organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1188

N-(2-Methyl­phenyl­sulfon­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 12 April 2011; accepted 15 April 2011; online 22 April 2011)

In the mol­ecular structure of the title compound, C9H11NO3S, the N—H and C=O bonds are anti to each other, while the amide H atom is syn with respect to the ortho-methyl group in the benzene ring. The C—S—N—C torsion angle is −58.2 (2)°, indicating a twist in the mol­ecule. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into chains along the c axis.

Related literature

For the sulfanilamide moiety in sulfonamide drugs, see: Maren (1976[Maren, T. H. (1976). Annu. Rev. Pharmacol Toxicol. 16, 309-327.]). For hydrogen bonding modes of sulfonamides, see: Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For our study of the effect of substituents on the structures of N-(ar­yl)-amides, see: Gowda et al. (2004[Gowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845-852.]). For background to the structures of N-(substituted phenyl­sulfon­yl)-substituted-amides, see: Gowda et al. (2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1284.]); Shakuntala et al. (2011[Shakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o1097.]) and for the oxidative strengths of N-chloro, N-aryl­sulfonamides, see: Gowda & Kumar (2003[Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403-425.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11NO3S

  • Mr = 213.25

  • Tetragonal, P 43

  • a = 7.9804 (5) Å

  • c = 16.749 (1) Å

  • V = 1066.69 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.40 × 0.18 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.895, Tmax = 0.967

  • 4245 measured reflections

  • 1944 independent reflections

  • 1690 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.086

  • S = 1.08

  • 1944 reflections

  • 132 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 824 Friedel pairs

  • Flack parameter: 0.03 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.86 (2) 1.95 (2) 2.770 (3) 162 (3)
Symmetry code: (i) [-y+1, x, z-{\script{1\over 4}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structures of sulfonamide drugs contain the sulfanilamide moiety (Maren, 1976). The hydrogen bonding preferences of sulfonamides has been investigated (Adsmond & Grant, 2001). The nature and position of the substituents play a significant role on their crystal structures and other aspects of N-(aryl)-amides and N-(aryl)-sulfonamides (Gowda et al., 2003, 2004; Shakuntala et al., 2011). As a part of a study of the effects of substituents on the structures of this class of compounds, the structure of N-(2-methylphenylsulfonyl)-acetamide (I) has been determined (Fig. 1). The conformation of the N—C bond in the C—SO2—NH—C(O) segment has gauche torsions with respect to the SO bonds, the torsion angles being C7—N1—S1—O2 = 57.5 (3) ° and C7—N1—S1—O1 = -174.5 (2) °.

The N—H and CO bonds are anti to each other, similar to that observed in N-(phenylsulfonyl)-acetamide (II) (Gowda et al., 2010) and N-(2-chlorophenylsulfonyl)-acetamide (III) (Shakuntala et al., 2011). Further, the conformation of the amide-H atom is syn to the ortho-methyl group in the benzene ring, similar to that observed between the amide-H atom and the ortho-chloro group in (III). The molecule of (I) is bent at the S-atom with a C—S—N—C torsion angle of -58.2 (2) °, compared to the values of -58.8 (4) ° in (II), and -71.7 (3) and 61.2 (3) ° in the two independent molecules of (III).

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains along the c axis; part of the crystal structure is shown in Fig. 2.

Related literature top

For the sulfanilamide moiety in sulfonamide drugs, see: Maren (1976). For hydrogen bonding modes of sulfonamides, see: Adsmond & Grant (2001). For our study of the effect of substituents on the structures of N-(aryl)-amides, see: Gowda et al. (2004). For background to the structures of N-(substituted phenylsulfonyl)-substituted-amides, see: Gowda et al. (2010); Shakuntala et al. (2011) and for the oxidative strengths of N-chloro, N-arylsulfonamides, see: Gowda & Kumar (2003).

Experimental top

The title compound was prepared by refluxing 2-methylbenzenesulfonamide (0.10 mole) with an excess of acetyl chloride (0.20 mole) for one hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was re-precipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. Colourless rods of the title compound were obtained from a slow evaporation of its ethanol solution.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86±0.02 Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H distance = 0.93 Å and methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the crystal packing in (I). Hydrogen bonds are shown as dashed lines.
N-(2-Methylphenylsulfonyl)acetamide top
Crystal data top
C9H11NO3SDx = 1.328 Mg m3
Mr = 213.25Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43Cell parameters from 1894 reflections
Hall symbol: P 4cwθ = 2.5–27.8°
a = 7.9804 (5) ŵ = 0.29 mm1
c = 16.749 (1) ÅT = 293 K
V = 1066.69 (11) Å3Prism, colourless
Z = 40.40 × 0.18 × 0.12 mm
F(000) = 448
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1944 independent reflections
Radiation source: fine-focus sealed tube1690 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 95
Tmin = 0.895, Tmax = 0.967k = 69
4245 measured reflectionsl = 1720
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.1227P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.016
1944 reflectionsΔρmax = 0.14 e Å3
132 parametersΔρmin = 0.17 e Å3
2 restraintsAbsolute structure: Flack (1983), 824 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (9)
Crystal data top
C9H11NO3SZ = 4
Mr = 213.25Mo Kα radiation
Tetragonal, P43µ = 0.29 mm1
a = 7.9804 (5) ÅT = 293 K
c = 16.749 (1) Å0.40 × 0.18 × 0.12 mm
V = 1066.69 (11) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1944 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1690 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.967Rint = 0.016
4245 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086Δρmax = 0.14 e Å3
S = 1.08Δρmin = 0.17 e Å3
1944 reflectionsAbsolute structure: Flack (1983), 824 Friedel pairs
132 parametersAbsolute structure parameter: 0.03 (9)
2 restraints
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0401 (3)0.5352 (3)0.16636 (17)0.0418 (6)
C20.0148 (3)0.3636 (3)0.15630 (19)0.0534 (7)
C30.0178 (4)0.2719 (4)0.2248 (3)0.0758 (11)
H30.03590.15710.22050.091*
C40.0243 (5)0.3456 (5)0.2992 (2)0.0844 (12)
H40.04580.28050.34400.101*
C50.0008 (4)0.5134 (5)0.3071 (2)0.0730 (10)
H50.00340.56310.35730.088*
C60.0326 (4)0.6095 (4)0.24026 (19)0.0571 (7)
H60.04900.72440.24520.069*
C70.4165 (3)0.6071 (3)0.10946 (17)0.0462 (6)
C80.5725 (3)0.5282 (5)0.0766 (2)0.0738 (10)
H8A0.61020.59080.03100.089*
H8B0.54890.41490.06080.089*
H8C0.65820.52830.11680.089*
C90.0213 (5)0.2751 (4)0.0766 (3)0.0830 (11)
H9A0.12760.29610.05170.100*
H9B0.06690.31620.04290.100*
H9C0.00750.15680.08450.100*
N10.2818 (3)0.6051 (3)0.05903 (12)0.0413 (5)
H1N0.278 (3)0.556 (3)0.0138 (12)0.050*
O10.0096 (3)0.6269 (3)0.01708 (12)0.0644 (6)
O20.0971 (3)0.8346 (2)0.11214 (13)0.0632 (6)
O30.4067 (2)0.6678 (3)0.17544 (11)0.0588 (5)
S10.09057 (8)0.66608 (8)0.08490 (5)0.04393 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0313 (12)0.0414 (14)0.0526 (15)0.0022 (11)0.0085 (11)0.0017 (12)
C20.0416 (15)0.0414 (15)0.077 (2)0.0004 (12)0.0128 (14)0.0002 (14)
C30.068 (2)0.0495 (18)0.110 (3)0.0058 (16)0.027 (2)0.017 (2)
C40.078 (2)0.090 (3)0.085 (3)0.011 (2)0.030 (2)0.033 (2)
C50.069 (2)0.098 (3)0.0526 (19)0.0076 (18)0.0181 (17)0.0058 (18)
C60.0480 (16)0.0596 (17)0.0637 (18)0.0013 (13)0.0148 (14)0.0082 (16)
C70.0392 (14)0.0478 (14)0.0515 (17)0.0071 (11)0.0043 (11)0.0001 (13)
C80.0401 (15)0.102 (3)0.080 (2)0.0051 (15)0.0006 (17)0.012 (2)
C90.084 (2)0.0521 (18)0.112 (3)0.0123 (16)0.020 (2)0.030 (2)
N10.0379 (11)0.0493 (12)0.0366 (12)0.0012 (9)0.0021 (9)0.0061 (9)
O10.0510 (12)0.0821 (16)0.0601 (14)0.0057 (10)0.0138 (10)0.0055 (12)
O20.0717 (13)0.0375 (10)0.0806 (15)0.0068 (9)0.0170 (11)0.0028 (10)
O30.0577 (12)0.0760 (14)0.0426 (11)0.0075 (10)0.0091 (9)0.0100 (10)
S10.0385 (3)0.0424 (3)0.0509 (4)0.0049 (3)0.0006 (3)0.0015 (3)
Geometric parameters (Å, º) top
C1—C61.374 (4)C7—N11.367 (3)
C1—C21.395 (4)C7—C81.500 (4)
C1—S11.765 (3)C8—H8A0.9600
C2—C31.386 (5)C8—H8B0.9600
C2—C91.511 (5)C8—H8C0.9600
C3—C41.378 (5)C9—H9A0.9600
C3—H30.9300C9—H9B0.9600
C4—C51.361 (6)C9—H9C0.9600
C4—H40.9300N1—S11.659 (2)
C5—C61.380 (5)N1—H1N0.855 (17)
C5—H50.9300O1—S11.424 (2)
C6—H60.9300O2—S11.4213 (19)
C7—O31.209 (3)
C6—C1—C2121.8 (3)C7—C8—H8A109.5
C6—C1—S1116.8 (2)C7—C8—H8B109.5
C2—C1—S1121.4 (2)H8A—C8—H8B109.5
C3—C2—C1116.5 (3)C7—C8—H8C109.5
C3—C2—C9119.4 (3)H8A—C8—H8C109.5
C1—C2—C9124.1 (3)H8B—C8—H8C109.5
C4—C3—C2122.0 (3)C2—C9—H9A109.5
C4—C3—H3119.0C2—C9—H9B109.5
C2—C3—H3119.0H9A—C9—H9B109.5
C5—C4—C3120.2 (3)C2—C9—H9C109.5
C5—C4—H4119.9H9A—C9—H9C109.5
C3—C4—H4119.9H9B—C9—H9C109.5
C4—C5—C6119.6 (3)C7—N1—S1123.94 (18)
C4—C5—H5120.2C7—N1—H1N125.3 (19)
C6—C5—H5120.2S1—N1—H1N109.7 (19)
C1—C6—C5119.9 (3)O2—S1—O1119.00 (13)
C1—C6—H6120.0O2—S1—N1109.12 (11)
C5—C6—H6120.0O1—S1—N1104.10 (12)
O3—C7—N1121.2 (2)O2—S1—C1108.68 (13)
O3—C7—C8123.9 (3)O1—S1—C1110.99 (13)
N1—C7—C8114.9 (3)N1—S1—C1103.79 (11)
C6—C1—C2—C30.2 (4)O3—C7—N1—S16.3 (4)
S1—C1—C2—C3177.5 (2)C8—C7—N1—S1173.3 (2)
C6—C1—C2—C9180.0 (3)C7—N1—S1—O257.5 (3)
S1—C1—C2—C92.3 (4)C7—N1—S1—O1174.5 (2)
C1—C2—C3—C40.3 (5)C7—N1—S1—C158.2 (2)
C9—C2—C3—C4179.6 (3)C6—C1—S1—O26.2 (3)
C2—C3—C4—C50.3 (6)C2—C1—S1—O2176.0 (2)
C3—C4—C5—C60.1 (5)C6—C1—S1—O1138.9 (2)
C2—C1—C6—C50.6 (4)C2—C1—S1—O143.3 (2)
S1—C1—C6—C5177.3 (2)C6—C1—S1—N1109.8 (2)
C4—C5—C6—C10.5 (5)C2—C1—S1—N168.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.86 (2)1.95 (2)2.770 (3)162 (3)
Symmetry code: (i) y+1, x, z1/4.

Experimental details

Crystal data
Chemical formulaC9H11NO3S
Mr213.25
Crystal system, space groupTetragonal, P43
Temperature (K)293
a, c (Å)7.9804 (5), 16.749 (1)
V3)1066.69 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.40 × 0.18 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.895, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
4245, 1944, 1690
Rint0.016
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.086, 1.08
No. of reflections1944
No. of parameters132
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.17
Absolute structureFlack (1983), 824 Friedel pairs
Absolute structure parameter0.03 (9)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.855 (17)1.946 (18)2.770 (3)162 (3)
Symmetry code: (i) y+1, x, z1/4.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403–425.  CAS Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845–852.  Google Scholar
First citationMaren, T. H. (1976). Annu. Rev. Pharmacol Toxicol. 16, 309–327.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o1097.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1188
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds