metal-organic compounds
Rubidium 2,4,6-trioxo-1,3-diazinan-5-ide–1,3-diazinane-2,4,6-trione–water (1/1/1)
aFaculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
*Correspondence e-mail: gryl@chemia.uj.edu.pl
The +·C4H3N2O3−·C4H4N2O3·H2O, consists of one rubidium cation, a barbituric acid molecule, a barbiturate anion and one water molecule. The rubidium ion has seven close-contact interactions with O atoms, with Rb⋯O distances ranging from 2.8594 (16) to 3.2641 (14) Å. These seven O atoms together with an eighth O atom at 3.492 (2) Å away from Rb form a distorted polyhedron with shape intermediate between an antiprism and a dodecahedron. The Rb+ ions connect layers built of organic components and water molecules linked via N—H⋯O and O—H⋯O hydrogen bonds.
of the title compound, RbRelated literature
For the crystal structures of selected et al. (2003); Gryl et al. (2008, 2011); Braga et al. (2010); Garcia et al. (2010); Ivanova & Spiteller (2010) and for those of rubidium salts, see: Clegg & Liddle (2004); Yıldırım et al. (2008). For classification of hydrogen-bond systems according to graph-set theory, see: Bernstein et al. (1995).
see: XiongExperimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811012657/vm2087sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811012657/vm2087Isup2.hkl
The title compound was synthesized by mixing aqueous solutions of barbituric acid and rubidium carbonate prepared at 323 K using a water bath. Single crystals suitable for X-ray diffraction were obtained from ethanol solution by slow evaporation at ambient conditions.
All hydrogen atoms of N—H and O—H groups were found in difference Fourier maps and refined in a riding model assuming N—H = 0.88 (1) Å, O—H = 0.84 (1) Å and Uiso = 1.2Ueq of the parent atom. Hydrogen atoms of CH and CH2 groups were found in difference Fourier maps and refined from geometrical positions assuming C—H = 0.97 Å for CH and C—H = 0.93 Å for CH2 groups and using riding model with Uiso=1.2Ueq (C5A and C5B, respectively).
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).Fig. 1. Asymmetric unit of the title addition compound showing displacement ellipsoids drawn at the 50% probability level (H atoms are shown as spheres of arbitrary radii). The atoms of barbituric acid molecule are marked by the letter a, whereas those of barbiturate anion with the letter b. | |
Fig. 2. Rubidium polyhedra of Rb1v, Rb1 and Rb1viii joined by edges O6aii, O2bix and O2bvii, O6aiv with Rb—Rb distance of 4.1988 (3) Å. Symmetry codes: (i) x - 1, -y + 1/2, z + 1/2; (ii) x - 1, y, z; (iii) -x + 1, -y, -z + 1; (iv) x - 1, -y + 1/2, z - 1/2; (v) x, -y + 1/2, z + 1/2; (vi) x - 1, y, z - 1; (vii) -x + 1, -y, -z; (viii) x, -y + 1/2, z - 1/2; (ix) -x + 1, y + 1/2, -z + 1/2; (x) -x + 1, y + 1/2, -z - 1/2. | |
Fig. 3. Hydrogen bond scheme in the organic layer parallel to ab at z = 0.25. Hydrogen bond graph-set descriptors R22(8) (two kinds) and R86(28) are given according to Bernstein et al., (1995). | |
Fig. 4. View of the packing along [100] showing the Rb cations in between the layers of organic components and water molecules. |
Rb+·C4H4N2O3−·C4H5N2O3·H2O | F(000) = 712 |
Mr = 358.66 | Dx = 1.999 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3522 reflections |
a = 9.8810 (1) Å | θ = 1.0–30.0° |
b = 19.6790 (5) Å | µ = 4.20 mm−1 |
c = 6.4530 (3) Å | T = 293 K |
β = 108.26 (2)° | Block, colorless |
V = 1191.59 (15) Å3 | 0.43 × 0.23 × 0.21 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 2555 independent reflections |
Radiation source: fine-focus sealed tube | 2239 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.037 |
Detector resolution: 9 pixels mm-1 | θmax = 27.0°, θmin = 3.5° |
ϕ and ω scans to fill Ewald sphere | h = −12→11 |
Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997) | k = 0→25 |
Tmin = 0.266, Tmax = 0.473 | l = 0→8 |
17623 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.059 | w = 1/[σ2(Fo2) + (0.0308P)2 + 0.3427P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2555 reflections | Δρmax = 0.27 e Å−3 |
199 parameters | Δρmin = −0.30 e Å−3 |
6 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008) |
0 constraints | Extinction coefficient: 0 |
Primary atom site location: difference Fourier map |
Rb+·C4H4N2O3−·C4H5N2O3·H2O | V = 1191.59 (15) Å3 |
Mr = 358.66 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.8810 (1) Å | µ = 4.20 mm−1 |
b = 19.6790 (5) Å | T = 293 K |
c = 6.4530 (3) Å | 0.43 × 0.23 × 0.21 mm |
β = 108.26 (2)° |
Nonius KappaCCD diffractometer | 2555 independent reflections |
Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997) | 2239 reflections with I > 2σ(I) |
Tmin = 0.266, Tmax = 0.473 | Rint = 0.037 |
17623 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 6 restraints |
wR(F2) = 0.059 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.27 e Å−3 |
2555 reflections | Δρmin = −0.30 e Å−3 |
199 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Rb1 | 0.291837 (19) | 0.181732 (10) | 0.12045 (3) | 0.03861 (8) | |
N1A | 0.83901 (16) | 0.22220 (7) | 0.3062 (2) | 0.0284 (3) | |
H1A | 0.830 (2) | 0.2666 (5) | 0.295 (3) | 0.034* | |
C2A | 0.71713 (19) | 0.18635 (8) | 0.2905 (3) | 0.0262 (4) | |
O2A | 0.60363 (14) | 0.21479 (6) | 0.2672 (2) | 0.0390 (3) | |
N3A | 0.72641 (16) | 0.11731 (7) | 0.2984 (2) | 0.0267 (3) | |
H3A | 0.6475 (14) | 0.0959 (9) | 0.281 (3) | 0.032* | |
C4A | 0.84786 (19) | 0.08055 (9) | 0.3319 (3) | 0.0269 (4) | |
O4A | 0.84464 (14) | 0.01867 (6) | 0.3376 (2) | 0.0368 (3) | |
C5A | 0.98315 (19) | 0.11930 (9) | 0.3628 (3) | 0.0310 (4) | |
H5A1 | 1.0442 | 0.1123 | 0.5115 | 0.037* | |
H5A2 | 1.0314 | 0.0999 | 0.2670 | 0.037* | |
C6A | 0.96859 (19) | 0.19423 (9) | 0.3212 (3) | 0.0272 (4) | |
O6A | 1.06609 (14) | 0.22942 (7) | 0.3061 (2) | 0.0375 (3) | |
N1B | 0.42573 (15) | −0.14265 (7) | 0.2580 (2) | 0.0289 (3) | |
H1B | 0.417 (2) | −0.1870 (5) | 0.259 (3) | 0.035* | |
C2B | 0.55857 (18) | −0.11709 (8) | 0.2913 (3) | 0.0280 (4) | |
O2B | 0.66394 (15) | −0.15406 (7) | 0.3276 (3) | 0.0447 (4) | |
N3B | 0.56512 (15) | −0.04808 (7) | 0.2804 (2) | 0.0267 (3) | |
H3B | 0.6520 (12) | −0.0339 (10) | 0.304 (3) | 0.032* | |
C4B | 0.44849 (18) | −0.00466 (8) | 0.2415 (3) | 0.0246 (3) | |
O4B | 0.47093 (14) | 0.05801 (6) | 0.2357 (2) | 0.0325 (3) | |
C5B | 0.31602 (18) | −0.03460 (8) | 0.2126 (3) | 0.0266 (4) | |
H5B | 0.2358 | −0.0073 | 0.1893 | 0.032* | |
C6B | 0.30235 (18) | −0.10459 (9) | 0.2180 (3) | 0.0256 (3) | |
O6B | 0.18751 (13) | −0.13782 (6) | 0.1870 (2) | 0.0378 (3) | |
O1W | 0.07639 (16) | 0.08325 (8) | −0.0724 (3) | 0.0478 (4) | |
H1W | −0.0078 (14) | 0.0973 (12) | −0.120 (4) | 0.057* | |
H2W | 0.090 (3) | 0.0514 (9) | −0.147 (4) | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rb1 | 0.02804 (11) | 0.03333 (12) | 0.05520 (14) | 0.00282 (7) | 0.01410 (9) | 0.00032 (8) |
N1A | 0.0278 (8) | 0.0187 (7) | 0.0413 (8) | −0.0023 (6) | 0.0148 (6) | −0.0005 (6) |
C2A | 0.0261 (9) | 0.0205 (8) | 0.0338 (9) | −0.0004 (6) | 0.0120 (7) | −0.0006 (7) |
O2A | 0.0269 (7) | 0.0209 (6) | 0.0718 (9) | 0.0017 (5) | 0.0194 (6) | 0.0009 (6) |
N3A | 0.0232 (7) | 0.0176 (7) | 0.0412 (8) | −0.0019 (6) | 0.0127 (6) | −0.0002 (6) |
C4A | 0.0291 (9) | 0.0251 (8) | 0.0274 (8) | 0.0020 (7) | 0.0102 (7) | 0.0018 (7) |
O4A | 0.0335 (7) | 0.0198 (6) | 0.0569 (8) | 0.0035 (5) | 0.0138 (6) | 0.0021 (6) |
C5A | 0.0260 (9) | 0.0284 (9) | 0.0394 (9) | 0.0028 (7) | 0.0115 (7) | 0.0047 (7) |
C6A | 0.0253 (9) | 0.0282 (9) | 0.0289 (8) | −0.0017 (7) | 0.0098 (7) | −0.0009 (7) |
O6A | 0.0288 (7) | 0.0344 (7) | 0.0528 (8) | −0.0062 (6) | 0.0177 (6) | 0.0006 (6) |
N1B | 0.0239 (7) | 0.0164 (7) | 0.0452 (8) | 0.0016 (6) | 0.0093 (6) | 0.0015 (6) |
C2B | 0.0240 (9) | 0.0223 (8) | 0.0376 (9) | 0.0012 (7) | 0.0095 (7) | 0.0010 (7) |
O2B | 0.0271 (7) | 0.0270 (7) | 0.0791 (10) | 0.0074 (6) | 0.0152 (7) | 0.0045 (7) |
N3B | 0.0218 (7) | 0.0217 (7) | 0.0373 (8) | −0.0005 (6) | 0.0102 (6) | 0.0007 (6) |
C4B | 0.0276 (9) | 0.0208 (8) | 0.0245 (8) | 0.0013 (6) | 0.0071 (6) | 0.0010 (6) |
O4B | 0.0317 (7) | 0.0185 (6) | 0.0468 (7) | −0.0007 (5) | 0.0115 (6) | 0.0031 (5) |
C5B | 0.0232 (8) | 0.0205 (8) | 0.0342 (9) | 0.0042 (6) | 0.0061 (7) | 0.0004 (7) |
C6B | 0.0229 (8) | 0.0223 (8) | 0.0293 (8) | 0.0005 (6) | 0.0050 (6) | −0.0011 (7) |
O6B | 0.0221 (6) | 0.0215 (6) | 0.0661 (9) | −0.0010 (5) | 0.0085 (6) | −0.0024 (6) |
O1W | 0.0315 (8) | 0.0473 (9) | 0.0610 (10) | 0.0102 (7) | 0.0094 (7) | −0.0118 (7) |
Rb1—O1W | 2.8594 (16) | O6A—Rb1v | 2.9942 (13) |
Rb1—O4B | 2.9645 (12) | O6A—Rb1vi | 3.0517 (13) |
Rb1—O6Ai | 2.9942 (13) | N1B—C2B | 1.358 (2) |
Rb1—O2A | 2.9972 (13) | N1B—C6B | 1.384 (2) |
Rb1—O6Aii | 3.0517 (13) | N1B—H1B | 0.878 (9) |
Rb1—O2Biii | 3.1049 (16) | C2B—O2B | 1.231 (2) |
Rb1—O2Biv | 3.2641 (14) | C2B—N3B | 1.363 (2) |
N1A—C6A | 1.369 (2) | O2B—Rb1iii | 3.1049 (16) |
N1A—C2A | 1.372 (2) | O2B—Rb1vii | 3.2641 (14) |
N1A—H1A | 0.879 (9) | O2B—Rb1viii | 3.4923 (16) |
C2A—O2A | 1.220 (2) | N3B—C4B | 1.393 (2) |
C2A—N3A | 1.362 (2) | N3B—H3B | 0.870 (9) |
N3A—C4A | 1.359 (2) | C4B—O4B | 1.256 (2) |
N3A—H3A | 0.862 (9) | C4B—C5B | 1.394 (2) |
C4A—O4A | 1.219 (2) | C5B—C6B | 1.386 (2) |
C4A—C5A | 1.497 (2) | C5B—H5B | 0.9300 |
C5A—C6A | 1.498 (2) | C6B—O6B | 1.270 (2) |
C5A—H5A1 | 0.9700 | O1W—H1W | 0.839 (10) |
C5A—H5A2 | 0.9700 | O1W—H2W | 0.828 (10) |
C6A—O6A | 1.215 (2) | ||
O1W—Rb1—O4B | 81.78 (4) | C6A—N1A—H1A | 118.1 (14) |
O1W—Rb1—O6Ai | 80.80 (4) | C2A—N1A—H1A | 116.4 (14) |
O4B—Rb1—O6Ai | 128.17 (4) | O2A—C2A—N3A | 120.73 (16) |
O1W—Rb1—O2A | 146.72 (4) | O2A—C2A—N1A | 121.67 (15) |
O4B—Rb1—O2A | 68.00 (3) | N3A—C2A—N1A | 117.59 (15) |
O6Ai—Rb1—O2A | 128.79 (4) | C2A—O2A—Rb1 | 138.91 (11) |
O1W—Rb1—O6Aii | 79.02 (4) | C4A—N3A—C2A | 125.64 (15) |
O4B—Rb1—O6Aii | 153.12 (4) | C4A—N3A—H3A | 118.6 (14) |
O6Ai—Rb1—O6Aii | 66.76 (3) | C2A—N3A—H3A | 115.8 (14) |
O2A—Rb1—O6Aii | 123.40 (4) | O4A—C4A—N3A | 120.43 (16) |
O1W—Rb1—O2Biii | 77.21 (4) | O4A—C4A—C5A | 122.37 (16) |
O4B—Rb1—O2Biii | 80.94 (4) | N3A—C4A—C5A | 117.20 (15) |
O6Ai—Rb1—O2Biii | 140.12 (4) | C6A—C5A—C4A | 116.49 (15) |
O2A—Rb1—O2Biii | 84.36 (4) | C6A—C5A—H5A1 | 108.2 |
O6Aii—Rb1—O2Biii | 76.60 (4) | C4A—C5A—H5A1 | 108.2 |
O1W—Rb1—O2Biv | 140.64 (4) | C6A—C5A—H5A2 | 108.2 |
O4B—Rb1—O2Biv | 137.49 (4) | C4A—C5A—H5A2 | 108.2 |
O6Ai—Rb1—O2Biv | 75.00 (4) | H5A1—C5A—H5A2 | 107.3 |
O2A—Rb1—O2Biv | 70.21 (3) | O6A—C6A—N1A | 120.85 (16) |
O6Aii—Rb1—O2Biv | 63.09 (4) | O6A—C6A—C5A | 122.79 (16) |
O2Biii—Rb1—O2Biv | 102.47 (4) | N1A—C6A—C5A | 116.33 (15) |
O1W—Rb1—O2Bviii | 100.15 (4) | C6A—O6A—Rb1v | 124.21 (12) |
O4B—Rb1—O2Bviii | 75.04 (3) | C6A—O6A—Rb1vi | 134.92 (12) |
O6Ai—Rb1—O2Bviii | 60.78 (3) | Rb1v—O6A—Rb1vi | 87.97 (3) |
O2A—Rb1—O2Bviii | 85.63 (4) | C2B—N1B—C6B | 125.45 (15) |
O6Aii—Rb1—O2Bviii | 126.81 (3) | C2B—N1B—H1B | 117.6 (15) |
O2Biii—Rb1—O2Bviii | 155.95 (5) | C6B—N1B—H1B | 116.9 (15) |
O2Biv—Rb1—O2Bviii | 94.58 (4) | O2B—C2B—N1B | 121.94 (16) |
O1W—Rb1—C2Biii | 82.13 (4) | O2B—C2B—N3B | 123.22 (16) |
O4B—Rb1—C2Biii | 63.29 (4) | N1B—C2B—N3B | 114.84 (15) |
O6Ai—Rb1—C2Biii | 157.33 (4) | O2B—C2B—Rb1iii | 54.65 (10) |
O2A—Rb1—C2Biii | 72.24 (4) | N1B—C2B—Rb1iii | 110.33 (11) |
O6Aii—Rb1—C2Biii | 95.40 (4) | N3B—C2B—Rb1iii | 105.84 (11) |
O2Biii—Rb1—C2Biii | 18.87 (4) | C2B—O2B—Rb1iii | 106.49 (12) |
O2Biv—Rb1—C2Biii | 110.36 (4) | C2B—O2B—Rb1vii | 133.05 (12) |
O2Bviii—Rb1—C2Biii | 137.58 (4) | Rb1iii—O2B—Rb1vii | 82.45 (3) |
O1W—Rb1—Rb1ix | 126.08 (3) | C2B—O2B—Rb1viii | 96.57 (11) |
O4B—Rb1—Rb1ix | 118.45 (2) | Rb1iii—O2B—Rb1viii | 155.95 (5) |
O6Ai—Rb1—Rb1ix | 46.58 (3) | Rb1vii—O2B—Rb1viii | 76.76 (3) |
O2A—Rb1—Rb1ix | 82.29 (3) | C2B—N3B—C4B | 124.81 (15) |
O6Aii—Rb1—Rb1ix | 88.18 (3) | C2B—N3B—H3B | 111.8 (14) |
O2Biii—Rb1—Rb1ix | 149.52 (3) | C4B—N3B—H3B | 123.4 (14) |
O2Biv—Rb1—Rb1ix | 47.14 (3) | O4B—C4B—N3B | 117.65 (15) |
O2Bviii—Rb1—Rb1ix | 49.18 (2) | O4B—C4B—C5B | 125.34 (16) |
C2Biii—Rb1—Rb1ix | 151.63 (3) | N3B—C4B—C5B | 117.01 (15) |
O1W—Rb1—Rb1x | 106.17 (3) | C4B—O4B—Rb1 | 135.81 (11) |
O4B—Rb1—Rb1x | 125.08 (2) | C6B—C5B—C4B | 120.79 (15) |
O6Ai—Rb1—Rb1x | 106.63 (3) | C6B—C5B—H5B | 119.6 |
O2A—Rb1—Rb1x | 81.74 (3) | C4B—C5B—H5B | 119.6 |
O6Aii—Rb1—Rb1x | 45.45 (3) | O6B—C6B—C5B | 126.67 (16) |
O2Biii—Rb1—Rb1x | 50.41 (3) | O6B—C6B—N1B | 116.23 (15) |
O2Biv—Rb1—Rb1x | 54.06 (3) | C5B—C6B—N1B | 117.09 (15) |
O2Bviii—Rb1—Rb1x | 148.58 (2) | Rb1—O1W—H1W | 117.0 (18) |
C2Biii—Rb1—Rb1x | 64.29 (3) | Rb1—O1W—H2W | 122.1 (19) |
Rb1ix—Rb1—Rb1x | 100.428 (8) | H1W—O1W—H2W | 111 (3) |
C6A—N1A—C2A | 125.34 (15) | ||
C6A—N1A—C2A—O2A | −176.43 (17) | C6B—N1B—C2B—O2B | 179.49 (17) |
C6A—N1A—C2A—N3A | 2.6 (3) | C6B—N1B—C2B—N3B | −0.8 (3) |
O2A—C2A—N3A—C4A | −177.35 (17) | O2B—C2B—N3B—C4B | −179.42 (17) |
N1A—C2A—N3A—C4A | 3.6 (3) | N1B—C2B—N3B—C4B | 0.8 (2) |
C2A—N3A—C4A—O4A | 179.49 (17) | C2B—N3B—C4B—O4B | −179.93 (16) |
C2A—N3A—C4A—C5A | 0.0 (2) | C2B—N3B—C4B—C5B | 0.2 (2) |
O4A—C4A—C5A—C6A | 171.78 (16) | O4B—C4B—C5B—C6B | 178.77 (16) |
N3A—C4A—C5A—C6A | −8.7 (2) | N3B—C4B—C5B—C6B | −1.4 (2) |
C2A—N1A—C6A—O6A | 170.35 (17) | C4B—C5B—C6B—O6B | −177.57 (17) |
C2A—N1A—C6A—C5A | −11.3 (2) | C4B—C5B—C6B—N1B | 1.4 (2) |
C4A—C5A—C6A—O6A | −167.85 (17) | C2B—N1B—C6B—O6B | 178.77 (17) |
C4A—C5A—C6A—N1A | 13.8 (2) | C2B—N1B—C6B—C5B | −0.3 (3) |
Symmetry codes: (i) x−1, y, z; (ii) x−1, −y+1/2, z−1/2; (iii) −x+1, −y, −z; (iv) −x+1, y+1/2, −z+1/2; (v) x+1, y, z; (vi) x+1, −y+1/2, z+1/2; (vii) −x+1, y−1/2, −z+1/2; (viii) −x+1, −y, −z+1; (ix) x, −y+1/2, z+1/2; (x) x, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O6Biv | 0.88 (1) | 1.90 (1) | 2.769 (2) | 172 (2) |
N3A—H3A···O4B | 0.86 (1) | 1.84 (1) | 2.694 (2) | 175 (2) |
N1B—H1B···O2Avii | 0.88 (1) | 1.94 (1) | 2.820 (2) | 175 (2) |
N3B—H3B···O4A | 0.87 (1) | 2.12 (1) | 2.975 (2) | 169 (2) |
O1W—H1W···O6Bxi | 0.84 (1) | 1.87 (1) | 2.700 (2) | 171 (2) |
O1W—H2W···O4Aiii | 0.83 (1) | 2.08 (1) | 2.898 (2) | 170 (3) |
Symmetry codes: (iii) −x+1, −y, −z; (iv) −x+1, y+1/2, −z+1/2; (vii) −x+1, y−1/2, −z+1/2; (xi) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | Rb+·C4H4N2O3−·C4H5N2O3·H2O |
Mr | 358.66 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 9.8810 (1), 19.6790 (5), 6.4530 (3) |
β (°) | 108.26 (2) |
V (Å3) | 1191.59 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.20 |
Crystal size (mm) | 0.43 × 0.23 × 0.21 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.266, 0.473 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17623, 2555, 2239 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.059, 1.03 |
No. of reflections | 2555 |
No. of parameters | 199 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.27, −0.30 |
Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O6Bi | 0.88 (1) | 1.90 (1) | 2.769 (2) | 172 (2) |
N3A—H3A···O4B | 0.86 (1) | 1.84 (1) | 2.694 (2) | 175 (2) |
N1B—H1B···O2Aii | 0.88 (1) | 1.94 (1) | 2.820 (2) | 175 (2) |
N3B—H3B···O4A | 0.87 (1) | 2.12 (1) | 2.975 (2) | 169 (2) |
O1W—H1W···O6Biii | 0.84 (1) | 1.87 (1) | 2.700 (2) | 171 (2) |
O1W—H2W···O4Aiv | 0.83 (1) | 2.08 (1) | 2.898 (2) | 170 (3) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x, −y, −z; (iv) −x+1, −y, −z. |
Acknowledgements
The authors thank the X-ray Diffraction Laboratory. Faculty of Chemistry, Jagiellonian University, for making the Nonius KappaCCD diffractometer available. This work was partially supported by the Polish Ministry of Science and Higher Education: grant No. N N204 316537.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Braga, D., Grepioni, F., Maini, L., Prosperi, S., Gobetto, R. & Chierotti, M. R. (2010). Chem. Commun. 46, 7715–7717. Web of Science CSD CrossRef CAS Google Scholar
Clegg, W. & Liddle, S. T. (2004). Acta Cryst. E60, m1492–m1494. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Garcia, H. C., Diniz, R., Yoshida, M. I. & Oliveira, L. F. C. (2010). J. Mol. Struct. 978, 79–85. CrossRef CAS Google Scholar
Gryl, M., Krawczuk, A. & Stadnicka, K. (2008). Acta Cryst. B64, 623–632. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gryl, M., Krawczuk-Pantula, A. & Stadnicka, K. (2011). Acta Cryst. B67, 144–154. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ivanova, B. B. & Spiteller, M. (2010). Cryst. Growth Des. 10, 2470–2474. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xiong, Y., He, C., An, T.-C., Cha, C.-H., Zhu, X.-H. & Jiang, S. (2003). Transition Met. Chem. 28, 69–73. CrossRef CAS Google Scholar
Yıldırım, S. Ö., McKee, V., Khardli, F.-Z., Mimouni, M. & Hadda, T. B. (2008). Acta Cryst. E64, m154–m155. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently we have reported structures for three polymorphic forms of barbituric acid and urea addition compounds (Gryl et al., 2008) for two of which a charge density analysis was also performed (Gryl et al., 2011). Barbituric acid appeared as a valuable component in designing new, functional materials and in particular polar materials (Xiong, et al., 2003). However many attempts to design and obtain polar barbiturates failed (see for example Ivanova & Spiteller, 2010). Herein we report the structure of the title addition compound (I), the asymmetric unit of which is comprised of a rubidium cation, barbiturate anion, barbituric acid molecule and one water molecule (Fig. 1). Unfortunately, like for many barbiturates, the structure is centrosymmetric (space group P21/c). Each Rb1 cation is surrounded by seven oxygen atoms and bridged by O6a (x - 1, y, z) and O2b (-x + 1, y + 1/2, -z + 1/2) to Rb1 (x, -y+1/2, z + 1/2) and by O2b (x, -y + 1/2, z - 1/2) and O6a (x-1, -y + 1/2, z - 1/2) to Rb1 (x, -y + 1/2, z - 1/2) (Fig. 2).
All barbiturate NH groups and water molecules act as hydrogen bond donors. The hydrogen bond geometry is given in Table 1. There are considerable differences in the accepting properties of the carbonyl oxygen atoms. In the barbituric acid molecule, only atom O4a is a hydrogen bond acceptor from O1W, whereas atoms O2a and O6a interact with Rb ions. A different situation is observed in the barbituriate ion: atom O6b is an acceptor of two hydrogen bonds from O1W and N1a whereas atoms O2b and O4b are both involved in interactions with rubidium ions. The structure is comprised of layers built of barbituric acid molecules and barbiturate anions connected by hydrogen bonds (Fig. 3). Graph-set descriptors R22(8) and R86(28) were assigned to the hydrogen bonds according to Bernstein et al., (1995). The two ring systems of R22(8) are formed between barbiturate anions and barbituric acid molecules by crystallographically different hydrogen bonds. In the R86(28) ring formation additionally two water molecules act as hydrogen bond donors. The layers, parallel to ab, are joined together into a three dimensional structure due to interactions of Rb1 cations with oxygen atoms from barbiturate anions, barbituric acid molecules and water molecules (Fig. 4).