C16—C17—C18—C130.1 (3)
C3—C2—C7—O1179.21 (16)C14—C13—C18—C170.9 (3)
C1—C2—C7—O10.2 (2)S1—C13—C18—C17178.76 (16)
C2—C1—C8—O10.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C12—H12C···O3i0.962.573.489 (3)160
C11—H11B···Cgii0.962.813.562 (3)136
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H17ClO3S
Mr348.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.4851 (4), 11.3194 (4), 13.0600 (4)
β (°) 101.475 (2)
V3)1663.92 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.29 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.660, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
14572, 3643, 3109
Rint0.040
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.08
No. of reflections3643
No. of parameters211
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.65

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C12—H12C···O3i0.962.573.489 (3)160
C11—H11B···Cgii0.962.813.562 (3)136
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by a Dong-eui University Foundation Grant (2011).

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1257.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1067.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1226
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds