metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m538-m539

Bis(2-carboxybenzo­ato-κO1)bis­­[1-cyclo­propyl-6-fluoro-4-oxo-7-(piperazin-4-ium-1-yl)-1,4-di­hydro­quinoline-3-carboxyl­ato-κ2O3,O4]manganese(II) dihydrate

aCollege of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
*Correspondence e-mail: guaiguaijuzi@yahoo.com.cn

(Received 20 January 2011; accepted 29 March 2011; online 7 April 2011)

The title compound, [Mn(C17H18FN3O3)2(C8H5O4)2]·2H2O or [Mn(cfH)2(1,2-Hbdc)2]·2H2O (cfH = ciprofloxacin = 1-cyclo­propyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazin­yl)-3-quinoline carb­oxy­lic acid, 1,2-bdc = benzene-1,2-dicarboxyl­ate), has been prepared under hydro­thermal conditions. The Mn2+ atom, located on an inversion centre, exhibits a distorted octa­hedral geometry, coordinated by four O atoms from two symmetry-related zwitterionic ciprofloxacin ligands in the equatorial positions and two O atoms of two 1,2-Hbdc ligands in the axial positions. The complex mol­ecules are linked into a two-dimensional network through N—H⋯O and OW—H⋯O hydrogen bonds. A strong intramolecular hydrogen bond between the carboxyl/carboxylate groups of the 1,2-Hbdc anion is also present. The layers are further extended through off-set aromatic ππ stacking inter­actions of cfH groups [centroid–centroid distance of 3.657 (2) Å] into the final three-dimensional supra­molecular arrays.

Related literature

For background to the anti­biotic drug ciprofloxacin, see: Turel (2002[Turel, I. (2002). Coord. Chem. Rev. 232, 27-47.]); Xiao et al. (2005[Xiao, D. R., Wang, E. B., An, H. Y., Su, Z. M., Li, Y. G., Gao, L., Sun, C. Y. & Lin, X. (2005). Chem. Eur. J. 11, 6673-6686.]). The mechanisms of action of the quinolone anti­bacterial agents are either their inhibition of DNA gyrase (Topoisomerase II) or their inter­action with the DNA mol­ecule via a metal complex inter­mediate, see: Chulvi et al. (1991[Chulvi, C., Muñoz, M. C., Perelló, L., Ortiz, R., Arriortua, M. I., Via, J., Urtiaga, K., Amigó, J. M. & Ochando, L. E. (1991). J. Inorg. Biochem. 42, 133-138.]); Ruiz et al. (1993[Ruiz, M., Ortiz, R., Perello, L., Castñeiras, A. & Quirós, M. (1993). Inorg. Chim. Acta, 211, 133-139.]); Wallis et al. (1995[Wallis, S. C., Gahan, L. R., Charles, B. G. & Hambley, T. W. (1995). Polyhedron, 14, 2835-2840.]). For related structures, see: Fabbiani & Dittrich (2008[Fabbiani, F. P. A. & Dittrich, B. (2008). Acta Cryst. E64, o2354-o2355.]); Wang et al. (2009[Wang, Y.-J., Wang, N., Hu, R.-D., Lin, Q.-Y. & Wang, Y.-Y. (2009). Acta Cryst. E65, m783.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C17H18FN3O3)2(C8H5O4)2]·2H2O

  • Mr = 1083.90

  • Monoclinic, P 21 /n

  • a = 9.4510 (19) Å

  • b = 22.042 (4) Å

  • c = 11.695 (2) Å

  • β = 98.44 (3)°

  • V = 2409.9 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 293 K

  • 0.58 × 0.47 × 0.32 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.817, Tmax = 0.893

  • 22913 measured reflections

  • 5494 independent reflections

  • 3555 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.145

  • S = 1.00

  • 5494 reflections

  • 350 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—HW1B⋯O5 0.84 (3) 2.43 (3) 3.108 (4) 139 (4)
N1—H1A⋯O7i 0.90 1.82 2.717 (3) 174
N1—H1B⋯O1ii 0.90 1.79 2.688 (3) 173
N1—H1B⋯O2ii 0.90 2.60 3.246 (3) 130
OW1—HW1A⋯O3iii 0.84 (3) 2.12 (1) 2.937 (3) 164 (4)
O6—H6⋯O5 0.85 (4) 1.53 (4) 2.379 (4) 175 (8)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z+1; (iii) -x, -y, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ciprofloxacin [cfH = 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid] belongs to the quinolone family of synthetic antibiotics (Turel, 2002; Xiao et al., 2005) and is a third generation quinolone antibacterial drug with broad-spectrum antibacterial activity (especially aerobic gram-negative bacilli high antibacterial activity). The mechanisms of action of the quinolone antibacterial agents are either their inhibition of DNA gyrase (Topoisomerase II), an essential bacterial enzyme that maintains superhelical twists in DNA, or their interaction with the DNA molecule via a metal complex intermediate (Chulvi et al., 1991; Ruiz et al., 1993; Wallis et al., 1995).

The Ciprofloxacin and its deprotonated anions can show a number of different coordinating or bridging modes. The title complex consists of a Mn2+ atom lying on an inversion center, two Ciprofloxacin ligands, two 1,2-benzenedicarboxylate ligands (1,2-bdc) and a water molecule (Fig. 1). The Ciprofloxacin ligand acts as chelating bidentate and the Mn(II) atom is coordinated by four oxygen atoms from two different Ciprofloxacin ligands and two oxygen atoms from two 1,2-bdc ligands. The N—H···O and OW—H···O hydrogen bonds link the discrete molecules into two-dimensional arrays (Table 1). These two-dimensional layers are further extended through off-set aromatic ππ stacking interplanar of cfH groups (centroid distance of 3.657 Å) into the final three-dimensional supramolecular arrays (Fig. 2).

Related literature top

For background to the antibiotic drug ciprofloxacin, see: Turel (2002); Xiao et al. (2005). The mechanisms of action of the quinolone antibacterial agents are either their inhibition of DNA gyrase (Topoisomerase II) or their interaction with the DNA molecule via a metal complex intermediate, see: Chulvi et al. (1991); Dukhande et al. (2006); Ruiz et al. (1993); Wallis et al. (1995). For related structures, see: Fabbiani & Dittrich (2008); Wang et al. (2009).

Experimental top

A mixture of Mn(OAc)2.4H2O (0.5 mmol), ciprofloxacin hydrochloride (0.25 mmol), 1,2-KHbdc (0.5 mmol), and water (7 ml) was stirred for 30 min in air (solution pH = 4.0), then transferred and sealed in an 18 ml Teflon-lined autoclave, which was heated at 110 °C for 96 h. After slow cooling to room temperature, yellow block crystals were filtered off, washed with distilled water, and dried at ambient temperature.

Refinement top

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C or N atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, aliphatic C—H = 0.97 – 0.98 Å and N—H = 0.90 Å, Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.2Ueq(N)]. The H atoms bonded to OW atoms were located in a difference Fourier maps and refined with OW—H = 0.84 Å and Uiso(H) = 1.3Ueq(OW).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of 1 with thermal ellipsoids at 30% probability. Symmetry code (i): -x, -y, -z+1.
[Figure 2] Fig. 2. Perspective view of the three-dimensional supramolecular network in 1. The hydrogen bonds are indicated by pink dotted lines while the aromatic ππ stacking interaction is indicated by a green dotted line.
Bis(2-carboxybenzoato-κO1)bis[1-cyclopropyl-6-fluoro-4-oxo- 7-(piperazin-4-ium-1-yl)-1,4-dihydroquinoline-3-carboxylato- κ2O3,O4]manganese(II) dihydrate top
Crystal data top
[Mn(C17H18FN3O3)2(C8H5O4)2]·2H2OF(000) = 1126
Mr = 1083.90Dx = 1.494 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 22913 reflections
a = 9.4510 (19) Åθ = 3.1–27.5°
b = 22.042 (4) ŵ = 0.36 mm1
c = 11.695 (2) ÅT = 293 K
β = 98.44 (3)°Block, yellow
V = 2409.9 (8) Å30.58 × 0.47 × 0.32 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5494 independent reflections
Radiation source: fine-focus sealed tube3555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 100x100 microns pixels mm-1θmax = 27.5°, θmin = 3.1°
Oscillation scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2827
Tmin = 0.817, Tmax = 0.893l = 1415
22913 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.080P)2]
where P = (Fo2 + 2Fc2)/3
5494 reflections(Δ/σ)max < 0.001
350 parametersΔρmax = 0.45 e Å3
10 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Mn(C17H18FN3O3)2(C8H5O4)2]·2H2OV = 2409.9 (8) Å3
Mr = 1083.90Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.4510 (19) ŵ = 0.36 mm1
b = 22.042 (4) ÅT = 293 K
c = 11.695 (2) Å0.58 × 0.47 × 0.32 mm
β = 98.44 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5494 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3555 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 0.893Rint = 0.068
22913 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05110 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.45 e Å3
5494 reflectionsΔρmin = 0.36 e Å3
350 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.00000.50000.02941 (16)
F10.36711 (17)0.03305 (7)1.05085 (13)0.0405 (4)
O10.3533 (2)0.08833 (10)0.61415 (16)0.0463 (5)
OW10.1255 (4)0.13296 (13)0.2728 (2)0.0820 (9)
HW1A0.094 (5)0.0991 (10)0.298 (3)0.110*
HW1B0.138 (5)0.1555 (15)0.328 (2)0.109*
O20.20086 (19)0.03315 (9)0.53302 (15)0.0357 (4)
O30.0395 (2)0.00587 (8)0.68591 (15)0.0343 (4)
O40.0782 (2)0.09397 (9)0.50461 (18)0.0439 (5)
O50.0132 (3)0.18400 (11)0.5170 (2)0.0750 (8)
O60.0126 (4)0.26486 (14)0.6518 (3)0.1005 (12)
O70.0876 (4)0.28742 (12)0.8236 (3)0.0931 (11)
N10.5198 (2)0.10018 (9)1.39405 (17)0.0314 (5)
H1A0.54820.13661.37110.038*
H1B0.56520.09311.46600.038*
N20.3244 (2)0.06259 (10)1.19684 (17)0.0305 (5)
N30.0836 (2)0.12018 (9)0.91028 (17)0.0298 (5)
C10.2347 (3)0.06311 (11)0.6166 (2)0.0295 (5)
C20.1306 (3)0.06868 (11)0.7272 (2)0.0276 (5)
C30.0053 (3)0.03176 (11)0.75371 (19)0.0259 (5)
C40.0734 (2)0.03979 (11)0.8693 (2)0.0259 (5)
C50.1887 (3)0.00113 (11)0.9079 (2)0.0286 (5)
H5A0.21330.02970.86010.034*
C60.2637 (3)0.00873 (11)1.0142 (2)0.0285 (5)
C70.2384 (3)0.05589 (11)1.0898 (2)0.0277 (5)
C80.1208 (3)0.09297 (11)1.0534 (2)0.0298 (5)
H8A0.09730.12391.10150.036*
C90.0374 (3)0.08415 (11)0.9447 (2)0.0259 (5)
C100.1624 (3)0.10961 (12)0.8066 (2)0.0315 (5)
H10A0.24560.13220.78780.038*
C110.1357 (3)0.16131 (13)0.9927 (2)0.0404 (6)
H11A0.17880.14151.05420.048*
C120.0615 (4)0.21907 (14)1.0259 (3)0.0578 (9)
H12A0.02230.22890.99060.069*
H12B0.05770.23261.10520.069*
C130.2032 (4)0.21968 (15)0.9507 (3)0.0606 (10)
H13A0.28540.23340.98440.073*
H13B0.20540.22970.86970.073*
C140.4800 (3)0.06480 (13)1.1950 (2)0.0358 (6)
H14A0.50660.10441.16910.043*
H14B0.50650.03461.14160.043*
C150.5581 (3)0.05253 (13)1.3150 (2)0.0384 (6)
H15A0.53140.01301.34120.046*
H15B0.66060.05271.31400.046*
C160.3629 (3)0.10097 (13)1.3950 (2)0.0346 (6)
H16A0.33920.13391.44390.041*
H16B0.33410.06321.42760.041*
C170.2812 (3)0.10894 (13)1.2747 (2)0.0349 (6)
H17A0.17930.10571.27720.042*
H17B0.29990.14891.24570.042*
C180.0744 (3)0.14291 (12)0.5553 (2)0.0376 (6)
C190.1798 (3)0.15346 (11)0.6640 (2)0.0321 (6)
C200.2873 (3)0.10976 (13)0.6846 (3)0.0399 (6)
H20A0.28730.07780.63270.048*
C210.3928 (4)0.11212 (16)0.7781 (3)0.0531 (8)
H21A0.46380.08260.78830.064*
C220.3934 (4)0.15842 (18)0.8571 (3)0.0626 (10)
H22A0.46400.16010.92140.075*
C230.2886 (4)0.20213 (16)0.8400 (3)0.0573 (9)
H23A0.28900.23300.89430.069*
C240.1812 (3)0.20172 (12)0.7437 (2)0.0394 (6)
C250.0795 (4)0.25462 (14)0.7399 (3)0.0562 (9)
H60.017 (6)0.2366 (18)0.602 (4)0.13 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0300 (3)0.0375 (3)0.0188 (3)0.0027 (2)0.0029 (2)0.0051 (2)
F10.0374 (8)0.0479 (9)0.0314 (8)0.0147 (7)0.0111 (7)0.0025 (7)
O10.0317 (10)0.0791 (15)0.0242 (10)0.0190 (10)0.0087 (8)0.0106 (9)
OW10.122 (3)0.0689 (17)0.0486 (16)0.0195 (17)0.0109 (16)0.0000 (13)
O20.0290 (9)0.0515 (11)0.0236 (9)0.0050 (8)0.0064 (7)0.0084 (8)
O30.0407 (10)0.0397 (10)0.0193 (9)0.0100 (8)0.0059 (7)0.0051 (7)
O40.0489 (12)0.0417 (11)0.0405 (12)0.0045 (9)0.0045 (9)0.0119 (8)
O50.0855 (19)0.0603 (15)0.0650 (17)0.0255 (14)0.0361 (14)0.0108 (12)
O60.115 (3)0.0683 (19)0.106 (3)0.0507 (19)0.027 (2)0.0308 (18)
O70.152 (3)0.0554 (15)0.073 (2)0.0280 (18)0.021 (2)0.0228 (14)
N10.0332 (11)0.0370 (11)0.0207 (10)0.0053 (9)0.0077 (8)0.0009 (8)
N20.0263 (10)0.0451 (12)0.0178 (10)0.0021 (9)0.0045 (8)0.0056 (8)
N30.0305 (11)0.0366 (11)0.0204 (10)0.0057 (9)0.0021 (8)0.0045 (8)
C10.0260 (12)0.0396 (13)0.0200 (12)0.0012 (10)0.0056 (10)0.0004 (9)
C20.0255 (12)0.0378 (13)0.0177 (11)0.0011 (10)0.0032 (9)0.0009 (9)
C30.0263 (12)0.0325 (12)0.0171 (11)0.0031 (10)0.0023 (9)0.0015 (9)
C40.0241 (11)0.0351 (12)0.0171 (11)0.0007 (10)0.0019 (9)0.0005 (9)
C50.0282 (12)0.0336 (12)0.0226 (12)0.0043 (11)0.0015 (9)0.0034 (10)
C60.0242 (11)0.0358 (13)0.0242 (12)0.0051 (10)0.0011 (9)0.0029 (9)
C70.0247 (12)0.0385 (13)0.0176 (11)0.0020 (10)0.0041 (9)0.0016 (9)
C80.0295 (12)0.0390 (13)0.0192 (12)0.0026 (11)0.0019 (10)0.0051 (9)
C90.0254 (11)0.0316 (12)0.0193 (11)0.0011 (10)0.0018 (9)0.0000 (9)
C100.0268 (12)0.0401 (13)0.0253 (13)0.0049 (11)0.0040 (10)0.0004 (10)
C110.0410 (15)0.0462 (16)0.0326 (15)0.0093 (13)0.0010 (12)0.0077 (12)
C120.068 (2)0.0489 (18)0.052 (2)0.0073 (17)0.0037 (17)0.0163 (15)
C130.073 (2)0.0552 (19)0.050 (2)0.0284 (18)0.0030 (18)0.0135 (15)
C140.0240 (12)0.0563 (17)0.0253 (13)0.0002 (11)0.0023 (10)0.0054 (11)
C150.0285 (13)0.0539 (17)0.0298 (14)0.0020 (12)0.0053 (11)0.0067 (12)
C160.0343 (14)0.0467 (15)0.0211 (13)0.0018 (12)0.0011 (11)0.0045 (10)
C170.0279 (12)0.0505 (15)0.0235 (13)0.0024 (11)0.0050 (10)0.0080 (11)
C180.0369 (14)0.0368 (14)0.0389 (16)0.0007 (12)0.0046 (12)0.0013 (11)
C190.0358 (14)0.0326 (13)0.0288 (13)0.0023 (11)0.0075 (11)0.0012 (10)
C200.0406 (15)0.0419 (15)0.0373 (16)0.0048 (12)0.0062 (12)0.0008 (12)
C210.0460 (18)0.063 (2)0.0484 (19)0.0104 (16)0.0003 (15)0.0069 (15)
C220.056 (2)0.083 (3)0.0423 (19)0.0044 (19)0.0149 (16)0.0008 (17)
C230.066 (2)0.058 (2)0.046 (2)0.0099 (17)0.0002 (17)0.0156 (15)
C240.0456 (16)0.0369 (14)0.0355 (15)0.0026 (13)0.0052 (13)0.0046 (11)
C250.078 (3)0.0341 (16)0.058 (2)0.0072 (16)0.0164 (19)0.0045 (14)
Geometric parameters (Å, º) top
Mn1—O22.1219 (18)C6—C71.408 (3)
Mn1—O2i2.1219 (18)C7—C81.394 (3)
Mn1—O32.1552 (17)C8—C91.408 (3)
Mn1—O3i2.1552 (17)C8—H8A0.9300
Mn1—O42.1971 (19)C10—H10A0.9300
Mn1—O4i2.1971 (19)C11—C121.478 (4)
F1—C61.365 (3)C11—C131.488 (4)
O1—C11.247 (3)C11—H11A0.9800
OW1—HW1A0.84 (3)C12—C131.491 (5)
OW1—HW1B0.84 (3)C12—H12A0.9700
O2—C11.259 (3)C12—H12B0.9700
O3—C31.263 (3)C13—H13A0.9700
O4—C181.234 (3)C13—H13B0.9700
O5—C181.264 (4)C14—C151.510 (4)
O6—C251.268 (5)C14—H14A0.9700
O6—H60.85 (4)C14—H14B0.9700
O7—C251.210 (4)C15—H15A0.9700
N1—C151.480 (3)C15—H15B0.9700
N1—C161.485 (3)C16—C171.513 (3)
N1—H1A0.9000C16—H16A0.9700
N1—H1B0.9000C16—H16B0.9700
N2—C71.396 (3)C17—H17A0.9700
N2—C171.466 (3)C17—H17B0.9700
N2—C141.475 (3)C18—C191.514 (4)
N3—C101.346 (3)C19—C201.395 (4)
N3—C91.402 (3)C19—C241.413 (4)
N3—C111.460 (3)C20—C211.369 (4)
C1—C21.511 (3)C20—H20A0.9300
C2—C101.360 (3)C21—C221.376 (5)
C2—C31.433 (3)C21—H21A0.9300
C3—C41.455 (3)C22—C231.375 (5)
C4—C91.392 (3)C22—H22A0.9300
C4—C51.405 (3)C23—C241.402 (4)
C5—C61.349 (3)C23—H23A0.9300
C5—H5A0.9300C24—C251.508 (4)
O2—Mn1—O2i180.00 (9)C12—C11—C1360.4 (2)
O2—Mn1—O382.19 (7)N3—C11—H11A115.1
O2i—Mn1—O397.81 (7)C12—C11—H11A115.1
O2—Mn1—O3i97.81 (7)C13—C11—H11A115.1
O2i—Mn1—O3i82.19 (7)C11—C12—C1360.2 (2)
O3—Mn1—O3i180.0C11—C12—H12A117.8
O2—Mn1—O488.72 (8)C13—C12—H12A117.8
O2i—Mn1—O491.28 (8)C11—C12—H12B117.8
O3—Mn1—O491.37 (7)C13—C12—H12B117.8
O3i—Mn1—O488.63 (7)H12A—C12—H12B114.9
O2—Mn1—O4i91.28 (8)C11—C13—C1259.5 (2)
O2i—Mn1—O4i88.72 (8)C11—C13—H13A117.8
O3—Mn1—O4i88.63 (7)C12—C13—H13A117.8
O3i—Mn1—O4i91.37 (7)C11—C13—H13B117.8
O4—Mn1—O4i180.0C12—C13—H13B117.8
HW1A—OW1—HW1B109.7 (18)H13A—C13—H13B115.0
C1—O2—Mn1131.15 (16)N2—C14—C15109.5 (2)
C3—O3—Mn1124.73 (15)N2—C14—H14A109.8
C18—O4—Mn1143.4 (2)C15—C14—H14A109.8
C25—O6—H6113 (4)N2—C14—H14B109.8
C15—N1—C16110.5 (2)C15—C14—H14B109.8
C15—N1—H1A109.6H14A—C14—H14B108.2
C16—N1—H1A109.6N1—C15—C14108.8 (2)
C15—N1—H1B109.6N1—C15—H15A109.9
C16—N1—H1B109.6C14—C15—H15A109.9
H1A—N1—H1B108.1N1—C15—H15B109.9
C7—N2—C17116.8 (2)C14—C15—H15B109.9
C7—N2—C14116.2 (2)H15A—C15—H15B108.3
C17—N2—C14110.8 (2)N1—C16—C17111.6 (2)
C10—N3—C9118.7 (2)N1—C16—H16A109.3
C10—N3—C11120.4 (2)C17—C16—H16A109.3
C9—N3—C11120.1 (2)N1—C16—H16B109.3
O1—C1—O2123.1 (2)C17—C16—H16B109.3
O1—C1—C2116.9 (2)H16A—C16—H16B108.0
O2—C1—C2120.0 (2)N2—C17—C16110.2 (2)
C10—C2—C3119.2 (2)N2—C17—H17A109.6
C10—C2—C1117.3 (2)C16—C17—H17A109.6
C3—C2—C1123.5 (2)N2—C17—H17B109.6
O3—C3—C2125.5 (2)C16—C17—H17B109.6
O3—C3—C4119.4 (2)H17A—C17—H17B108.1
C2—C3—C4115.2 (2)O4—C18—O5121.3 (3)
C9—C4—C5118.2 (2)O4—C18—C19118.4 (2)
C9—C4—C3122.3 (2)O5—C18—C19120.3 (2)
C5—C4—C3119.4 (2)C20—C19—C24118.1 (3)
C6—C5—C4119.9 (2)C20—C19—C18114.3 (2)
C6—C5—H5A120.0C24—C19—C18127.6 (2)
C4—C5—H5A120.0C21—C20—C19122.5 (3)
C5—C6—F1117.4 (2)C21—C20—H20A118.7
C5—C6—C7123.8 (2)C19—C20—H20A118.7
F1—C6—C7118.8 (2)C20—C21—C22119.7 (3)
C8—C7—N2123.0 (2)C20—C21—H21A120.2
C8—C7—C6116.3 (2)C22—C21—H21A120.2
N2—C7—C6120.7 (2)C23—C22—C21119.4 (3)
C7—C8—C9120.7 (2)C23—C22—H22A120.3
C7—C8—H8A119.7C21—C22—H22A120.3
C9—C8—H8A119.7C22—C23—C24122.2 (3)
C4—C9—N3118.7 (2)C22—C23—H23A118.9
C4—C9—C8120.8 (2)C24—C23—H23A118.9
N3—C9—C8120.4 (2)C23—C24—C19118.0 (3)
N3—C10—C2125.6 (2)C23—C24—C25113.7 (3)
N3—C10—H10A117.2C19—C24—C25128.3 (3)
C2—C10—H10A117.2O7—C25—O6120.4 (4)
N3—C11—C12121.0 (3)O7—C25—C24118.3 (4)
N3—C11—C13119.2 (3)O6—C25—C24121.3 (3)
O2i—Mn1—O2—C197 (100)C5—C4—C9—C84.6 (4)
O3—Mn1—O2—C131.5 (2)C3—C4—C9—C8176.3 (2)
O3i—Mn1—O2—C1148.5 (2)C10—N3—C9—C41.5 (3)
O4—Mn1—O2—C160.0 (2)C11—N3—C9—C4171.6 (2)
O4i—Mn1—O2—C1120.0 (2)C10—N3—C9—C8178.7 (2)
O2—Mn1—O3—C336.48 (19)C11—N3—C9—C88.6 (4)
O2i—Mn1—O3—C3143.52 (19)C7—C8—C9—C42.5 (4)
O3i—Mn1—O3—C3147 (100)C7—C8—C9—N3177.7 (2)
O4—Mn1—O3—C352.0 (2)C9—N3—C10—C24.1 (4)
O4i—Mn1—O3—C3128.0 (2)C11—N3—C10—C2174.2 (3)
O2—Mn1—O4—C1839.5 (3)C3—C2—C10—N31.5 (4)
O2i—Mn1—O4—C18140.5 (3)C1—C2—C10—N3179.1 (2)
O3—Mn1—O4—C1842.7 (3)C10—N3—C11—C12114.2 (3)
O3i—Mn1—O4—C18137.3 (3)C9—N3—C11—C1275.8 (3)
O4i—Mn1—O4—C18161 (100)C10—N3—C11—C1343.1 (4)
Mn1—O2—C1—O1167.0 (2)C9—N3—C11—C13146.9 (3)
Mn1—O2—C1—C214.3 (4)N3—C11—C12—C13108.3 (3)
O1—C1—C2—C1012.1 (4)N3—C11—C13—C12111.2 (3)
O2—C1—C2—C10169.1 (2)C7—N2—C14—C15162.5 (2)
O1—C1—C2—C3165.3 (2)C17—N2—C14—C1561.0 (3)
O2—C1—C2—C313.4 (4)C16—N1—C15—C1458.7 (3)
Mn1—O3—C3—C226.7 (3)N2—C14—C15—N161.2 (3)
Mn1—O3—C3—C4153.29 (17)C15—N1—C16—C1755.8 (3)
C10—C2—C3—O3176.6 (2)C7—N2—C17—C16167.0 (2)
C1—C2—C3—O35.9 (4)C14—N2—C17—C1656.8 (3)
C10—C2—C3—C43.4 (3)N1—C16—C17—N254.2 (3)
C1—C2—C3—C4174.0 (2)Mn1—O4—C18—O595.6 (4)
O3—C3—C4—C9174.2 (2)Mn1—O4—C18—C1985.7 (4)
C2—C3—C4—C95.8 (3)O4—C18—C19—C2010.4 (4)
O3—C3—C4—C56.8 (3)O5—C18—C19—C20168.3 (3)
C2—C3—C4—C5173.2 (2)O4—C18—C19—C24170.2 (3)
C9—C4—C5—C61.9 (4)O5—C18—C19—C2411.1 (5)
C3—C4—C5—C6179.0 (2)C24—C19—C20—C210.1 (4)
C4—C5—C6—F1174.8 (2)C18—C19—C20—C21179.4 (3)
C4—C5—C6—C73.2 (4)C19—C20—C21—C221.2 (5)
C17—N2—C7—C83.5 (4)C20—C21—C22—C230.8 (5)
C14—N2—C7—C8130.4 (3)C21—C22—C23—C240.8 (6)
C17—N2—C7—C6173.9 (2)C22—C23—C24—C191.9 (5)
C14—N2—C7—C652.3 (3)C22—C23—C24—C25178.4 (3)
C5—C6—C7—C85.3 (4)C20—C19—C24—C231.4 (4)
F1—C6—C7—C8172.7 (2)C18—C19—C24—C23179.2 (3)
C5—C6—C7—N2177.2 (2)C20—C19—C24—C25178.9 (3)
F1—C6—C7—N24.8 (4)C18—C19—C24—C250.5 (5)
N2—C7—C8—C9179.8 (2)C23—C24—C25—O78.7 (5)
C6—C7—C8—C92.4 (4)C19—C24—C25—O7171.0 (3)
C5—C4—C9—N3175.6 (2)C23—C24—C25—O6171.3 (4)
C3—C4—C9—N33.5 (4)C19—C24—C25—O69.0 (6)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1B···O50.84 (3)2.43 (3)3.108 (4)139 (4)
N1—H1A···O7ii0.901.822.717 (3)174
N1—H1B···O1iii0.901.792.688 (3)173
N1—H1B···O2iii0.902.603.246 (3)130
OW1—HW1A···O3i0.84 (3)2.12 (1)2.937 (3)164 (4)
O6—H6···O50.85 (4)1.53 (4)2.379 (4)175 (8)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C17H18FN3O3)2(C8H5O4)2]·2H2O
Mr1083.90
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.4510 (19), 22.042 (4), 11.695 (2)
β (°) 98.44 (3)
V3)2409.9 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.58 × 0.47 × 0.32
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.817, 0.893
No. of measured, independent and
observed [I > 2σ(I)] reflections
22913, 5494, 3555
Rint0.068
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.145, 1.00
No. of reflections5494
No. of parameters350
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.36

Computer programs: RAPID-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1B···O50.84 (3)2.43 (3)3.108 (4)139 (4)
N1—H1A···O7i0.901.822.717 (3)174.4
N1—H1B···O1ii0.901.792.688 (3)172.6
N1—H1B···O2ii0.902.603.246 (3)129.7
OW1—HW1A···O3iii0.84 (3)2.122 (14)2.937 (3)164 (4)
O6—H6···O50.85 (4)1.53 (4)2.379 (4)175 (8)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x, y, z+1.
 

Acknowledgements

This work was supported by the Science and Technology Foundation of Southwest University (SWUB2007035).

References

First citationChulvi, C., Muñoz, M. C., Perelló, L., Ortiz, R., Arriortua, M. I., Via, J., Urtiaga, K., Amigó, J. M. & Ochando, L. E. (1991). J. Inorg. Biochem. 42, 133–138.  CrossRef CAS Google Scholar
First citationFabbiani, F. P. A. & Dittrich, B. (2008). Acta Cryst. E64, o2354–o2355.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRuiz, M., Ortiz, R., Perello, L., Castñeiras, A. & Quirós, M. (1993). Inorg. Chim. Acta, 211, 133–139.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurel, I. (2002). Coord. Chem. Rev. 232, 27–47.  Web of Science CrossRef CAS Google Scholar
First citationWallis, S. C., Gahan, L. R., Charles, B. G. & Hambley, T. W. (1995). Polyhedron, 14, 2835–2840.  CSD CrossRef CAS Web of Science Google Scholar
First citationWang, Y.-J., Wang, N., Hu, R.-D., Lin, Q.-Y. & Wang, Y.-Y. (2009). Acta Cryst. E65, m783.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, D. R., Wang, E. B., An, H. Y., Su, Z. M., Li, Y. G., Gao, L., Sun, C. Y. & Lin, X. (2005). Chem. Eur. J. 11, 6673–6686.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m538-m539
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds