metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dicyanido[tris­­(2-pyridyl­meth­yl)amine]­cobalt(III) hexa­fluorido­phosphate

aSchool of Chemistry and Environmental Engineering, Jianghan University, Wuhan, Hubei 430056, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
*Correspondence e-mail: yufan0714@163.com

(Received 3 March 2011; accepted 31 March 2011; online 13 April 2011)

In the title complex, [Co(CN)2(C18H18N4)]PF6, the CoIII atom together with one of the pyridyl rings and two cyanide anions are located on a mirror plane, while the P atom is located on an inversion centre. The CoIII atom exhibits an octa­hedral geometry, coordinated by four N atoms from the tris­(2-pyridyl­meth­yl)amine ligand with an average Co—N distance of 1.953 (2) Å, and two cyanide C atoms with an average Co—C distance of 1.895 (2) Å. The crystal packing is stabilized by inter­molecular C—H⋯N and C—H⋯F inter­actions.

Related literature

For related structures, see: Guo et al. (2007[Guo, Y., Feng, Y. H., Liu, Z. Q. & Liao, D. Z. (2007). J. Coord. Chem. 60, 2713-2720.]), Liu et al. (2010[Liu, T., Zhang, Y. J., Kanegawa, S. & Sato, O. (2010). J. Am. Chem. Soc. 132, 8250-8251.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(CN)2(C18H18N4)]PF6

  • Mr = 546.30

  • Orthorhombic, P b c m

  • a = 10.703 (2) Å

  • b = 13.472 (3) Å

  • c = 15.151 (3) Å

  • V = 2184.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.722, Tmax = 0.792

  • 26914 measured reflections

  • 2173 independent reflections

  • 2053 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.070

  • S = 1.08

  • 2173 reflections

  • 176 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯N4i 0.93 2.60 3.339 (3) 137
C6—H6A⋯F3i 0.96 2.29 3.234 (2) 169
C7—H7A⋯F2ii 0.93 2.44 3.128 (3) 131
C9—H9A⋯N5iii 0.93 2.57 3.410 (2) 151
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, y, -z+{\script{1\over 2}}]; (iii) [-x+2, -y, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Transitional metal-cyanide systems have been extensively investigated due to their versatile structure and physical properties, especially in the field of molecular-based magnets. A large number of cyanide-bridged heterobimetallic or homometallic coordination complexes that exhibit excellent magnetic properties has been constructed by using the hexacyanoferrate(III) and hexacyanocobaltate(III) anions as templates (Liu et al., 2010). In constrast, complexes constructed by using the octacyanotungsten(IV) anion are rare. In an attempt to synthesize new complexes, we decided to use octacyanotungsten(IV) anions as template and new compounds containing cyanides have been obtained. The octacyanotungsten(IV) anion was not coordinated to Co atom via cyanide bridges, but acts as source of in situ cyanide generation.

In the title compound, the cobalt(III) centers are coordinated by two cyanides and tris(2-pyridylmethyl)amine (Fig. 1). Each cobalt(III) ion is coordinated by four N atoms with average Co—N distance of 1.957 (2) Å and two C atoms with average Co—C distance of 1.895 (2) Å in a rigid octahedral geometry, in accordance with those observed in other [Co(N)4(CN)2]- units (Guo et al., 2007). The dihedral angle of two types of pyridyl rings is about 80.17°, indicating the nearly perpendicular occupation of these pyridyl rings. The crystal packing is stabilized by C—H···N and C—H···F hydrogen bonding interactons (Table 1, Fig. 2).

Related literature top

For related structures, see: Guo et al. (2007), Liu et al. (2010).

Experimental top

0.01 mmol K4W(CN)8 in 5 ml H2O was added in a tube, and 3 ml H2O was layered on as a buffer. A solution containing 0.1 mmol CoCl2.6H2O, 0.11 mmol tris(2-pyridylmethyl)amine and 0.11 mmol KPF6 in 5 mL acetone and 1 ml H2O was stirred for 30 min and layered on top of the previous solution. After half a year, yellow crystals were obtained.

Refinement top

All H atoms were placed geometrically with C—H = 0.93 (aromatic) or 0.96-0.97 Å (CH2) , and refined using a riding atom model with their isotropic displacement factors, Uĩso fixed at 1.2 time the Ueq of the parent C atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing atomic numbering and 30% probability displacement ellipsoids.Symmetry codes: (i) x,y,-z + 1/2; (ii) x,-y + 1/2,-z.
[Figure 2] Fig. 2. The packing of title compound, viewed down the b axis. Symmetry codes: (i) x,y,-z + 1/2; (ii) x,-y + 1/2,-z.
Dicyanido[tris(2-pyridylmethyl)amine]cobalt(III) hexafluoridophosphate top
Crystal data top
[Co(CN)2(C18H18N4)]PF6F(000) = 1104
Mr = 546.30Dx = 1.658 Mg m3
Dm = 1.658 Mg m3
Dm measured by not measured
Orthorhombic, PbcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2c 2bCell parameters from 27644 reflections
a = 10.703 (2) Åθ = 6.1–54.9°
b = 13.472 (3) ŵ = 0.93 mm1
c = 15.151 (3) ÅT = 293 K
V = 2184.7 (8) Å3Block, yellow
Z = 40.40 × 0.30 × 0.25 mm
Data collection top
Bruker SMART APEX
diffractometer
2173 independent reflections
Radiation source: fine-focus sealed tube2053 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 0 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1614
Tmin = 0.722, Tmax = 0.792l = 1818
26914 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.043P)2 + 0.5717P]
where P = (Fo2 + 2Fc2)/3
2173 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
1.234 constraints
Crystal data top
[Co(CN)2(C18H18N4)]PF6V = 2184.7 (8) Å3
Mr = 546.30Z = 4
Orthorhombic, PbcmMo Kα radiation
a = 10.703 (2) ŵ = 0.93 mm1
b = 13.472 (3) ÅT = 293 K
c = 15.151 (3) Å0.40 × 0.30 × 0.25 mm
Data collection top
Bruker SMART APEX
diffractometer
2173 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2053 reflections with I > 2σ(I)
Tmin = 0.722, Tmax = 0.792Rint = 0.028
26914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
2173 reflectionsΔρmin = 0.24 e Å3
176 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.82856 (2)0.057628 (17)0.25000.02656 (10)
N10.64937 (15)0.02901 (13)0.25000.0308 (3)
N20.82831 (10)0.04135 (9)0.37718 (8)0.0326 (3)
N30.85307 (16)0.08775 (13)0.25000.0328 (4)
N40.8016 (2)0.28241 (14)0.25000.0499 (5)
N51.10402 (19)0.11315 (17)0.25000.0508 (5)
C10.5562 (2)0.09626 (16)0.25000.0412 (5)
H1A0.57610.16340.25000.049*
C20.4321 (2)0.0686 (2)0.25000.0501 (6)
H2A0.36940.11630.25000.060*
C30.4029 (2)0.0304 (2)0.25000.0503 (6)
H3A0.31990.05070.25000.060*
C40.4976 (2)0.09968 (17)0.25000.0470 (5)
H4A0.47920.16710.25000.056*
P10.43435 (6)0.25000.00000.04841 (17)
C60.7279 (2)0.13885 (15)0.25000.0408 (5)
H6A0.72190.18060.30120.049*
F20.54077 (17)0.23947 (14)0.07289 (13)0.1109 (6)
F10.43287 (15)0.13526 (10)0.01878 (13)0.0969 (5)
C130.80941 (18)0.19751 (15)0.25000.0333 (4)
C80.76782 (18)0.07851 (15)0.52469 (11)0.0524 (4)
H8A0.73220.12250.56470.063*
F30.32765 (16)0.23608 (13)0.07209 (10)0.0978 (5)
C100.86385 (17)0.07628 (14)0.49189 (11)0.0447 (4)
H10A0.89390.13780.50980.054*
C70.77754 (15)0.10373 (12)0.43633 (10)0.0417 (3)
H7A0.74830.16520.41750.050*
C120.92406 (15)0.11166 (11)0.33220 (10)0.0400 (3)
H12A1.01220.09770.32410.048*
H12B0.91460.18130.34690.048*
C90.81121 (17)0.01197 (16)0.55256 (11)0.0510 (4)
H9A0.80530.02990.61170.061*
C141.0012 (2)0.08893 (15)0.25000.0340 (4)
C110.87139 (14)0.04806 (10)0.40424 (10)0.0357 (3)
C50.6211 (2)0.06763 (14)0.25000.0336 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02638 (16)0.02409 (15)0.02921 (15)0.00029 (9)0.0000.000
N10.0296 (8)0.0301 (8)0.0326 (8)0.0016 (6)0.0000.000
N20.0312 (6)0.0339 (6)0.0328 (6)0.0008 (4)0.0014 (4)0.0005 (5)
N30.0355 (9)0.0281 (8)0.0348 (8)0.0041 (7)0.0000.000
N40.0456 (11)0.0296 (9)0.0746 (14)0.0006 (8)0.0000.000
N50.0318 (10)0.0664 (13)0.0541 (11)0.0040 (9)0.0000.000
C10.0311 (10)0.0343 (10)0.0583 (13)0.0002 (8)0.0000.000
C20.0318 (12)0.0533 (14)0.0654 (16)0.0017 (9)0.0000.000
C30.0301 (11)0.0612 (14)0.0595 (14)0.0113 (10)0.0000.000
C40.0449 (13)0.0394 (11)0.0566 (13)0.0155 (10)0.0000.000
P10.0461 (3)0.0473 (3)0.0519 (3)0.0000.0000.0053 (3)
C60.0452 (12)0.0269 (9)0.0505 (12)0.0053 (8)0.0000.000
F20.0979 (12)0.1154 (13)0.1194 (13)0.0305 (10)0.0483 (10)0.0004 (10)
F10.0994 (11)0.0502 (7)0.1411 (14)0.0045 (7)0.0406 (10)0.0180 (8)
C130.0278 (9)0.0317 (10)0.0403 (10)0.0021 (7)0.0000.000
C80.0529 (10)0.0681 (11)0.0362 (8)0.0019 (9)0.0042 (7)0.0091 (8)
F30.0994 (12)0.1130 (13)0.0809 (10)0.0082 (9)0.0396 (8)0.0240 (9)
C100.0443 (8)0.0509 (9)0.0389 (8)0.0040 (7)0.0058 (7)0.0106 (7)
C70.0447 (9)0.0440 (8)0.0363 (7)0.0040 (6)0.0014 (6)0.0046 (6)
C120.0448 (8)0.0345 (7)0.0409 (8)0.0085 (6)0.0051 (6)0.0058 (6)
C90.0497 (9)0.0721 (12)0.0314 (7)0.0062 (8)0.0000 (7)0.0057 (8)
C140.0330 (11)0.0348 (9)0.0341 (9)0.0025 (8)0.0000.000
C110.0330 (7)0.0379 (7)0.0361 (7)0.0021 (6)0.0041 (6)0.0044 (6)
C50.0383 (11)0.0328 (10)0.0296 (9)0.0057 (8)0.0000.000
Geometric parameters (Å, º) top
Co1—C141.895 (2)C4—C51.390 (3)
Co1—C131.896 (2)C4—H4A0.9300
Co1—N2i1.9393 (13)P1—F1ii1.5719 (14)
Co1—N21.9393 (13)P1—F11.5719 (14)
Co1—N11.9563 (17)P1—F3ii1.5913 (15)
Co1—N31.9760 (18)P1—F31.5913 (15)
N1—C51.337 (3)P1—F21.5928 (16)
N1—C11.347 (3)P1—F2ii1.5928 (16)
N2—C71.343 (2)C6—C51.492 (3)
N2—C111.3534 (19)C6—H6A0.9600
N3—C121.4940 (17)C8—C91.371 (3)
N3—C12i1.4940 (17)C8—C71.385 (2)
N3—C61.507 (3)C8—H8A0.9300
N4—C131.147 (3)C10—C91.383 (3)
N5—C141.148 (3)C10—C111.384 (2)
C1—C21.379 (3)C10—H10A0.9300
C1—H1A0.9300C7—H7A0.9300
C2—C31.370 (4)C12—C111.498 (2)
C2—H2A0.9300C12—H12A0.9700
C3—C41.378 (4)C12—H12B0.9700
C3—H3A0.9300C9—H9A0.9300
C14—Co1—C1383.35 (8)F1ii—P1—F389.11 (10)
C14—Co1—N2i91.52 (3)F1—P1—F390.06 (9)
C13—Co1—N2i96.45 (4)F3ii—P1—F388.28 (14)
C14—Co1—N291.52 (3)F1ii—P1—F288.24 (9)
C13—Co1—N296.45 (4)F1—P1—F292.58 (10)
N2i—Co1—N2167.01 (7)F3ii—P1—F2178.30 (9)
C14—Co1—N1178.51 (8)F3—P1—F291.54 (11)
C13—Co1—N195.16 (8)F1ii—P1—F2ii92.58 (10)
N2i—Co1—N188.64 (3)F1—P1—F2ii88.24 (9)
N2—Co1—N188.64 (3)F3ii—P1—F2ii91.54 (11)
C14—Co1—N395.23 (8)F3—P1—F2ii178.30 (9)
C13—Co1—N3178.58 (8)F2—P1—F2ii88.69 (16)
N2i—Co1—N383.58 (4)C5—C6—N3112.79 (17)
N2—Co1—N383.58 (4)C5—C6—H6A109.0
N1—Co1—N386.26 (7)N3—C6—H6A109.0
C5—N1—C1119.17 (18)N4—C13—Co1177.95 (19)
C5—N1—Co1114.45 (14)C9—C8—C7119.36 (16)
C1—N1—Co1126.38 (15)C9—C8—H8A120.3
C7—N2—C11119.50 (13)C7—C8—H8A120.3
C7—N2—Co1126.35 (11)C9—C10—C11119.30 (16)
C11—N2—Co1113.65 (10)C9—C10—H10A120.3
C12—N3—C12i112.94 (16)C11—C10—H10A120.3
C12—N3—C6110.72 (10)N2—C7—C8121.45 (16)
C12i—N3—C6110.72 (10)N2—C7—H7A119.3
C12—N3—Co1106.33 (9)C8—C7—H7A119.3
C12i—N3—Co1106.33 (9)N3—C12—C11107.02 (12)
C6—N3—Co1109.56 (12)N3—C12—H12A110.3
N1—C1—C2122.0 (2)C11—C12—H12A110.3
N1—C1—H1A119.0N3—C12—H12B110.3
C2—C1—H1A119.0C11—C12—H12B110.3
C3—C2—C1118.9 (2)H12A—C12—H12B108.6
C3—C2—H2A120.6C8—C9—C10119.36 (15)
C1—C2—H2A120.6C8—C9—H9A120.3
C2—C3—C4119.4 (2)C10—C9—H9A120.3
C2—C3—H3A120.3N5—C14—Co1176.3 (2)
C4—C3—H3A120.3N2—C11—C10121.03 (15)
C3—C4—C5119.3 (2)N2—C11—C12114.62 (13)
C3—C4—H4A120.4C10—C11—C12124.34 (14)
C5—C4—H4A120.4N1—C5—C4121.2 (2)
F1ii—P1—F1178.85 (13)N1—C5—C6116.95 (18)
F1ii—P1—F3ii90.06 (9)C4—C5—C6121.88 (19)
F1—P1—F3ii89.11 (10)
C14—Co1—N1—C5180.0C2—C3—C4—C50.0
C13—Co1—N1—C5180.0C12—N3—C6—C5116.97 (11)
N2i—Co1—N1—C583.65 (4)C12i—N3—C6—C5116.97 (11)
N2—Co1—N1—C583.65 (4)Co1—N3—C6—C50.0
N3—Co1—N1—C50.0C14—Co1—C13—N40.0
C14—Co1—N1—C10.0N2i—Co1—C13—N490.79 (3)
C13—Co1—N1—C10.0N2—Co1—C13—N490.79 (3)
N2i—Co1—N1—C196.35 (4)N1—Co1—C13—N4180.0
N2—Co1—N1—C196.35 (4)N3—Co1—C13—N40.0
N3—Co1—N1—C1180.0C11—N2—C7—C80.2 (2)
C14—Co1—N2—C7107.30 (14)Co1—N2—C7—C8171.16 (13)
C13—Co1—N2—C723.82 (14)C9—C8—C7—N20.2 (3)
N2i—Co1—N2—C7149.2 (2)C12i—N3—C12—C11156.60 (11)
N1—Co1—N2—C771.22 (14)C6—N3—C12—C1178.58 (16)
N3—Co1—N2—C7157.61 (14)Co1—N3—C12—C1140.35 (14)
C14—Co1—N2—C1180.90 (11)C7—C8—C9—C100.0 (3)
C13—Co1—N2—C11164.38 (11)C11—C10—C9—C80.1 (3)
N2i—Co1—N2—C1122.6 (4)C13—Co1—C14—N50.0
N1—Co1—N2—C11100.58 (11)N2i—Co1—C14—N596.31 (4)
N3—Co1—N2—C1114.19 (11)N2—Co1—C14—N596.31 (4)
C14—Co1—N3—C1260.30 (10)N1—Co1—C14—N50.0
C13—Co1—N3—C1260.30 (10)N3—Co1—C14—N5180.0
N2i—Co1—N3—C12151.25 (11)C7—N2—C11—C100.1 (2)
N2—Co1—N3—C1230.65 (10)Co1—N2—C11—C10172.35 (12)
N1—Co1—N3—C12119.70 (10)C7—N2—C11—C12179.11 (14)
C14—Co1—N3—C12i60.30 (10)Co1—N2—C11—C126.70 (16)
C13—Co1—N3—C12i60.30 (10)C9—C10—C11—N20.1 (2)
N2i—Co1—N3—C12i30.65 (10)C9—C10—C11—C12178.84 (16)
N2—Co1—N3—C12i151.25 (11)N3—C12—C11—N231.69 (18)
N1—Co1—N3—C12i119.70 (10)N3—C12—C11—C10147.32 (16)
C14—Co1—N3—C6180.0C1—N1—C5—C40.0
C13—Co1—N3—C6180.0Co1—N1—C5—C4180.0
N2i—Co1—N3—C689.05 (3)C1—N1—C5—C6180.0
N2—Co1—N3—C689.05 (3)Co1—N1—C5—C60.0
N1—Co1—N3—C60.0C3—C4—C5—N10.0
C5—N1—C1—C20.0C3—C4—C5—C6180.0
Co1—N1—C1—C2180.0N3—C6—C5—N10.0
N1—C1—C2—C30.0N3—C6—C5—C4180.0
C1—C2—C3—C40.0
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N4iii0.932.603.339 (3)137
C6—H6A···F3iii0.962.293.234 (2)169
C7—H7A···F2i0.932.443.128 (3)131
C9—H9A···N5iv0.932.573.410 (2)151
Symmetry codes: (i) x, y, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(CN)2(C18H18N4)]PF6
Mr546.30
Crystal system, space groupOrthorhombic, Pbcm
Temperature (K)293
a, b, c (Å)10.703 (2), 13.472 (3), 15.151 (3)
V3)2184.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.722, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
26914, 2173, 2053
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.070, 1.08
No. of reflections2173
No. of parameters176
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N4i0.932.603.339 (3)137
C6—H6A···F3i0.962.293.234 (2)169
C7—H7A···F2ii0.932.443.128 (3)131
C9—H9A···N5iii0.932.573.410 (2)151
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y, z+1/2; (iii) x+2, y, z+1/2.
 

Acknowledgements

Jianghan University and Huazhong University of Science and Technology are thanked for their generous financial support and for a start-up grant.

References

First citationBruker (1997). SMART. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, Y., Feng, Y. H., Liu, Z. Q. & Liao, D. Z. (2007). J. Coord. Chem. 60, 2713–2720.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, T., Zhang, Y. J., Kanegawa, S. & Sato, O. (2010). J. Am. Chem. Soc. 132, 8250–8251.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds