metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m604-m605

(OC-6-35)-(2,2′-Bi­pyridine-κ2N,N′)dimeth­yl(3-sulfido­propionato-κ2S,O)platinum(IV)

aDepartment of Chemistry, University of Western Ontario, London, Canada N6A 5B7
*Correspondence e-mail: pudd@uwo.ca

(Received 4 April 2011; accepted 11 April 2011; online 16 April 2011)

The title complex, [Pt(CH3)2(SCH2CH2CO2)(C10H8N2)], is formed by the unusual oxidative addition of the disulfide, R2S2 (R = CH2CH2CO2H), to (2,2′-bipyridine)­dimethyl­platin­um(II) with elimination of RSH. The product contains an unusual six-membered thiol­ate–carboxyl­ate chelate ring. This slightly distorted octa­hedral complex exhibits cis angles ranging from 77.55 (11) to 97.30 (8)° due to the presence of the thiol­ate–carboxyl­ate chelate ring and the constrained bipyridine group. The crystal packing appears to be controlled by a combination of π-stacking [centroid–centroid distance = 3.611 (2) Å] and C—H⋯O inter­actions.

Related literature

For general background to metal complexes with thiol­ate–carboxyl­ate chelates, see: Henderson et al. (2000[Henderson, W., McCaffrey, L. J. & Nicholson, B. K. (2000). J. Chem. Soc. Dalton Trans. pp. 2753-2760.]); McCready & Puddephatt (2011[McCready, M. S. & Puddephatt, R. J. (2011). Inorg. Chem. Commun. 14, 210-212.]); Phillips & Burford (2008[Phillips, H. A. & Burford, N. (2008). Inorg. Chem. 47, 2428-2441.]). For the utility and application of disulfides and their reactivity towards transition metals, see: Aye et al. (1993[Aye, K.-T., Vittal, J. J. & Puddephatt, R. J. (1993). J. Chem. Soc. Dalton Trans. pp. 1835-1839.]); Bonnington et al. (2008[Bonnington, K. J., Jennings, M. C. & Puddephatt, R. J. (2008). Organomet­allics, 27, 6521-6530.]); Wei et al. (2005[Wei, H., Wang, X., Liu, Q., Lu, Y. & Guo, Z. (2005). Inorg. Chem. 44, 6077-6081.]). For normal ranges of bond angles at platinum(IV) between cis ligands, see: Achar et al. (1993[Achar, S., Scott, J. D., Vittal, J. J. & Puddephatt, R. J. (1993). Organometallics, 12, 4592-4598.]); Aye et al. (1988[Aye, K.-T., Colpitts, D., Ferguson, G. & Puddephatt, R. J. (1988). Organometallics, 7, 1454-1456.]). For inter­planar spacing between bipyridine rings in platinum(IV) complexes of 2,2′-bipyridine, see: Au et al. (2009[Au, R. H. W., Jennings, M. C. & Puddephatt, R. J. (2009). Organometallics, 28, 3754-3762.]). For the preparation of dimeth­yl(2,2′-bipyridine)­plat­inum(II), see: Monaghan & Puddephatt (1984[Monaghan, P. K. & Puddephatt, R. J. (1984). Organometallics, 3, 444-449.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(CH3)2(C3H4O2S)(C10H8N2)]

  • Mr = 485.46

  • Monoclinic, P 21 /n

  • a = 14.0759 (6) Å

  • b = 7.7487 (3) Å

  • c = 14.2306 (5) Å

  • β = 98.978 (2)°

  • V = 1533.11 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.29 mm−1

  • T = 150 K

  • 0.04 × 0.04 × 0.02 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.708, Tmax = 0.858

