metal-organic compounds
(OC-6-35)-(2,2′-Bipyridine-κ2N,N′)dimethyl(3-sulfidopropionato-κ2S,O)platinum(IV)
aDepartment of Chemistry, University of Western Ontario, London, Canada N6A 5B7
*Correspondence e-mail: pudd@uwo.ca
The title complex, [Pt(CH3)2(SCH2CH2CO2)(C10H8N2)], is formed by the unusual of the disulfide, R2S2 (R = CH2CH2CO2H), to (2,2′-bipyridine)dimethylplatinum(II) with elimination of RSH. The product contains an unusual six-membered thiolate–carboxylate chelate ring. This slightly distorted octahedral complex exhibits cis angles ranging from 77.55 (11) to 97.30 (8)° due to the presence of the thiolate–carboxylate chelate ring and the constrained bipyridine group. The crystal packing appears to be controlled by a combination of π-stacking [centroid–centroid distance = 3.611 (2) Å] and C—H⋯O interactions.
Related literature
For general background to metal complexes with thiolate–carboxylate chelates, see: Henderson et al. (2000); McCready & Puddephatt (2011); Phillips & Burford (2008). For the utility and application of disulfides and their reactivity towards transition metals, see: Aye et al. (1993); Bonnington et al. (2008); Wei et al. (2005). For normal ranges of bond angles at platinum(IV) between cis ligands, see: Achar et al. (1993); Aye et al. (1988). For interplanar spacing between bipyridine rings in platinum(IV) complexes of 2,2′-bipyridine, see: Au et al. (2009). For the preparation of dimethyl(2,2′-bipyridine)platinum(II), see: Monaghan & Puddephatt (1984).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811013626/tk2735sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811013626/tk2735Isup2.hkl
Dimethyl(2,2'-bipyridine)platinum(II) was prepared according to a previously published procedure by Monaghan and Puddephatt (1984). Spectroscopic Analysis, IR (ν, cm-1, KBr disk): ν(Aromatic CH) = 3107, ν(aliphatic CH) = 2847 and 2781; ν(CC) = 1601, 1465 and 1443. 1H NMR in acetone-d6: δ = 0.97 [s, 6H, 2J(PtH) = 86 Hz, MePt); 7.70 [dd, 2H, 3J(H5H6) = 6 Hz, 3J(H5H4) = 7 Hz, H5]; 8.33 [dd, 2H, 3J(H4H5) = 7 Hz, 3J(H4H3) = 8 Hz, H4]; 8.43 [d, 2H, 3J(H3H4) = 8 Hz, H3]; 9.23 [d, 2H, 3J(H6H5) = 6 Hz, H5]. A solution of PtMe2(bipy) (0.010 g, 0.026 mmol) in minimum acetone was added to a solution of dithiopropionic acid (0.0056 g, 0.026 mmol) in minimum acetone. Mixing of the two solutions led to the formation of a red-brown colour which persists while precipitation of the product is observed. After 30 h the red-orange precipitate can be isolated by decantation of the solvent and was washed with diethyl ether. PtMe2(bipy) (0.0010 g) was then dissolved in minimal chlorobenzene and added to an NMR analysis tube. To this solution, a buffer layer of chlorobenzene followed by acetone was added in order to slow the rate of diffusion of the subsequently added acetone solution of (0.0006 g) of dithiopropionic acid. The sample was placed in a cool dark place and allowed to crystallize over the course of two weeks producing crystals of (I). Yields of 68–73% were achieved. Spectroscopic Analysis, IR (ν, cm-1, Bruker Tenser 27 FTIR spectrophotometer as KBr disk): ν(Aromatic CH) = 3107; ν(aliphatic CH) = 2847 and 2781; ν(CC) = 1601, 1465 and 1443; ν(CO) = 1710. 1H NMR ( acetone-d6, p.p.m., Mercury 400 MHz NMR spectrometer): δ = 0.50 [s, 3H, 2J(PtH)=74 Hz, MePt trans to O]; 1.63 [s, 3H, 2J(PtH) = 69 Hz, MePt trans to N]; 2.73 [t, 2H, 3J(HH) = 7 Hz, CH2]; 2.96 [t, 2H, 3J(HH)=7 Hz, CH2]; 7.42 – 9.78 [8H, aromatic protons (bipy)]. MALDI-MS (CHCA): m/z = 499 (PtMe3(NN)(S(CH2)2COO)]+, m/z = 486 (Complex 1 + H+); m/z = 381([PtMe2(bipy)]+). The
The C-bound H atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the
in the riding model approximation with Uiso(H) values equal to 1.2Ueq(C) The maximum and minimum residual electron density peaks of 0.92 and -1.42 e Å-3, respectively, were located 0.64 Å and 0.74 Å from the Pt1 atom respectively.Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Pt(CH3)2(C3H4O2S)(C10H8N2)] | F(000) = 928 |
Mr = 485.46 | Dx = 2.103 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 7767 reflections |
a = 14.0759 (6) Å | θ = 2.2–23.9° |
b = 7.7487 (3) Å | µ = 9.29 mm−1 |
c = 14.2306 (5) Å | T = 150 K |
β = 98.978 (2)° | Block, orange |
V = 1533.11 (10) Å3 | 0.04 × 0.04 × 0.02 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 4672 independent reflections |
Radiation source: fine-focus sealed tube | 3735 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.074 |
ϕ and ω scans | θmax = 30.5°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −20→20 |
Tmin = 0.708, Tmax = 0.858 | k = −11→11 |
52534 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.049 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0113P)2 + 3.0575P] where P = (Fo2 + 2Fc2)/3 |
4672 reflections | (Δ/σ)max = 0.001 |
192 parameters | Δρmax = 0.92 e Å−3 |
0 restraints | Δρmin = −1.42 e Å−3 |
[Pt(CH3)2(C3H4O2S)(C10H8N2)] | V = 1533.11 (10) Å3 |
Mr = 485.46 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 14.0759 (6) Å | µ = 9.29 mm−1 |
b = 7.7487 (3) Å | T = 150 K |
c = 14.2306 (5) Å | 0.04 × 0.04 × 0.02 mm |
β = 98.978 (2)° |
Bruker APEXII CCD diffractometer | 4672 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 3735 reflections with I > 2σ(I) |
Tmin = 0.708, Tmax = 0.858 | Rint = 0.074 |
52534 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.049 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.92 e Å−3 |
4672 reflections | Δρmin = −1.42 e Å−3 |
192 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.032981 (10) | 0.174968 (18) | 0.254103 (9) | 0.01904 (4) | |
S1 | 0.12815 (8) | 0.07657 (14) | 0.14873 (7) | 0.0283 (2) | |
O1 | −0.1206 (2) | −0.2968 (4) | 0.2172 (2) | 0.0406 (8) | |
N1 | −0.0415 (2) | 0.2693 (4) | 0.3609 (2) | 0.0195 (6) | |
C1 | 0.0013 (3) | 0.2400 (5) | 0.4520 (2) | 0.0196 (7) | |
O2 | −0.0384 (2) | −0.0655 (3) | 0.26891 (18) | 0.0277 (6) | |
N2 | 0.1270 (2) | 0.1055 (4) | 0.3823 (2) | 0.0195 (6) | |
C2 | −0.1257 (3) | 0.3538 (5) | 0.3450 (3) | 0.0260 (8) | |
H2 | −0.1548 | 0.3754 | 0.2813 | 0.031* | |
C3 | −0.1716 (3) | 0.4105 (5) | 0.4185 (3) | 0.0311 (9) | |
H3 | −0.2312 | 0.4701 | 0.4054 | 0.037* | |
C4 | −0.1293 (3) | 0.3790 (5) | 0.5112 (3) | 0.0283 (9) | |
H4 | −0.1599 | 0.4159 | 0.5627 | 0.034* | |
C5 | −0.0424 (3) | 0.2938 (5) | 0.5284 (3) | 0.0230 (8) | |
H5 | −0.0126 | 0.2718 | 0.5919 | 0.028* | |
C6 | 0.0944 (2) | 0.1480 (4) | 0.4640 (2) | 0.0182 (7) | |
C7 | 0.2101 (3) | 0.0196 (5) | 0.3870 (3) | 0.0257 (8) | |
H7 | 0.2328 | −0.0094 | 0.3295 | 0.031* | |
C8 | 0.2641 (3) | −0.0284 (5) | 0.4728 (3) | 0.0277 (8) | |
H8 | 0.3227 | −0.0898 | 0.4742 | 0.033* | |
C9 | 0.2314 (3) | 0.0143 (5) | 0.5566 (3) | 0.0256 (8) | |
H9 | 0.2668 | −0.0188 | 0.6162 | 0.031* | |
C10 | 0.1464 (3) | 0.1060 (5) | 0.5524 (3) | 0.0242 (8) | |
H10 | 0.1239 | 0.1397 | 0.6092 | 0.029* | |
C11 | 0.1008 (3) | −0.1529 (5) | 0.1446 (3) | 0.0308 (9) | |
H11B | 0.1342 | −0.2073 | 0.0959 | 0.037* | |
H11A | 0.1273 | −0.2044 | 0.2069 | 0.037* | |
C12 | −0.0063 (3) | −0.1973 (5) | 0.1222 (3) | 0.0304 (9) | |
H12B | −0.0372 | −0.1179 | 0.0720 | 0.036* | |
H12A | −0.0129 | −0.3159 | 0.0961 | 0.036* | |
C13 | −0.0603 (3) | −0.1864 (5) | 0.2073 (3) | 0.0260 (8) | |
C14 | 0.0972 (3) | 0.4106 (5) | 0.2463 (3) | 0.0272 (8) | |
H14A | 0.0999 | 0.4385 | 0.1796 | 0.041* | |
H14B | 0.1625 | 0.4071 | 0.2821 | 0.041* | |
H14C | 0.0597 | 0.4990 | 0.2735 | 0.041* | |
C15 | −0.0667 (3) | 0.2486 (6) | 0.1408 (3) | 0.0296 (9) | |
H15A | −0.0815 | 0.3714 | 0.1466 | 0.044* | |
H15B | −0.1255 | 0.1806 | 0.1400 | 0.044* | |
H15C | −0.0409 | 0.2291 | 0.0816 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.02214 (7) | 0.01977 (7) | 0.01574 (6) | 0.00002 (7) | 0.00464 (4) | 0.00076 (6) |
S1 | 0.0343 (5) | 0.0298 (6) | 0.0236 (5) | 0.0024 (4) | 0.0135 (4) | 0.0001 (4) |
O1 | 0.0444 (19) | 0.0335 (18) | 0.0450 (18) | −0.0164 (15) | 0.0105 (15) | −0.0097 (14) |
N1 | 0.0218 (15) | 0.0184 (15) | 0.0189 (14) | −0.0009 (12) | 0.0043 (12) | −0.0014 (12) |
C1 | 0.0235 (18) | 0.0144 (17) | 0.0219 (17) | −0.0065 (14) | 0.0071 (14) | −0.0009 (14) |
O2 | 0.0382 (16) | 0.0254 (15) | 0.0205 (13) | −0.0109 (12) | 0.0081 (12) | −0.0025 (11) |
N2 | 0.0202 (15) | 0.0218 (16) | 0.0165 (14) | −0.0022 (13) | 0.0029 (11) | 0.0011 (12) |
C2 | 0.0268 (19) | 0.023 (2) | 0.0285 (19) | −0.0001 (16) | 0.0050 (16) | 0.0001 (16) |
C3 | 0.026 (2) | 0.028 (2) | 0.041 (2) | 0.0060 (17) | 0.0090 (18) | −0.0030 (18) |
C4 | 0.034 (2) | 0.023 (2) | 0.032 (2) | −0.0028 (17) | 0.0162 (17) | −0.0061 (16) |
C5 | 0.031 (2) | 0.019 (2) | 0.0215 (17) | −0.0050 (15) | 0.0107 (15) | −0.0021 (14) |
C6 | 0.0217 (17) | 0.0154 (18) | 0.0183 (15) | −0.0055 (14) | 0.0054 (13) | −0.0030 (13) |
C7 | 0.0204 (18) | 0.034 (2) | 0.0231 (18) | 0.0031 (16) | 0.0038 (14) | 0.0014 (16) |
C8 | 0.0207 (18) | 0.030 (2) | 0.032 (2) | −0.0005 (17) | 0.0007 (16) | 0.0047 (17) |
C9 | 0.0265 (19) | 0.026 (2) | 0.0220 (17) | −0.0073 (16) | −0.0028 (15) | 0.0045 (15) |
C10 | 0.027 (2) | 0.024 (2) | 0.0215 (18) | −0.0057 (16) | 0.0031 (15) | −0.0022 (15) |
C11 | 0.039 (2) | 0.027 (2) | 0.0275 (19) | 0.0063 (18) | 0.0086 (17) | −0.0018 (17) |
C12 | 0.043 (2) | 0.025 (2) | 0.0225 (18) | 0.0005 (19) | 0.0037 (17) | −0.0041 (16) |
C13 | 0.0288 (19) | 0.024 (2) | 0.0237 (17) | 0.0000 (18) | −0.0001 (15) | 0.0049 (16) |
C14 | 0.032 (2) | 0.023 (2) | 0.029 (2) | −0.0021 (17) | 0.0106 (17) | 0.0023 (16) |
C15 | 0.030 (2) | 0.033 (2) | 0.0233 (19) | 0.0091 (18) | −0.0045 (16) | 0.0001 (17) |
Pt1—C15 | 2.046 (4) | C5—H5 | 0.9500 |
Pt1—C14 | 2.048 (4) | C6—C10 | 1.393 (5) |
Pt1—N1 | 2.107 (3) | C7—C8 | 1.385 (5) |
Pt1—O2 | 2.143 (3) | C7—H7 | 0.9500 |
Pt1—N2 | 2.149 (3) | C8—C9 | 1.383 (5) |
Pt1—S1 | 2.2916 (9) | C8—H8 | 0.9500 |
S1—C11 | 1.818 (4) | C9—C10 | 1.384 (5) |
O1—C13 | 1.230 (5) | C9—H9 | 0.9500 |
N1—C2 | 1.342 (5) | C10—H10 | 0.9500 |
N1—C1 | 1.361 (4) | C11—C12 | 1.531 (6) |
C1—C5 | 1.395 (5) | C11—H11B | 0.9900 |
C1—C6 | 1.478 (5) | C11—H11A | 0.9900 |
O2—C13 | 1.287 (5) | C12—C13 | 1.529 (5) |
N2—C7 | 1.338 (5) | C12—H12B | 0.9900 |
N2—C6 | 1.355 (4) | C12—H12A | 0.9900 |
C2—C3 | 1.383 (5) | C14—H14A | 0.9800 |
C2—H2 | 0.9500 | C14—H14B | 0.9800 |
C3—C4 | 1.382 (6) | C14—H14C | 0.9800 |
C3—H3 | 0.9500 | C15—H15A | 0.9800 |
C4—C5 | 1.378 (5) | C15—H15B | 0.9800 |
C4—H4 | 0.9500 | C15—H15C | 0.9800 |
C15—Pt1—C14 | 87.88 (17) | C10—C6—C1 | 123.3 (3) |
C15—Pt1—N1 | 96.54 (14) | N2—C7—C8 | 122.1 (3) |
C14—Pt1—N1 | 90.17 (13) | N2—C7—H7 | 118.9 |
C15—Pt1—O2 | 92.60 (15) | C8—C7—H7 | 118.9 |
C14—Pt1—O2 | 176.55 (12) | C9—C8—C7 | 119.0 (4) |
N1—Pt1—O2 | 86.39 (11) | C9—C8—H8 | 120.5 |
C15—Pt1—N2 | 174.03 (14) | C7—C8—H8 | 120.5 |
C14—Pt1—N2 | 92.92 (14) | C8—C9—C10 | 119.2 (4) |
N1—Pt1—N2 | 77.55 (11) | C8—C9—H9 | 120.4 |
O2—Pt1—N2 | 86.26 (11) | C10—C9—H9 | 120.4 |
C15—Pt1—S1 | 88.64 (12) | C9—C10—C6 | 119.2 (3) |
C14—Pt1—S1 | 87.34 (11) | C9—C10—H10 | 120.4 |
N1—Pt1—S1 | 174.16 (9) | C6—C10—H10 | 120.4 |
O2—Pt1—S1 | 96.09 (7) | C12—C11—S1 | 115.0 (3) |
N2—Pt1—S1 | 97.30 (8) | C12—C11—H11B | 108.5 |
C11—S1—Pt1 | 101.78 (13) | S1—C11—H11B | 108.5 |
C2—N1—C1 | 119.3 (3) | C12—C11—H11A | 108.5 |
C2—N1—Pt1 | 125.0 (2) | S1—C11—H11A | 108.5 |
C1—N1—Pt1 | 115.6 (2) | H11B—C11—H11A | 107.5 |
N1—C1—C5 | 120.6 (3) | C13—C12—C11 | 114.7 (3) |
N1—C1—C6 | 116.3 (3) | C13—C12—H12B | 108.6 |
C5—C1—C6 | 123.0 (3) | C11—C12—H12B | 108.6 |
C13—O2—Pt1 | 129.2 (2) | C13—C12—H12A | 108.6 |
C7—N2—C6 | 119.3 (3) | C11—C12—H12A | 108.6 |
C7—N2—Pt1 | 125.7 (2) | H12B—C12—H12A | 107.6 |
C6—N2—Pt1 | 114.9 (2) | O1—C13—O2 | 121.6 (4) |
N1—C2—C3 | 122.2 (4) | O1—C13—C12 | 119.4 (4) |
N1—C2—H2 | 118.9 | O2—C13—C12 | 119.0 (3) |
C3—C2—H2 | 118.9 | Pt1—C14—H14A | 109.5 |
C4—C3—C2 | 118.9 (4) | Pt1—C14—H14B | 109.5 |
C4—C3—H3 | 120.6 | H14A—C14—H14B | 109.5 |
C2—C3—H3 | 120.6 | Pt1—C14—H14C | 109.5 |
C5—C4—C3 | 119.5 (3) | H14A—C14—H14C | 109.5 |
C5—C4—H4 | 120.2 | H14B—C14—H14C | 109.5 |
C3—C4—H4 | 120.2 | Pt1—C15—H15A | 109.5 |
C4—C5—C1 | 119.5 (4) | Pt1—C15—H15B | 109.5 |
C4—C5—H5 | 120.3 | H15A—C15—H15B | 109.5 |
C1—C5—H5 | 120.3 | Pt1—C15—H15C | 109.5 |
N2—C6—C10 | 121.1 (3) | H15A—C15—H15C | 109.5 |
N2—C6—C1 | 115.5 (3) | H15B—C15—H15C | 109.5 |
C15—Pt1—S1—C11 | −98.02 (19) | N1—Pt1—N2—C6 | 1.7 (2) |
C14—Pt1—S1—C11 | 174.04 (18) | O2—Pt1—N2—C6 | −85.4 (2) |
N1—Pt1—S1—C11 | 109.3 (8) | S1—Pt1—N2—C6 | 178.9 (2) |
O2—Pt1—S1—C11 | −5.56 (16) | C1—N1—C2—C3 | −0.9 (6) |
N2—Pt1—S1—C11 | 81.44 (16) | Pt1—N1—C2—C3 | 179.1 (3) |
C15—Pt1—N1—C2 | −2.1 (3) | N1—C2—C3—C4 | 0.0 (6) |
C14—Pt1—N1—C2 | 85.8 (3) | C2—C3—C4—C5 | 0.6 (6) |
O2—Pt1—N1—C2 | −94.3 (3) | C3—C4—C5—C1 | −0.2 (6) |
N2—Pt1—N1—C2 | 178.7 (3) | N1—C1—C5—C4 | −0.7 (5) |
S1—Pt1—N1—C2 | 150.4 (7) | C6—C1—C5—C4 | 179.9 (3) |
C15—Pt1—N1—C1 | 177.9 (3) | C7—N2—C6—C10 | 0.8 (5) |
C14—Pt1—N1—C1 | −94.2 (3) | Pt1—N2—C6—C10 | 178.0 (3) |
O2—Pt1—N1—C1 | 85.7 (3) | C7—N2—C6—C1 | −179.0 (3) |
N2—Pt1—N1—C1 | −1.2 (2) | Pt1—N2—C6—C1 | −1.9 (4) |
S1—Pt1—N1—C1 | −29.5 (10) | N1—C1—C6—N2 | 0.8 (5) |
C2—N1—C1—C5 | 1.3 (5) | C5—C1—C6—N2 | −179.8 (3) |
Pt1—N1—C1—C5 | −178.8 (3) | N1—C1—C6—C10 | −179.0 (3) |
C2—N1—C1—C6 | −179.3 (3) | C5—C1—C6—C10 | 0.4 (5) |
Pt1—N1—C1—C6 | 0.7 (4) | C6—N2—C7—C8 | 0.3 (6) |
C15—Pt1—O2—C13 | 56.8 (3) | Pt1—N2—C7—C8 | −176.4 (3) |
C14—Pt1—O2—C13 | 155 (2) | N2—C7—C8—C9 | −0.3 (6) |
N1—Pt1—O2—C13 | 153.2 (3) | C7—C8—C9—C10 | −0.9 (6) |
N2—Pt1—O2—C13 | −129.1 (3) | C8—C9—C10—C6 | 2.0 (6) |
S1—Pt1—O2—C13 | −32.1 (3) | N2—C6—C10—C9 | −2.0 (5) |
C15—Pt1—N2—C7 | 170.6 (13) | C1—C6—C10—C9 | 177.8 (3) |
C14—Pt1—N2—C7 | −91.9 (3) | Pt1—S1—C11—C12 | 53.1 (3) |
N1—Pt1—N2—C7 | 178.6 (3) | S1—C11—C12—C13 | −81.1 (4) |
O2—Pt1—N2—C7 | 91.5 (3) | Pt1—O2—C13—O1 | −162.2 (3) |
S1—Pt1—N2—C7 | −4.2 (3) | Pt1—O2—C13—C12 | 20.8 (5) |
C15—Pt1—N2—C6 | −6.3 (15) | C11—C12—C13—O1 | −139.6 (4) |
C14—Pt1—N2—C6 | 91.2 (3) | C11—C12—C13—O2 | 37.5 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O2i | 0.95 | 2.33 | 3.175 (5) | 148 |
Symmetry code: (i) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Pt(CH3)2(C3H4O2S)(C10H8N2)] |
Mr | 485.46 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 14.0759 (6), 7.7487 (3), 14.2306 (5) |
β (°) | 98.978 (2) |
V (Å3) | 1533.11 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 9.29 |
Crystal size (mm) | 0.04 × 0.04 × 0.02 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2006) |
Tmin, Tmax | 0.708, 0.858 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 52534, 4672, 3735 |
Rint | 0.074 |
(sin θ/λ)max (Å−1) | 0.714 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.049, 1.04 |
No. of reflections | 4672 |
No. of parameters | 192 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.92, −1.42 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Pt1—C15 | 2.046 (4) | Pt1—O2 | 2.143 (3) |
Pt1—C14 | 2.048 (4) | Pt1—N2 | 2.149 (3) |
Pt1—N1 | 2.107 (3) | Pt1—S1 | 2.2916 (9) |
C15—Pt1—C14 | 87.88 (17) | O2—Pt1—N2 | 86.26 (11) |
C15—Pt1—N1 | 96.54 (14) | C15—Pt1—S1 | 88.64 (12) |
C14—Pt1—N1 | 90.17 (13) | C14—Pt1—S1 | 87.34 (11) |
C15—Pt1—O2 | 92.60 (15) | N1—Pt1—S1 | 174.16 (9) |
N1—Pt1—O2 | 86.39 (11) | O2—Pt1—S1 | 96.09 (7) |
C14—Pt1—N2 | 92.92 (14) | N2—Pt1—S1 | 97.30 (8) |
N1—Pt1—N2 | 77.55 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O2i | 0.95 | 2.33 | 3.175 (5) | 148 |
Symmetry code: (i) −x, −y, −z+1. |
Acknowledgements
We would like to thank the NSERC (Canada) for financial support.
References
Achar, S., Scott, J. D., Vittal, J. J. & Puddephatt, R. J. (1993). Organometallics, 12, 4592–4598. CrossRef CAS Google Scholar
Au, R. H. W., Jennings, M. C. & Puddephatt, R. J. (2009). Organometallics, 28, 3754–3762. CrossRef CAS Google Scholar
Aye, K.-T., Colpitts, D., Ferguson, G. & Puddephatt, R. J. (1988). Organometallics, 7, 1454–1456. CrossRef CAS Google Scholar
Aye, K.-T., Vittal, J. J. & Puddephatt, R. J. (1993). J. Chem. Soc. Dalton Trans. pp. 1835–1839. CrossRef Google Scholar
Bonnington, K. J., Jennings, M. C. & Puddephatt, R. J. (2008). Organometallics, 27, 6521–6530. CrossRef CAS Google Scholar
Bruker (2006). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Henderson, W., McCaffrey, L. J. & Nicholson, B. K. (2000). J. Chem. Soc. Dalton Trans. pp. 2753–2760. CrossRef Google Scholar
McCready, M. S. & Puddephatt, R. J. (2011). Inorg. Chem. Commun. 14, 210–212. CrossRef CAS Google Scholar
Monaghan, P. K. & Puddephatt, R. J. (1984). Organometallics, 3, 444–449. CrossRef CAS Google Scholar
Phillips, H. A. & Burford, N. (2008). Inorg. Chem. 47, 2428–2441. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wei, H., Wang, X., Liu, Q., Lu, Y. & Guo, Z. (2005). Inorg. Chem. 44, 6077–6081. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Activation of the S—S bond of a disulfide, R2S2, has shown significant promise in the areas of medicinal chemistry and catalysis when cleaved by a transition metal complex (Wei et al., 2005). One route of interest for the activation of an S—S bond is the oxidative addition to a transition metal complex, of which there have been many studies involving platinum(II) complexes (Aye et al., 1993; Bonnington et al., 2008). Unexpectedly, the oxidative addition of 3,3'-dithiodipropionic acid led to the formation of a thiolate-carboxylate chelate ring. This type of chelate ring is not without precedent (Henderson et al., 2000; Phillips & Burford, 2008) but the title complex, (I), is the first example of a thiolate-carboxylate chelate with platinum(IV) (McCready & Puddephatt, 2011). In this context, the crystal structure of (I) is presented.
The stereochemistry at the platinum(IV) center is octahedral with two mutually cis methyl groups and chelating 2,2'-bipyridine and 3-thiolatopropionato groups (Fig. 1 and Table 1). The distance Pt—N2 = 2.149 (3) Å is significantly longer than Pt—N1 = 2.107 (3) Å, because the methyl group has a higher trans influence than the thiolato group. The angles at platinum(IV) between cis ligands range from 77.55 (11) to 97.30 (8) °, Table 1, as a result of constraints of the chelate ligands and lie in the expected ranges (Aye et al., 1988; Achar et al., 1993).
The chief intermolecular interactions arise through π-stacking between the bipyridine rings of centrosymmetrically related molecules of (I) (Fig. 2). The mean interplanar spacing between the bipyridine rings comprising the dimer unit is 3.36 Å, which is consistent with observed values of about 3.3 Å for platinum(IV) complexes of 2,2'-bipyridine (Au et al., 2009). The ring centroid(N3-pyridyl)···ring centroid(N4-pyridyl)A distance = 3.611 (2) Å for A = -x, -y, 1-z. The dimer formation through π-stacking is further stabilized by the presence of a weak C10—H···O2 interaction (Table 2).