organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1097

N-(2-Chloro­phenyl­sulfon­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 16 March 2011; accepted 6 April 2011; online 13 April 2011)

The asymmetric unit of the title compound, C8H8ClNO3S, contains two independent mol­ecules in which the C—S—N—C torsion angles are −71.7 (3) and 61.2 (3)°. The benzene rings and the SO2—NH—CO—C segments form dihedral angles of 80.2 (1) and 88.1 (2)° in the two independent mol­ecules. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains in the b-axis direction.

Related literature

For the sulfanilamide moiety in sulfonamide drugs, see; Maren (1976[Maren, T. H. (1976). Annu. Rev. Pharmacol Toxicol. 16, 309-327.]). For its ability to form hydrogen bonds in the solid state, see; Yang & Guillory (1972[Yang, S. S. & Guillory, J. K. (1972). J. Pharm. Sci. 61, 26-40.]). For hydrogen-bonding modes of sulfonamides, see; Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For our study of the effect of substituents on the structures of N-(ar­yl)-amides, see: Gowda et al. (2000[Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791-800.]), of N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.]) and of N-(substituted phenyl­sulfon­yl)-substituted amides, see: Gowda et al. (2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1284.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8ClNO3S

  • Mr = 233.66

  • Monoclinic, P 21 /n

  • a = 11.215 (2) Å

  • b = 9.393 (2) Å

  • c = 19.655 (3) Å

  • β = 98.61 (2)°

  • V = 2047.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 293 K

  • 0.16 × 0.16 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.916, Tmax = 0.978

  • 8327 measured reflections

  • 4168 independent reflections

  • 1942 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.099

  • S = 0.95

  • 4168 reflections

  • 261 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.85 (2) 2.03 (2) 2.848 (4) 162 (3)
N2—H2N⋯O6ii 0.84 (2) 1.96 (2) 2.788 (4) 172 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structures of sulfonamide drugs contain the sulfanilamide moiety (Maren, 1976). The affinity for hydrogen bonding in the solid state due to the presence of various hydrogen bond donors and acceptors give rise to polymorphism (Yang & Guillory, 1972). The hydrogen bonding preferences of sulfonamides have also been investigated (Adsmond & Grant, 2001). The nature and position of substituents play a significant role on the crystal structures of N-(aryl)-amides and N-(aryl)- sulfonoamides (Gowda et al., 2000, 2007, 2010). As a part of studying the effects of substituents on the structures of this class of compounds, the structure of N-(2-chlorophenylsulfonyl)-acetamide (I) has been determined (Fig. 1). The asymmetric unit of (I) contains two independent molecules. The rms deviation of a fit of the inverted molecule 2 (containing Cl2) on molecule 1 (containing Cl1) is 0.278 Å for 12 fitted atoms (excluding H atoms and O atoms SO2 groups). In one of the molecules, the conformation of the N—C bond in the C—SO2—NH—C(O) segment has gauche torsions with respect to the SO bonds, the torsional angles being C15—N2—S2—O5 = -54.0 (4)° and C15—N2—S2—O4 = 176.4 (3)°. The conformations of the N—H and C=O bonds of these segments are anti to each other, similar to that observed in N-(phenylsulfonyl)-acetamide (II) (Gowda et al., 2010).

The molecules in (I) are bent at the S-atom with a C—S—N—C torsion angles of -71.7 (3)° and 61.2 (3)° in the two independent molecules, compared to the values of -58.8 (4)° in (II),

Further, the dihedral angles between the benzene rings and the SO2—NH—CO—C groups in (I) are 80.2 (1)° in molecule 1 and 88.1 (2)° in molecule 2, compared to the values of 89.0 (2)° in (II).

In the crystal structure, the intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into chains in the b-direction. Part of the crystal structure is shown in Fig. 2.

Related literature top

For the sulfanilamide moiety in sulfonamide drugs, see; Maren (1976). For its ability to form hydrogen bonds in the solid state, see; Yang & Guillory (1972). For hydrogen-bonding modes of sulfonamides, see; Adsmond & Grant (2001). For our study of the effect of substituents on the structures of N-(aryl)-amides, see: Gowda et al. (2000) on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007) and on N-(substituted phenylsulfonyl)-substituted amides, see: Gowda et al. (2010).

Experimental top

The title compound was prepared by refluxing 2-chlorobenzenesulfonamide (0.10 mole) with an excess of acetyl chloride (0.20 mole) for one hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was reprecipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra.

Plate like colourless single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of an ethanolic solution of the compound.

Refinement top

The H atoms of the NH groups were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H distance = 0.93 Å and methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom- labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
N-(2-Chlorophenylsulfonyl)acetamide top
Crystal data top
C8H8ClNO3SF(000) = 960
Mr = 233.66Dx = 1.516 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1468 reflections
a = 11.215 (2) Åθ = 2.6–27.9°
b = 9.393 (2) ŵ = 0.56 mm1
c = 19.655 (3) ÅT = 293 K
β = 98.61 (2)°Plate, colourless
V = 2047.2 (6) Å30.16 × 0.16 × 0.04 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
4168 independent reflections
Radiation source: fine-focus sealed tube1942 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1014
Tmin = 0.916, Tmax = 0.978k = 911
8327 measured reflectionsl = 2419
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0348P)2]
where P = (Fo2 + 2Fc2)/3
4168 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.26 e Å3
2 restraintsΔρmin = 0.26 e Å3
Crystal data top
C8H8ClNO3SV = 2047.2 (6) Å3
Mr = 233.66Z = 8
Monoclinic, P21/nMo Kα radiation
a = 11.215 (2) ŵ = 0.56 mm1
b = 9.393 (2) ÅT = 293 K
c = 19.655 (3) Å0.16 × 0.16 × 0.04 mm
β = 98.61 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
4168 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1942 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.978Rint = 0.048
8327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0572 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.26 e Å3
4168 reflectionsΔρmin = 0.26 e Å3
261 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.51810 (9)0.17437 (11)0.37185 (7)0.0865 (4)
S10.27802 (8)0.36595 (10)0.38303 (5)0.0430 (3)
O10.19970 (19)0.4751 (2)0.39993 (13)0.0544 (7)
O20.27435 (19)0.2294 (2)0.41421 (12)0.0536 (7)
O30.2486 (2)0.5660 (3)0.26563 (13)0.0541 (7)
N10.2528 (2)0.3364 (3)0.29999 (16)0.0379 (8)
H1N0.248 (3)0.249 (2)0.2887 (17)0.045*
C10.4262 (3)0.4343 (4)0.39817 (17)0.0374 (9)
C20.5274 (3)0.3523 (4)0.39431 (19)0.0474 (10)
C30.6403 (3)0.4118 (5)0.4089 (2)0.0562 (11)
H30.70820.35680.40570.067*
C40.6532 (3)0.5523 (5)0.4280 (2)0.0572 (11)
H40.72980.59160.43880.069*
C50.5534 (4)0.6345 (4)0.43133 (19)0.0549 (11)
H50.56230.72990.44370.066*
C60.4403 (3)0.5763 (4)0.41646 (18)0.0455 (10)
H60.37270.63250.41870.055*
C70.2354 (3)0.4414 (4)0.2506 (2)0.0382 (9)
C80.1998 (3)0.3873 (4)0.17924 (19)0.0552 (11)
H8A0.25230.31050.17090.066*
H8B0.20620.46270.14700.066*
H8C0.11810.35370.17380.066*
Cl20.71788 (9)0.38447 (10)0.10127 (6)0.0742 (4)
S20.55209 (8)0.57945 (11)0.18903 (6)0.0530 (3)
O40.4912 (2)0.4460 (3)0.18511 (14)0.0686 (8)
O50.5000 (2)0.7009 (3)0.21600 (15)0.0696 (8)
O60.7597 (2)0.7639 (3)0.22798 (14)0.0606 (8)
N20.6830 (3)0.5457 (3)0.23640 (17)0.0460 (8)
H2N0.693 (3)0.460 (2)0.2471 (18)0.055*
C90.5848 (3)0.6257 (4)0.10696 (19)0.0399 (9)
C100.6495 (3)0.5395 (4)0.0678 (2)0.0477 (10)
C110.6630 (3)0.5774 (5)0.0015 (2)0.0643 (12)
H110.70690.51940.02410.077*
C120.6121 (4)0.6996 (5)0.0266 (2)0.0698 (13)
H120.62030.72440.07150.084*
C130.5487 (3)0.7862 (4)0.0114 (3)0.0652 (13)
H130.51510.87020.00770.078*
C140.5342 (3)0.7500 (4)0.0776 (2)0.0530 (11)
H140.49030.80910.10260.064*
C150.7731 (3)0.6440 (4)0.2501 (2)0.0486 (10)
C160.8857 (3)0.5899 (4)0.2931 (2)0.0636 (12)
H16A0.86660.55360.33580.076*
H16B0.94290.66620.30210.076*
H16C0.91990.51510.26880.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0709 (7)0.0570 (7)0.1361 (13)0.0036 (6)0.0295 (7)0.0294 (8)
S10.0420 (5)0.0432 (6)0.0434 (7)0.0090 (5)0.0055 (4)0.0003 (5)
O10.0476 (15)0.0558 (17)0.0618 (19)0.0011 (12)0.0151 (12)0.0133 (15)
O20.0601 (15)0.0492 (16)0.051 (2)0.0157 (12)0.0075 (13)0.0148 (14)
O30.0791 (17)0.0272 (15)0.054 (2)0.0058 (13)0.0025 (13)0.0003 (14)
N10.0472 (17)0.0241 (16)0.039 (2)0.0065 (14)0.0047 (14)0.0022 (17)
C10.040 (2)0.037 (2)0.034 (2)0.0069 (17)0.0015 (16)0.0035 (19)
C20.048 (2)0.049 (2)0.046 (3)0.0083 (19)0.0077 (18)0.005 (2)
C30.041 (2)0.071 (3)0.057 (3)0.004 (2)0.0120 (18)0.002 (3)
C40.050 (3)0.072 (3)0.048 (3)0.028 (2)0.0022 (19)0.005 (3)
C50.062 (3)0.053 (3)0.048 (3)0.021 (2)0.002 (2)0.003 (2)
C60.048 (2)0.045 (2)0.042 (3)0.0023 (19)0.0035 (17)0.005 (2)
C70.038 (2)0.031 (2)0.045 (3)0.0024 (17)0.0037 (17)0.001 (2)
C80.073 (3)0.046 (3)0.045 (3)0.004 (2)0.000 (2)0.002 (2)
Cl20.0904 (8)0.0504 (7)0.0851 (10)0.0276 (6)0.0237 (6)0.0008 (6)
S20.0460 (6)0.0515 (7)0.0632 (8)0.0038 (5)0.0141 (5)0.0027 (6)
O40.0527 (15)0.0630 (19)0.091 (2)0.0193 (14)0.0146 (14)0.0033 (17)
O50.0653 (17)0.0676 (19)0.081 (2)0.0259 (14)0.0283 (15)0.0087 (17)
O60.0748 (18)0.0335 (16)0.069 (2)0.0025 (14)0.0023 (14)0.0024 (16)
N20.0552 (19)0.0281 (17)0.054 (2)0.0019 (16)0.0048 (16)0.0010 (18)
C90.0354 (19)0.037 (2)0.046 (3)0.0006 (17)0.0034 (17)0.004 (2)
C100.047 (2)0.039 (2)0.055 (3)0.0045 (18)0.001 (2)0.003 (2)
C110.074 (3)0.059 (3)0.060 (4)0.005 (2)0.013 (2)0.004 (3)
C120.091 (3)0.067 (3)0.049 (3)0.000 (3)0.001 (3)0.000 (3)
C130.069 (3)0.051 (3)0.068 (4)0.006 (2)0.014 (3)0.008 (3)
C140.044 (2)0.046 (3)0.066 (4)0.0048 (19)0.001 (2)0.006 (3)
C150.056 (3)0.039 (2)0.050 (3)0.003 (2)0.005 (2)0.008 (2)
C160.070 (3)0.054 (3)0.061 (3)0.004 (2)0.009 (2)0.005 (2)
Geometric parameters (Å, º) top
Cl1—C21.728 (4)Cl2—C101.729 (4)
S1—O11.421 (2)S2—O51.420 (2)
S1—O21.425 (2)S2—O41.424 (2)
S1—N11.638 (3)S2—N21.647 (3)
S1—C11.765 (3)S2—C91.761 (4)
O3—C71.210 (4)O6—C151.209 (4)
N1—C71.377 (4)N2—C151.366 (4)
N1—H1N0.850 (17)N2—H2N0.835 (17)
C1—C21.383 (4)C9—C141.386 (4)
C1—C61.384 (4)C9—C101.393 (5)
C2—C31.375 (4)C10—C111.382 (5)
C3—C41.375 (5)C11—C121.361 (5)
C3—H30.9300C11—H110.9300
C4—C51.369 (5)C12—C131.373 (5)
C4—H40.9300C12—H120.9300
C5—C61.373 (4)C13—C141.377 (5)
C5—H50.9300C13—H130.9300
C6—H60.9300C14—H140.9300
C7—C81.490 (5)C15—C161.499 (4)
C8—H8A0.9600C16—H16A0.9600
C8—H8B0.9600C16—H16B0.9600
C8—H8C0.9600C16—H16C0.9600
O1—S1—O2119.34 (15)O5—S2—O4120.45 (16)
O1—S1—N1109.54 (15)O5—S2—N2108.97 (17)
O2—S1—N1105.33 (15)O4—S2—N2103.94 (16)
O1—S1—C1107.31 (16)O5—S2—C9107.31 (17)
O2—S1—C1110.00 (15)O4—S2—C9109.35 (17)
N1—S1—C1104.32 (15)N2—S2—C9105.95 (16)
C7—N1—S1124.5 (2)C15—N2—S2123.5 (2)
C7—N1—H1N121 (2)C15—N2—H2N123 (2)
S1—N1—H1N115 (2)S2—N2—H2N113 (2)
C2—C1—C6119.2 (3)C14—C9—C10118.3 (4)
C2—C1—S1123.2 (3)C14—C9—S2117.4 (3)
C6—C1—S1117.5 (3)C10—C9—S2124.0 (3)
C3—C2—C1120.0 (3)C11—C10—C9120.7 (3)
C3—C2—Cl1117.7 (3)C11—C10—Cl2118.1 (3)
C1—C2—Cl1122.3 (3)C9—C10—Cl2121.2 (3)
C2—C3—C4120.2 (4)C12—C11—C10120.1 (4)
C2—C3—H3119.9C12—C11—H11120.0
C4—C3—H3119.9C10—C11—H11120.0
C5—C4—C3120.1 (3)C11—C12—C13119.9 (4)
C5—C4—H4120.0C11—C12—H12120.0
C3—C4—H4120.0C13—C12—H12120.0
C4—C5—C6120.1 (4)C12—C13—C14120.8 (4)
C4—C5—H5120.0C12—C13—H13119.6
C6—C5—H5120.0C14—C13—H13119.6
C5—C6—C1120.4 (3)C13—C14—C9120.1 (4)
C5—C6—H6119.8C13—C14—H14119.9
C1—C6—H6119.8C9—C14—H14119.9
O3—C7—N1121.4 (3)O6—C15—N2120.6 (3)
O3—C7—C8124.4 (4)O6—C15—C16124.6 (3)
N1—C7—C8114.1 (3)N2—C15—C16114.7 (3)
C7—C8—H8A109.5C15—C16—H16A109.5
C7—C8—H8B109.5C15—C16—H16B109.5
H8A—C8—H8B109.5H16A—C16—H16B109.5
C7—C8—H8C109.5C15—C16—H16C109.5
H8A—C8—H8C109.5H16A—C16—H16C109.5
H8B—C8—H8C109.5H16B—C16—H16C109.5
O1—S1—N1—C742.9 (3)O5—S2—N2—C1554.0 (3)
O2—S1—N1—C7172.5 (2)O4—S2—N2—C15176.4 (3)
C1—S1—N1—C771.7 (3)C9—S2—N2—C1561.2 (3)
O1—S1—C1—C2172.8 (3)O5—S2—C9—C1413.5 (3)
O2—S1—C1—C241.5 (3)O4—S2—C9—C14118.8 (3)
N1—S1—C1—C271.0 (3)N2—S2—C9—C14129.8 (3)
O1—S1—C1—C65.5 (3)O5—S2—C9—C10172.2 (3)
O2—S1—C1—C6136.8 (3)O4—S2—C9—C1055.6 (3)
N1—S1—C1—C6110.7 (3)N2—S2—C9—C1055.9 (3)
C6—C1—C2—C30.3 (5)C14—C9—C10—C110.2 (5)
S1—C1—C2—C3178.0 (3)S2—C9—C10—C11174.5 (3)
C6—C1—C2—Cl1180.0 (3)C14—C9—C10—Cl2178.7 (2)
S1—C1—C2—Cl11.8 (5)S2—C9—C10—Cl26.9 (4)
C1—C2—C3—C40.8 (6)C9—C10—C11—C120.5 (6)
Cl1—C2—C3—C4179.0 (3)Cl2—C10—C11—C12179.1 (3)
C2—C3—C4—C51.4 (6)C10—C11—C12—C130.9 (6)
C3—C4—C5—C61.0 (6)C11—C12—C13—C140.9 (6)
C4—C5—C6—C10.1 (6)C12—C13—C14—C90.7 (6)
C2—C1—C6—C50.7 (5)C10—C9—C14—C130.3 (5)
S1—C1—C6—C5177.7 (3)S2—C9—C14—C13175.0 (3)
S1—N1—C7—O36.9 (4)S2—N2—C15—O60.7 (5)
S1—N1—C7—C8173.2 (2)S2—N2—C15—C16178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.85 (2)2.03 (2)2.848 (4)162 (3)
N2—H2N···O6ii0.84 (2)1.96 (2)2.788 (4)172 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H8ClNO3S
Mr233.66
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.215 (2), 9.393 (2), 19.655 (3)
β (°) 98.61 (2)
V3)2047.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.16 × 0.16 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.916, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
8327, 4168, 1942
Rint0.048
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.099, 0.95
No. of reflections4168
No. of parameters261
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.26

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.850 (17)2.03 (2)2.848 (4)162 (3)
N2—H2N···O6ii0.835 (17)1.960 (19)2.788 (4)172 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–800.  CAS Google Scholar
First citationMaren, T. H. (1976). Annu. Rev. Pharmacol Toxicol. 16, 309–327.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, S. S. & Guillory, J. K. (1972). J. Pharm. Sci. 61, 26–40.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1097
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds