organic compounds
N-(2-Chlorophenylsulfonyl)acetamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
The 8H8ClNO3S, contains two independent molecules in which the C—S—N—C torsion angles are −71.7 (3) and 61.2 (3)°. The benzene rings and the SO2—NH—CO—C segments form dihedral angles of 80.2 (1) and 88.1 (2)° in the two independent molecules. In the crystal, intermolecular N—H⋯O hydrogen bonds link the molecules into chains in the b-axis direction.
of the title compound, CRelated literature
For the sulfanilamide moiety in sulfonamide drugs, see; Maren (1976). For its ability to form hydrogen bonds in the solid state, see; Yang & Guillory (1972). For hydrogen-bonding modes of see; Adsmond & Grant (2001). For our study of the effect of substituents on the structures of N-(aryl)-amides, see: Gowda et al. (2000), of N-(aryl)-methanesulfonamides, see: Gowda et al. (2007) and of N-(substituted phenylsulfonyl)-substituted see: Gowda et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811012785/vm2086sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811012785/vm2086Isup2.hkl
The title compound was prepared by refluxing 2-chlorobenzenesulfonamide (0.10 mole) with an excess of acetyl chloride (0.20 mole) for one hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was reprecipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra.
Plate like colourless single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of an ethanolic solution of the compound.
The H atoms of the NH groups were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H distance = 0.93 Å and methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C8H8ClNO3S | F(000) = 960 |
Mr = 233.66 | Dx = 1.516 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1468 reflections |
a = 11.215 (2) Å | θ = 2.6–27.9° |
b = 9.393 (2) Å | µ = 0.56 mm−1 |
c = 19.655 (3) Å | T = 293 K |
β = 98.61 (2)° | Plate, colourless |
V = 2047.2 (6) Å3 | 0.16 × 0.16 × 0.04 mm |
Z = 8 |
Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector | 4168 independent reflections |
Radiation source: fine-focus sealed tube | 1942 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
Rotation method data acquisition using ω and ϕ scans | θmax = 26.4°, θmin = 2.9° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −10→14 |
Tmin = 0.916, Tmax = 0.978 | k = −9→11 |
8327 measured reflections | l = −24→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.95 | w = 1/[σ2(Fo2) + (0.0348P)2] where P = (Fo2 + 2Fc2)/3 |
4168 reflections | (Δ/σ)max < 0.001 |
261 parameters | Δρmax = 0.26 e Å−3 |
2 restraints | Δρmin = −0.26 e Å−3 |
C8H8ClNO3S | V = 2047.2 (6) Å3 |
Mr = 233.66 | Z = 8 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.215 (2) Å | µ = 0.56 mm−1 |
b = 9.393 (2) Å | T = 293 K |
c = 19.655 (3) Å | 0.16 × 0.16 × 0.04 mm |
β = 98.61 (2)° |
Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector | 4168 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | 1942 reflections with I > 2σ(I) |
Tmin = 0.916, Tmax = 0.978 | Rint = 0.048 |
8327 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 2 restraints |
wR(F2) = 0.099 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.95 | Δρmax = 0.26 e Å−3 |
4168 reflections | Δρmin = −0.26 e Å−3 |
261 parameters |
Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.51810 (9) | 0.17437 (11) | 0.37185 (7) | 0.0865 (4) | |
S1 | 0.27802 (8) | 0.36595 (10) | 0.38303 (5) | 0.0430 (3) | |
O1 | 0.19970 (19) | 0.4751 (2) | 0.39993 (13) | 0.0544 (7) | |
O2 | 0.27435 (19) | 0.2294 (2) | 0.41421 (12) | 0.0536 (7) | |
O3 | 0.2486 (2) | 0.5660 (3) | 0.26563 (13) | 0.0541 (7) | |
N1 | 0.2528 (2) | 0.3364 (3) | 0.29999 (16) | 0.0379 (8) | |
H1N | 0.248 (3) | 0.249 (2) | 0.2887 (17) | 0.045* | |
C1 | 0.4262 (3) | 0.4343 (4) | 0.39817 (17) | 0.0374 (9) | |
C2 | 0.5274 (3) | 0.3523 (4) | 0.39431 (19) | 0.0474 (10) | |
C3 | 0.6403 (3) | 0.4118 (5) | 0.4089 (2) | 0.0562 (11) | |
H3 | 0.7082 | 0.3568 | 0.4057 | 0.067* | |
C4 | 0.6532 (3) | 0.5523 (5) | 0.4280 (2) | 0.0572 (11) | |
H4 | 0.7298 | 0.5916 | 0.4388 | 0.069* | |
C5 | 0.5534 (4) | 0.6345 (4) | 0.43133 (19) | 0.0549 (11) | |
H5 | 0.5623 | 0.7299 | 0.4437 | 0.066* | |
C6 | 0.4403 (3) | 0.5763 (4) | 0.41646 (18) | 0.0455 (10) | |
H6 | 0.3727 | 0.6325 | 0.4187 | 0.055* | |
C7 | 0.2354 (3) | 0.4414 (4) | 0.2506 (2) | 0.0382 (9) | |
C8 | 0.1998 (3) | 0.3873 (4) | 0.17924 (19) | 0.0552 (11) | |
H8A | 0.2523 | 0.3105 | 0.1709 | 0.066* | |
H8B | 0.2062 | 0.4627 | 0.1470 | 0.066* | |
H8C | 0.1181 | 0.3537 | 0.1738 | 0.066* | |
Cl2 | 0.71788 (9) | 0.38447 (10) | 0.10127 (6) | 0.0742 (4) | |
S2 | 0.55209 (8) | 0.57945 (11) | 0.18903 (6) | 0.0530 (3) | |
O4 | 0.4912 (2) | 0.4460 (3) | 0.18511 (14) | 0.0686 (8) | |
O5 | 0.5000 (2) | 0.7009 (3) | 0.21600 (15) | 0.0696 (8) | |
O6 | 0.7597 (2) | 0.7639 (3) | 0.22798 (14) | 0.0606 (8) | |
N2 | 0.6830 (3) | 0.5457 (3) | 0.23640 (17) | 0.0460 (8) | |
H2N | 0.693 (3) | 0.460 (2) | 0.2471 (18) | 0.055* | |
C9 | 0.5848 (3) | 0.6257 (4) | 0.10696 (19) | 0.0399 (9) | |
C10 | 0.6495 (3) | 0.5395 (4) | 0.0678 (2) | 0.0477 (10) | |
C11 | 0.6630 (3) | 0.5774 (5) | 0.0015 (2) | 0.0643 (12) | |
H11 | 0.7069 | 0.5194 | −0.0241 | 0.077* | |
C12 | 0.6121 (4) | 0.6996 (5) | −0.0266 (2) | 0.0698 (13) | |
H12 | 0.6203 | 0.7244 | −0.0715 | 0.084* | |
C13 | 0.5487 (3) | 0.7862 (4) | 0.0114 (3) | 0.0652 (13) | |
H13 | 0.5151 | 0.8702 | −0.0077 | 0.078* | |
C14 | 0.5342 (3) | 0.7500 (4) | 0.0776 (2) | 0.0530 (11) | |
H14 | 0.4903 | 0.8091 | 0.1026 | 0.064* | |
C15 | 0.7731 (3) | 0.6440 (4) | 0.2501 (2) | 0.0486 (10) | |
C16 | 0.8857 (3) | 0.5899 (4) | 0.2931 (2) | 0.0636 (12) | |
H16A | 0.8666 | 0.5536 | 0.3358 | 0.076* | |
H16B | 0.9429 | 0.6662 | 0.3021 | 0.076* | |
H16C | 0.9199 | 0.5151 | 0.2688 | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0709 (7) | 0.0570 (7) | 0.1361 (13) | −0.0036 (6) | 0.0295 (7) | −0.0294 (8) |
S1 | 0.0420 (5) | 0.0432 (6) | 0.0434 (7) | −0.0090 (5) | 0.0055 (4) | −0.0003 (5) |
O1 | 0.0476 (15) | 0.0558 (17) | 0.0618 (19) | −0.0011 (12) | 0.0151 (12) | −0.0133 (15) |
O2 | 0.0601 (15) | 0.0492 (16) | 0.051 (2) | −0.0157 (12) | 0.0075 (13) | 0.0148 (14) |
O3 | 0.0791 (17) | 0.0272 (15) | 0.054 (2) | −0.0058 (13) | 0.0025 (13) | 0.0003 (14) |
N1 | 0.0472 (17) | 0.0241 (16) | 0.039 (2) | −0.0065 (14) | −0.0047 (14) | −0.0022 (17) |
C1 | 0.040 (2) | 0.037 (2) | 0.034 (2) | −0.0069 (17) | 0.0015 (16) | −0.0035 (19) |
C2 | 0.048 (2) | 0.049 (2) | 0.046 (3) | −0.0083 (19) | 0.0077 (18) | −0.005 (2) |
C3 | 0.041 (2) | 0.071 (3) | 0.057 (3) | −0.004 (2) | 0.0120 (18) | −0.002 (3) |
C4 | 0.050 (3) | 0.072 (3) | 0.048 (3) | −0.028 (2) | 0.0022 (19) | 0.005 (3) |
C5 | 0.062 (3) | 0.053 (3) | 0.048 (3) | −0.021 (2) | 0.002 (2) | 0.003 (2) |
C6 | 0.048 (2) | 0.045 (2) | 0.042 (3) | −0.0023 (19) | 0.0035 (17) | 0.005 (2) |
C7 | 0.038 (2) | 0.031 (2) | 0.045 (3) | −0.0024 (17) | 0.0037 (17) | −0.001 (2) |
C8 | 0.073 (3) | 0.046 (3) | 0.045 (3) | 0.004 (2) | 0.000 (2) | 0.002 (2) |
Cl2 | 0.0904 (8) | 0.0504 (7) | 0.0851 (10) | 0.0276 (6) | 0.0237 (6) | −0.0008 (6) |
S2 | 0.0460 (6) | 0.0515 (7) | 0.0632 (8) | 0.0038 (5) | 0.0141 (5) | −0.0027 (6) |
O4 | 0.0527 (15) | 0.0630 (19) | 0.091 (2) | −0.0193 (14) | 0.0146 (14) | 0.0033 (17) |
O5 | 0.0653 (17) | 0.0676 (19) | 0.081 (2) | 0.0259 (14) | 0.0283 (15) | −0.0087 (17) |
O6 | 0.0748 (18) | 0.0335 (16) | 0.069 (2) | −0.0025 (14) | −0.0023 (14) | −0.0024 (16) |
N2 | 0.0552 (19) | 0.0281 (17) | 0.054 (2) | 0.0019 (16) | 0.0048 (16) | 0.0010 (18) |
C9 | 0.0354 (19) | 0.037 (2) | 0.046 (3) | 0.0006 (17) | 0.0034 (17) | −0.004 (2) |
C10 | 0.047 (2) | 0.039 (2) | 0.055 (3) | 0.0045 (18) | 0.001 (2) | −0.003 (2) |
C11 | 0.074 (3) | 0.059 (3) | 0.060 (4) | 0.005 (2) | 0.013 (2) | −0.004 (3) |
C12 | 0.091 (3) | 0.067 (3) | 0.049 (3) | 0.000 (3) | 0.001 (3) | 0.000 (3) |
C13 | 0.069 (3) | 0.051 (3) | 0.068 (4) | 0.006 (2) | −0.014 (3) | 0.008 (3) |
C14 | 0.044 (2) | 0.046 (3) | 0.066 (4) | 0.0048 (19) | −0.001 (2) | −0.006 (3) |
C15 | 0.056 (3) | 0.039 (2) | 0.050 (3) | 0.003 (2) | 0.005 (2) | −0.008 (2) |
C16 | 0.070 (3) | 0.054 (3) | 0.061 (3) | 0.004 (2) | −0.009 (2) | 0.005 (2) |
Cl1—C2 | 1.728 (4) | Cl2—C10 | 1.729 (4) |
S1—O1 | 1.421 (2) | S2—O5 | 1.420 (2) |
S1—O2 | 1.425 (2) | S2—O4 | 1.424 (2) |
S1—N1 | 1.638 (3) | S2—N2 | 1.647 (3) |
S1—C1 | 1.765 (3) | S2—C9 | 1.761 (4) |
O3—C7 | 1.210 (4) | O6—C15 | 1.209 (4) |
N1—C7 | 1.377 (4) | N2—C15 | 1.366 (4) |
N1—H1N | 0.850 (17) | N2—H2N | 0.835 (17) |
C1—C2 | 1.383 (4) | C9—C14 | 1.386 (4) |
C1—C6 | 1.384 (4) | C9—C10 | 1.393 (5) |
C2—C3 | 1.375 (4) | C10—C11 | 1.382 (5) |
C3—C4 | 1.375 (5) | C11—C12 | 1.361 (5) |
C3—H3 | 0.9300 | C11—H11 | 0.9300 |
C4—C5 | 1.369 (5) | C12—C13 | 1.373 (5) |
C4—H4 | 0.9300 | C12—H12 | 0.9300 |
C5—C6 | 1.373 (4) | C13—C14 | 1.377 (5) |
C5—H5 | 0.9300 | C13—H13 | 0.9300 |
C6—H6 | 0.9300 | C14—H14 | 0.9300 |
C7—C8 | 1.490 (5) | C15—C16 | 1.499 (4) |
C8—H8A | 0.9600 | C16—H16A | 0.9600 |
C8—H8B | 0.9600 | C16—H16B | 0.9600 |
C8—H8C | 0.9600 | C16—H16C | 0.9600 |
O1—S1—O2 | 119.34 (15) | O5—S2—O4 | 120.45 (16) |
O1—S1—N1 | 109.54 (15) | O5—S2—N2 | 108.97 (17) |
O2—S1—N1 | 105.33 (15) | O4—S2—N2 | 103.94 (16) |
O1—S1—C1 | 107.31 (16) | O5—S2—C9 | 107.31 (17) |
O2—S1—C1 | 110.00 (15) | O4—S2—C9 | 109.35 (17) |
N1—S1—C1 | 104.32 (15) | N2—S2—C9 | 105.95 (16) |
C7—N1—S1 | 124.5 (2) | C15—N2—S2 | 123.5 (2) |
C7—N1—H1N | 121 (2) | C15—N2—H2N | 123 (2) |
S1—N1—H1N | 115 (2) | S2—N2—H2N | 113 (2) |
C2—C1—C6 | 119.2 (3) | C14—C9—C10 | 118.3 (4) |
C2—C1—S1 | 123.2 (3) | C14—C9—S2 | 117.4 (3) |
C6—C1—S1 | 117.5 (3) | C10—C9—S2 | 124.0 (3) |
C3—C2—C1 | 120.0 (3) | C11—C10—C9 | 120.7 (3) |
C3—C2—Cl1 | 117.7 (3) | C11—C10—Cl2 | 118.1 (3) |
C1—C2—Cl1 | 122.3 (3) | C9—C10—Cl2 | 121.2 (3) |
C2—C3—C4 | 120.2 (4) | C12—C11—C10 | 120.1 (4) |
C2—C3—H3 | 119.9 | C12—C11—H11 | 120.0 |
C4—C3—H3 | 119.9 | C10—C11—H11 | 120.0 |
C5—C4—C3 | 120.1 (3) | C11—C12—C13 | 119.9 (4) |
C5—C4—H4 | 120.0 | C11—C12—H12 | 120.0 |
C3—C4—H4 | 120.0 | C13—C12—H12 | 120.0 |
C4—C5—C6 | 120.1 (4) | C12—C13—C14 | 120.8 (4) |
C4—C5—H5 | 120.0 | C12—C13—H13 | 119.6 |
C6—C5—H5 | 120.0 | C14—C13—H13 | 119.6 |
C5—C6—C1 | 120.4 (3) | C13—C14—C9 | 120.1 (4) |
C5—C6—H6 | 119.8 | C13—C14—H14 | 119.9 |
C1—C6—H6 | 119.8 | C9—C14—H14 | 119.9 |
O3—C7—N1 | 121.4 (3) | O6—C15—N2 | 120.6 (3) |
O3—C7—C8 | 124.4 (4) | O6—C15—C16 | 124.6 (3) |
N1—C7—C8 | 114.1 (3) | N2—C15—C16 | 114.7 (3) |
C7—C8—H8A | 109.5 | C15—C16—H16A | 109.5 |
C7—C8—H8B | 109.5 | C15—C16—H16B | 109.5 |
H8A—C8—H8B | 109.5 | H16A—C16—H16B | 109.5 |
C7—C8—H8C | 109.5 | C15—C16—H16C | 109.5 |
H8A—C8—H8C | 109.5 | H16A—C16—H16C | 109.5 |
H8B—C8—H8C | 109.5 | H16B—C16—H16C | 109.5 |
O1—S1—N1—C7 | 42.9 (3) | O5—S2—N2—C15 | −54.0 (3) |
O2—S1—N1—C7 | 172.5 (2) | O4—S2—N2—C15 | 176.4 (3) |
C1—S1—N1—C7 | −71.7 (3) | C9—S2—N2—C15 | 61.2 (3) |
O1—S1—C1—C2 | 172.8 (3) | O5—S2—C9—C14 | −13.5 (3) |
O2—S1—C1—C2 | 41.5 (3) | O4—S2—C9—C14 | 118.8 (3) |
N1—S1—C1—C2 | −71.0 (3) | N2—S2—C9—C14 | −129.8 (3) |
O1—S1—C1—C6 | −5.5 (3) | O5—S2—C9—C10 | 172.2 (3) |
O2—S1—C1—C6 | −136.8 (3) | O4—S2—C9—C10 | −55.6 (3) |
N1—S1—C1—C6 | 110.7 (3) | N2—S2—C9—C10 | 55.9 (3) |
C6—C1—C2—C3 | 0.3 (5) | C14—C9—C10—C11 | 0.2 (5) |
S1—C1—C2—C3 | −178.0 (3) | S2—C9—C10—C11 | 174.5 (3) |
C6—C1—C2—Cl1 | −180.0 (3) | C14—C9—C10—Cl2 | 178.7 (2) |
S1—C1—C2—Cl1 | 1.8 (5) | S2—C9—C10—Cl2 | −6.9 (4) |
C1—C2—C3—C4 | 0.8 (6) | C9—C10—C11—C12 | −0.5 (6) |
Cl1—C2—C3—C4 | −179.0 (3) | Cl2—C10—C11—C12 | −179.1 (3) |
C2—C3—C4—C5 | −1.4 (6) | C10—C11—C12—C13 | 0.9 (6) |
C3—C4—C5—C6 | 1.0 (6) | C11—C12—C13—C14 | −0.9 (6) |
C4—C5—C6—C1 | 0.1 (6) | C12—C13—C14—C9 | 0.7 (6) |
C2—C1—C6—C5 | −0.7 (5) | C10—C9—C14—C13 | −0.3 (5) |
S1—C1—C6—C5 | 177.7 (3) | S2—C9—C14—C13 | −175.0 (3) |
S1—N1—C7—O3 | 6.9 (4) | S2—N2—C15—O6 | 0.7 (5) |
S1—N1—C7—C8 | −173.2 (2) | S2—N2—C15—C16 | −178.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O3i | 0.85 (2) | 2.03 (2) | 2.848 (4) | 162 (3) |
N2—H2N···O6ii | 0.84 (2) | 1.96 (2) | 2.788 (4) | 172 (3) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C8H8ClNO3S |
Mr | 233.66 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 11.215 (2), 9.393 (2), 19.655 (3) |
β (°) | 98.61 (2) |
V (Å3) | 2047.2 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.56 |
Crystal size (mm) | 0.16 × 0.16 × 0.04 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.916, 0.978 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8327, 4168, 1942 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.099, 0.95 |
No. of reflections | 4168 |
No. of parameters | 261 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.26, −0.26 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O3i | 0.850 (17) | 2.03 (2) | 2.848 (4) | 162 (3) |
N2—H2N···O6ii | 0.835 (17) | 1.960 (19) | 2.788 (4) | 172 (3) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2. |
Acknowledgements
KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.
References
Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077. Web of Science CrossRef PubMed CAS Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1284. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–800. CAS Google Scholar
Maren, T. H. (1976). Annu. Rev. Pharmacol Toxicol. 16, 309–327. CrossRef CAS PubMed Web of Science Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, S. S. & Guillory, J. K. (1972). J. Pharm. Sci. 61, 26–40. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structures of sulfonamide drugs contain the sulfanilamide moiety (Maren, 1976). The affinity for hydrogen bonding in the solid state due to the presence of various hydrogen bond donors and acceptors give rise to polymorphism (Yang & Guillory, 1972). The hydrogen bonding preferences of sulfonamides have also been investigated (Adsmond & Grant, 2001). The nature and position of substituents play a significant role on the crystal structures of N-(aryl)-amides and N-(aryl)- sulfonoamides (Gowda et al., 2000, 2007, 2010). As a part of studying the effects of substituents on the structures of this class of compounds, the structure of N-(2-chlorophenylsulfonyl)-acetamide (I) has been determined (Fig. 1). The asymmetric unit of (I) contains two independent molecules. The rms deviation of a fit of the inverted molecule 2 (containing Cl2) on molecule 1 (containing Cl1) is 0.278 Å for 12 fitted atoms (excluding H atoms and O atoms SO2 groups). In one of the molecules, the conformation of the N—C bond in the C—SO2—NH—C(O) segment has gauche torsions with respect to the S═O bonds, the torsional angles being C15—N2—S2—O5 = -54.0 (4)° and C15—N2—S2—O4 = 176.4 (3)°. The conformations of the N—H and C=O bonds of these segments are anti to each other, similar to that observed in N-(phenylsulfonyl)-acetamide (II) (Gowda et al., 2010).
The molecules in (I) are bent at the S-atom with a C—S—N—C torsion angles of -71.7 (3)° and 61.2 (3)° in the two independent molecules, compared to the values of -58.8 (4)° in (II),
Further, the dihedral angles between the benzene rings and the SO2—NH—CO—C groups in (I) are 80.2 (1)° in molecule 1 and 88.1 (2)° in molecule 2, compared to the values of 89.0 (2)° in (II).
In the crystal structure, the intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into chains in the b-direction. Part of the crystal structure is shown in Fig. 2.