  • 52534 measured reflections

  • 4672 independent reflections

  • 3735 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.049

  • S = 1.04

  • 4672 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −1.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt1—C15 2.046 (4)
Pt1—C14 2.048 (4)
Pt1—N1 2.107 (3)
Pt1—O2 2.143 (3)
Pt1—N2 2.149 (3)
Pt1—S1 2.2916 (9)
C15—Pt1—C14 87.88 (17)
C15—Pt1—N1 96.54 (14)
C14—Pt1—N1 90.17 (13)
C15—Pt1—O2 92.60 (15)
N1—Pt1—O2 86.39 (11)
C14—Pt1—N2 92.92 (14)
N1—Pt1—N2 77.55 (11)
O2—Pt1—N2 86.26 (11)
C15—Pt1—S1 88.64 (12)
C14—Pt1—S1 87.34 (11)
N1—Pt1—S1 174.16 (9)
O2—Pt1—S1 96.09 (7)
N2—Pt1—S1 97.30 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.95 2.33 3.175 (5) 148
Symmetry code: (i) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Activation of the S—S bond of a disulfide, R2S2, has shown significant promise in the areas of medicinal chemistry and catalysis when cleaved by a transition metal complex (Wei et al., 2005). One route of interest for the activation of an S—S bond is the oxidative addition to a transition metal complex, of which there have been many studies involving platinum(II) complexes (Aye et al., 1993; Bonnington et al., 2008). Unexpectedly, the oxidative addition of 3,3'-dithiodipropionic acid led to the formation of a thiolate-carboxylate chelate ring. This type of chelate ring is not without precedent (Henderson et al., 2000; Phillips & Burford, 2008) but the title complex, (I), is the first example of a thiolate-carboxylate chelate with platinum(IV) (McCready & Puddephatt, 2011). In this context, the crystal structure of (I) is presented.

The stereochemistry at the platinum(IV) center is octahedral with two mutually cis methyl groups and chelating 2,2'-bipyridine and 3-thiolatopropionato groups (Fig. 1 and Table 1). The distance Pt—N2 = 2.149 (3) Å is significantly longer than Pt—N1 = 2.107 (3) Å, because the methyl group has a higher trans influence than the thiolato group. The angles at platinum(IV) between cis ligands range from 77.55 (11) to 97.30 (8) °, Table 1, as a result of constraints of the chelate ligands and lie in the expected ranges (Aye et al., 1988; Achar et al., 1993).

The chief intermolecular interactions arise through π-stacking between the bipyridine rings of centrosymmetrically related molecules of (I) (Fig. 2). The mean interplanar spacing between the bipyridine rings comprising the dimer unit is 3.36 Å, which is consistent with observed values of about 3.3 Å for platinum(IV) complexes of 2,2'-bipyridine (Au et al., 2009). The ring centroid(N3-pyridyl)···ring centroid(N4-pyridyl)A distance = 3.611 (2) Å for A = -x, -y, 1-z. The dimer formation through π-stacking is further stabilized by the presence of a weak C10—H···O2 interaction (Table 2).

Related literature top

For general background to metal complexes with thiolate–carboxylate chelates, see: Henderson et al. (2000); McCready & Puddephatt (2011); Phillips & Burford (2008). For the utility and application of disulfides and their reactivity towards transition metals, see: Aye et al. (1993); Bonnington et al. (2008); Wei et al. (2005). For normal ranges of bond angles at platinum(IV) between cis ligands, see: Achar et al. (1993); Aye et al. (1988). For interplanar spacing between bipyridine rings in platinum(IV) complexes of 2,2'-bipyridine, see: Au et al. (2009). For the preparation of dimethyl(2,2'-bipyridine)platinum(II), see: Monaghan & Puddephatt (1984).

Experimental top

Dimethyl(2,2'-bipyridine)platinum(II) was prepared according to a previously published procedure by Monaghan and Puddephatt (1984). Spectroscopic Analysis, IR (ν, cm-1, KBr disk): ν(Aromatic CH) = 3107, ν(aliphatic CH) = 2847 and 2781; ν(CC) = 1601, 1465 and 1443. 1H NMR in acetone-d6: δ = 0.97 [s, 6H, 2J(PtH) = 86 Hz, MePt); 7.70 [dd, 2H, 3J(H5H6) = 6 Hz, 3J(H5H4) = 7 Hz, H5]; 8.33 [dd, 2H, 3J(H4H5) = 7 Hz, 3J(H4H3) = 8 Hz, H4]; 8.43 [d, 2H, 3J(H3H4) = 8 Hz, H3]; 9.23 [d, 2H, 3J(H6H5) = 6 Hz, H5]. A solution of PtMe2(bipy) (0.010 g, 0.026 mmol) in minimum acetone was added to a solution of dithiopropionic acid (0.0056 g, 0.026 mmol) in minimum acetone. Mixing of the two solutions led to the formation of a red-brown colour which persists while precipitation of the product is observed. After 30 h the red-orange precipitate can be isolated by decantation of the solvent and was washed with diethyl ether. PtMe2(bipy) (0.0010 g) was then dissolved in minimal chlorobenzene and added to an NMR analysis tube. To this solution, a buffer layer of chlorobenzene followed by acetone was added in order to slow the rate of diffusion of the subsequently added acetone solution of (0.0006 g) of dithiopropionic acid. The sample was placed in a cool dark place and allowed to crystallize over the course of two weeks producing crystals of (I). Yields of 68–73% were achieved. Spectroscopic Analysis, IR (ν, cm-1, Bruker Tenser 27 FTIR spectrophotometer as KBr disk): ν(Aromatic CH) = 3107; ν(aliphatic CH) = 2847 and 2781; ν(CC) = 1601, 1465 and 1443; ν(CO) = 1710. 1H NMR ( acetone-d6, p.p.m., Mercury 400 MHz NMR spectrometer): δ = 0.50 [s, 3H, 2J(PtH)=74 Hz, MePt trans to O]; 1.63 [s, 3H, 2J(PtH) = 69 Hz, MePt trans to N]; 2.73 [t, 2H, 3J(HH) = 7 Hz, CH2]; 2.96 [t, 2H, 3J(HH)=7 Hz, CH2]; 7.42 – 9.78 [8H, aromatic protons (bipy)]. MALDI-MS (CHCA): m/z = 499 (PtMe3(NN)(S(CH2)2COO)]+, m/z = 486 (Complex 1 + H+); m/z = 381([PtMe2(bipy)]+). The

Refinement top

The C-bound H atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) values equal to 1.2Ueq(C) The maximum and minimum residual electron density peaks of 0.92 and -1.42 e Å-3, respectively, were located 0.64 Å and 0.74 Å from the Pt1 atom respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms have been omitted.
[Figure 2] Fig. 2. A dimeric unit in (I) showing its orientation within the unit cell. The molecules are related by a centre of inversion and A = -x, 1 - y, -z+1.
(OC-6-35)-(2,2'-Bipyridine-κ2N,N')dimethyl(3- sulfidopropionato-κ2S,O)platinum(IV) top
Crystal data top
[Pt(CH3)2(C3H4O2S)(C10H8N2)]F(000) = 928
Mr = 485.46Dx = 2.103 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7767 reflections
a = 14.0759 (6) Åθ = 2.2–23.9°
b = 7.7487 (3) ŵ = 9.29 mm1
c = 14.2306 (5) ÅT = 150 K
β = 98.978 (2)°Block, orange
V = 1533.11 (10) Å30.04 × 0.04 × 0.02 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4672 independent reflections
Radiation source: fine-focus sealed tube3735 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ϕ and ω scansθmax = 30.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 2020
Tmin = 0.708, Tmax = 0.858k = 1111
52534 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0113P)2 + 3.0575P]
where P = (Fo2 + 2Fc2)/3
4672 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 1.42 e Å3
Crystal data top
[Pt(CH3)2(C3H4O2S)(C10H8N2)]V = 1533.11 (10) Å3
Mr = 485.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.0759 (6) ŵ = 9.29 mm1
b = 7.7487 (3) ÅT = 150 K
c = 14.2306 (5) Å0.04 × 0.04 × 0.02 mm
β = 98.978 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4672 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3735 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.858Rint = 0.074
52534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 1.04Δρmax = 0.92 e Å3
4672 reflectionsΔρmin = 1.42 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.032981 (10)0.174968 (18)0.254103 (9)0.01904 (4)
S10.12815 (8)0.07657 (14)0.14873 (7)0.0283 (2)
O10.1206 (2)0.2968 (4)0.2172 (2)0.0406 (8)
N10.0415 (2)0.2693 (4)0.3609 (2)0.0195 (6)
C10.0013 (3)0.2400 (5)0.4520 (2)0.0196 (7)
O20.0384 (2)0.0655 (3)0.26891 (18)0.0277 (6)
N20.1270 (2)0.1055 (4)0.3823 (2)0.0195 (6)
C20.1257 (3)0.3538 (5)0.3450 (3)0.0260 (8)
H20.15480.37540.28130.031*
C30.1716 (3)0.4105 (5)0.4185 (3)0.0311 (9)
H30.23120.47010.40540.037*
C40.1293 (3)0.3790 (5)0.5112 (3)0.0283 (9)
H40.15990.41590.56270.034*
C50.0424 (3)0.2938 (5)0.5284 (3)0.0230 (8)
H50.01260.27180.59190.028*
C60.0944 (2)0.1480 (4)0.4640 (2)0.0182 (7)
C70.2101 (3)0.0196 (5)0.3870 (3)0.0257 (8)
H70.23280.00940.32950.031*
C80.2641 (3)0.0284 (5)0.4728 (3)0.0277 (8)
H80.32270.08980.47420.033*
C90.2314 (3)0.0143 (5)0.5566 (3)0.0256 (8)
H90.26680.01880.61620.031*
C100.1464 (3)0.1060 (5)0.5524 (3)0.0242 (8)
H100.12390.13970.60920.029*
C110.1008 (3)0.1529 (5)0.1446 (3)0.0308 (9)
H11B0.13420.20730.09590.037*
H11A0.12730.20440.20690.037*
C120.0063 (3)0.1973 (5)0.1222 (3)0.0304 (9)
H12B0.03720.11790.07200.036*
H12A0.01290.31590.09610.036*
C130.0603 (3)0.1864 (5)0.2073 (3)0.0260 (8)
C140.0972 (3)0.4106 (5)0.2463 (3)0.0272 (8)
H14A0.09990.43850.17960.041*
H14B0.16250.40710.28210.041*
H14C0.05970.49900.27350.041*
C150.0667 (3)0.2486 (6)0.1408 (3)0.0296 (9)
H15A0.08150.37140.14660.044*
H15B0.12550.18060.14000.044*
H15C0.04090.22910.08160.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02214 (7)0.01977 (7)0.01574 (6)0.00002 (7)0.00464 (4)0.00076 (6)
S10.0343 (5)0.0298 (6)0.0236 (5)0.0024 (4)0.0135 (4)0.0001 (4)
O10.0444 (19)0.0335 (18)0.0450 (18)0.0164 (15)0.0105 (15)0.0097 (14)
N10.0218 (15)0.0184 (15)0.0189 (14)0.0009 (12)0.0043 (12)0.0014 (12)
C10.0235 (18)0.0144 (17)0.0219 (17)0.0065 (14)0.0071 (14)0.0009 (14)
O20.0382 (16)0.0254 (15)0.0205 (13)0.0109 (12)0.0081 (12)0.0025 (11)
N20.0202 (15)0.0218 (16)0.0165 (14)0.0022 (13)0.0029 (11)0.0011 (12)
C20.0268 (19)0.023 (2)0.0285 (19)0.0001 (16)0.0050 (16)0.0001 (16)
C30.026 (2)0.028 (2)0.041 (2)0.0060 (17)0.0090 (18)0.0030 (18)
C40.034 (2)0.023 (2)0.032 (2)0.0028 (17)0.0162 (17)0.0061 (16)
C50.031 (2)0.019 (2)0.0215 (17)0.0050 (15)0.0107 (15)0.0021 (14)
C60.0217 (17)0.0154 (18)0.0183 (15)0.0055 (14)0.0054 (13)0.0030 (13)
C70.0204 (18)0.034 (2)0.0231 (18)0.0031 (16)0.0038 (14)0.0014 (16)
C80.0207 (18)0.030 (2)0.032 (2)0.0005 (17)0.0007 (16)0.0047 (17)
C90.0265 (19)0.026 (2)0.0220 (17)0.0073 (16)0.0028 (15)0.0045 (15)
C100.027 (2)0.024 (2)0.0215 (18)0.0057 (16)0.0031 (15)0.0022 (15)
C110.039 (2)0.027 (2)0.0275 (19)0.0063 (18)0.0086 (17)0.0018 (17)
C120.043 (2)0.025 (2)0.0225 (18)0.0005 (19)0.0037 (17)0.0041 (16)
C130.0288 (19)0.024 (2)0.0237 (17)0.0000 (18)0.0001 (15)0.0049 (16)
C140.032 (2)0.023 (2)0.029 (2)0.0021 (17)0.0106 (17)0.0023 (16)
C150.030 (2)0.033 (2)0.0233 (19)0.0091 (18)0.0045 (16)0.0001 (17)
Geometric parameters (Å, º) top
Pt1—C152.046 (4)C5—H50.9500
Pt1—C142.048 (4)C6—C101.393 (5)
Pt1—N12.107 (3)C7—C81.385 (5)
Pt1—O22.143 (3)C7—H70.9500
Pt1—N22.149 (3)C8—C91.383 (5)
Pt1—S12.2916 (9)C8—H80.9500
S1—C111.818 (4)C9—C101.384 (5)
O1—C131.230 (5)C9—H90.9500
N1—C21.342 (5)C10—H100.9500
N1—C11.361 (4)C11—C121.531 (6)
C1—C51.395 (5)C11—H11B0.9900
C1—C61.478 (5)C11—H11A0.9900
O2—C131.287 (5)C12—C131.529 (5)
N2—C71.338 (5)C12—H12B0.9900
N2—C61.355 (4)C12—H12A0.9900
C2—C31.383 (5)C14—H14A0.9800
C2—H20.9500C14—H14B0.9800
C3—C41.382 (6)C14—H14C0.9800
C3—H30.9500C15—H15A0.9800
C4—C51.378 (5)C15—H15B0.9800
C4—H40.9500C15—H15C0.9800
C15—Pt1—C1487.88 (17)C10—C6—C1123.3 (3)
C15—Pt1—N196.54 (14)N2—C7—C8122.1 (3)
C14—Pt1—N190.17 (13)N2—C7—H7118.9
C15—Pt1—O292.60 (15)C8—C7—H7118.9
C14—Pt1—O2176.55 (12)C9—C8—C7119.0 (4)
N1—Pt1—O286.39 (11)C9—C8—H8120.5
C15—Pt1—N2174.03 (14)C7—C8—H8120.5
C14—Pt1—N292.92 (14)C8—C9—C10119.2 (4)
N1—Pt1—N277.55 (11)C8—C9—H9120.4
O2—Pt1—N286.26 (11)C10—C9—H9120.4
C15—Pt1—S188.64 (12)C9—C10—C6119.2 (3)
C14—Pt1—S187.34 (11)C9—C10—H10120.4
N1—Pt1—S1174.16 (9)C6—C10—H10120.4
O2—Pt1—S196.09 (7)C12—C11—S1115.0 (3)
N2—Pt1—S197.30 (8)C12—C11—H11B108.5
C11—S1—Pt1101.78 (13)S1—C11—H11B108.5
C2—N1—C1119.3 (3)C12—C11—H11A108.5
C2—N1—Pt1125.0 (2)S1—C11—H11A108.5
C1—N1—Pt1115.6 (2)H11B—C11—H11A107.5
N1—C1—C5120.6 (3)C13—C12—C11114.7 (3)
N1—C1—C6116.3 (3)C13—C12—H12B108.6
C5—C1—C6123.0 (3)C11—C12—H12B108.6
C13—O2—Pt1129.2 (2)C13—C12—H12A108.6
C7—N2—C6119.3 (3)C11—C12—H12A108.6
C7—N2—Pt1125.7 (2)H12B—C12—H12A107.6
C6—N2—Pt1114.9 (2)O1—C13—O2121.6 (4)
N1—C2—C3122.2 (4)O1—C13—C12119.4 (4)
N1—C2—H2118.9O2—C13—C12119.0 (3)
C3—C2—H2118.9Pt1—C14—H14A109.5
C4—C3—C2118.9 (4)Pt1—C14—H14B109.5
C4—C3—H3120.6H14A—C14—H14B109.5
C2—C3—H3120.6Pt1—C14—H14C109.5
C5—C4—C3119.5 (3)H14A—C14—H14C109.5
C5—C4—H4120.2H14B—C14—H14C109.5
C3—C4—H4120.2Pt1—C15—H15A109.5
C4—C5—C1119.5 (4)Pt1—C15—H15B109.5
C4—C5—H5120.3H15A—C15—H15B109.5
C1—C5—H5120.3Pt1—C15—H15C109.5
N2—C6—C10121.1 (3)H15A—C15—H15C109.5
N2—C6—C1115.5 (3)H15B—C15—H15C109.5
C15—Pt1—S1—C1198.02 (19)N1—Pt1—N2—C61.7 (2)
C14—Pt1—S1—C11174.04 (18)O2—Pt1—N2—C685.4 (2)
N1—Pt1—S1—C11109.3 (8)S1—Pt1—N2—C6178.9 (2)
O2—Pt1—S1—C115.56 (16)C1—N1—C2—C30.9 (6)
N2—Pt1—S1—C1181.44 (16)Pt1—N1—C2—C3179.1 (3)
C15—Pt1—N1—C22.1 (3)N1—C2—C3—C40.0 (6)
C14—Pt1—N1—C285.8 (3)C2—C3—C4—C50.6 (6)
O2—Pt1—N1—C294.3 (3)C3—C4—C5—C10.2 (6)
N2—Pt1—N1—C2178.7 (3)N1—C1—C5—C40.7 (5)
S1—Pt1—N1—C2150.4 (7)C6—C1—C5—C4179.9 (3)
C15—Pt1—N1—C1177.9 (3)C7—N2—C6—C100.8 (5)
C14—Pt1—N1—C194.2 (3)Pt1—N2—C6—C10178.0 (3)
O2—Pt1—N1—C185.7 (3)C7—N2—C6—C1179.0 (3)
N2—Pt1—N1—C11.2 (2)Pt1—N2—C6—C11.9 (4)
S1—Pt1—N1—C129.5 (10)N1—C1—C6—N20.8 (5)
C2—N1—C1—C51.3 (5)C5—C1—C6—N2179.8 (3)
Pt1—N1—C1—C5178.8 (3)N1—C1—C6—C10179.0 (3)
C2—N1—C1—C6179.3 (3)C5—C1—C6—C100.4 (5)
Pt1—N1—C1—C60.7 (4)C6—N2—C7—C80.3 (6)
C15—Pt1—O2—C1356.8 (3)Pt1—N2—C7—C8176.4 (3)
C14—Pt1—O2—C13155 (2)N2—C7—C8—C90.3 (6)
N1—Pt1—O2—C13153.2 (3)C7—C8—C9—C100.9 (6)
N2—Pt1—O2—C13129.1 (3)C8—C9—C10—C62.0 (6)
S1—Pt1—O2—C1332.1 (3)N2—C6—C10—C92.0 (5)
C15—Pt1—N2—C7170.6 (13)C1—C6—C10—C9177.8 (3)
C14—Pt1—N2—C791.9 (3)Pt1—S1—C11—C1253.1 (3)
N1—Pt1—N2—C7178.6 (3)S1—C11—C12—C1381.1 (4)
O2—Pt1—N2—C791.5 (3)Pt1—O2—C13—O1162.2 (3)
S1—Pt1—N2—C74.2 (3)Pt1—O2—C13—C1220.8 (5)
C15—Pt1—N2—C66.3 (15)C11—C12—C13—O1139.6 (4)
C14—Pt1—N2—C691.2 (3)C11—C12—C13—O237.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.952.333.175 (5)148
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Pt(CH3)2(C3H4O2S)(C10H8N2)]
Mr485.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)14.0759 (6), 7.7487 (3), 14.2306 (5)
β (°) 98.978 (2)
V3)1533.11 (10)
Z4
Radiation typeMo Kα
µ (mm1)9.29
Crystal size (mm)0.04 × 0.04 × 0.02
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.708, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
52534, 4672, 3735
Rint0.074
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.049, 1.04
No. of reflections4672
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 1.42

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Pt1—C152.046 (4)Pt1—O22.143 (3)
Pt1—C142.048 (4)Pt1—N22.149 (3)
Pt1—N12.107 (3)Pt1—S12.2916 (9)
C15—Pt1—C1487.88 (17)O2—Pt1—N286.26 (11)
C15—Pt1—N196.54 (14)C15—Pt1—S188.64 (12)
C14—Pt1—N190.17 (13)C14—Pt1—S187.34 (11)
C15—Pt1—O292.60 (15)N1—Pt1—S1174.16 (9)
N1—Pt1—O286.39 (11)O2—Pt1—S196.09 (7)
C14—Pt1—N292.92 (14)N2—Pt1—S197.30 (8)
N1—Pt1—N277.55 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.952.333.175 (5)148
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

We would like to thank the NSERC (Canada) for financial support.

References

First citationAchar, S., Scott, J. D., Vittal, J. J. & Puddephatt, R. J. (1993). Organometallics, 12, 4592–4598.  CrossRef CAS Google Scholar
First citationAu, R. H. W., Jennings, M. C. & Puddephatt, R. J. (2009). Organometallics, 28, 3754–3762.  CrossRef CAS Google Scholar
First citationAye, K.-T., Colpitts, D., Ferguson, G. & Puddephatt, R. J. (1988). Organometallics, 7, 1454–1456.  CrossRef CAS Google Scholar
First citationAye, K.-T., Vittal, J. J. & Puddephatt, R. J. (1993). J. Chem. Soc. Dalton Trans. pp. 1835–1839.  CrossRef Google Scholar
First citationBonnington, K. J., Jennings, M. C. & Puddephatt, R. J. (2008). Organomet­allics, 27, 6521–6530.  CrossRef CAS Google Scholar
First citationBruker (2006). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHenderson, W., McCaffrey, L. J. & Nicholson, B. K. (2000). J. Chem. Soc. Dalton Trans. pp. 2753–2760.  CrossRef Google Scholar
First citationMcCready, M. S. & Puddephatt, R. J. (2011). Inorg. Chem. Commun. 14, 210–212.  CrossRef CAS Google Scholar
First citationMonaghan, P. K. & Puddephatt, R. J. (1984). Organometallics, 3, 444–449.  CrossRef CAS Google Scholar
First citationPhillips, H. A. & Burford, N. (2008). Inorg. Chem. 47, 2428–2441.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, H., Wang, X., Liu, Q., Lu, Y. & Guo, Z. (2005). Inorg. Chem. 44, 6077–6081.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m604-m605
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds