inorganic compounds
RbSn2(PO4)3, a NASICON-type phosphate
aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
*Correspondence e-mail: iamzd@hpu.edu.cn
The title compound, rubidium ditin(IV) tris(phosphate), RbSn2(PO4)3, belongs to the NASICON-type family of phosphates and crystallizes in the R. The structure is composed of PO4 tetrahedra (1 symmetry) and two slightly distorted SnO6 octahedra, both with 3. symmetry, which are interlinked through corner-sharing O atoms to form a 3∞[Sn2(PO4)3]− framework. The Rb+ cations are located on threefold inversion axes in the voids of this framework and exhibit a of 12. The crystal studied was twinned by with a component ratio of 0.503:0.497.
Related literature
For related NASICON-type compounds, see: Boilot et al. (1987); Boujelben et al. (2007); Duhlev (1994); Zatovskii et al. (2006); Zhao et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2004); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and PLATON (Spek, 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536811014310/wm2466sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811014310/wm2466Isup2.hkl
Single crystals of RbSn2(PO4)3 have been prepared by a high-temperature method in air. A powder mixture of RbNO3, SnO2 and NH4H2PO4 in the molar ratio of Rb: Sn: P = 10: 1: 15 was first ground in an agate mortar and then transferred to a platinum crucible. The sample was gradually heated in air at 1173 K for 24 h. After that, the intermediate product was slowly cooled to 673 K at the rate of 2 K h-1. It was kept at 673 K for another 10 h and then quenched to room temperature. The obtained crystals were colorless with a prismatic shape.
The RbSn2(PO4)3 crystal studies was twinned by 1) was used; the twin component ratio refined to 0.503: 0.497. The highest peak in the difference is at a distance of 1.38 Å from Rb2 while the deepest hole is at a distance of 1.77 Å from O2.
For the (0 1 0 1 0 0 0 0Data collection: CrystalClear (Rigaku, 2004); cell
CrystalClear (Rigaku, 2004); data reduction: CrystalClear (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and PLATON (Spek, 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).RbSn2(PO4)3 | Dx = 4.187 Mg m−3 |
Mr = 607.76 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3 | Cell parameters from 1316 reflections |
Hall symbol: -R 3 | θ = 2.6–27.5° |
a = 8.340 (4) Å | µ = 10.76 mm−1 |
c = 24.007 (8) Å | T = 293 K |
V = 1446.1 (6) Å3 | Prism, colourless |
Z = 6 | 0.20 × 0.05 × 0.05 mm |
F(000) = 1668 |
Rigaku Mercury70 CCD diffractometer | 742 independent reflections |
Radiation source: fine-focus sealed tube | 711 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 14.6306 pixels mm-1 | θmax = 27.5°, θmin = 2.6° |
ω scans | h = −9→10 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −10→10 |
Tmin = 0.222, Tmax = 0.615 | l = −29→31 |
3765 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.026 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.043 | w = 1/[σ2(Fo2) + (0.0097P)2 + 13.5872P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max < 0.001 |
742 reflections | Δρmax = 0.65 e Å−3 |
57 parameters | Δρmin = −0.73 e Å−3 |
RbSn2(PO4)3 | Z = 6 |
Mr = 607.76 | Mo Kα radiation |
Trigonal, R3 | µ = 10.76 mm−1 |
a = 8.340 (4) Å | T = 293 K |
c = 24.007 (8) Å | 0.20 × 0.05 × 0.05 mm |
V = 1446.1 (6) Å3 |
Rigaku Mercury70 CCD diffractometer | 742 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 711 reflections with I > 2σ(I) |
Tmin = 0.222, Tmax = 0.615 | Rint = 0.036 |
3765 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.043 | w = 1/[σ2(Fo2) + (0.0097P)2 + 13.5872P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | Δρmax = 0.65 e Å−3 |
742 reflections | Δρmin = −0.73 e Å−3 |
57 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.6667 | 0.3333 | −0.01707 (2) | 0.00467 (15) | |
Rb1 | 0.3333 | 0.6667 | 0.1667 | 0.0164 (3) | |
P1 | 0.3780 (2) | 0.3319 (3) | 0.08383 (7) | 0.0058 (2) | |
O1 | 0.2172 (6) | 0.1463 (5) | 0.10332 (14) | 0.0090 (9) | |
Sn2 | 0.0000 | 0.0000 | 0.15528 (2) | 0.00490 (15) | |
Rb2 | 0.0000 | 0.0000 | 0.0000 | 0.0227 (4) | |
O2 | 0.4497 (6) | 0.2928 (6) | 0.03015 (16) | 0.0119 (10) | |
O3 | 0.3083 (6) | 0.4664 (6) | 0.07059 (16) | 0.0093 (9) | |
O4 | 0.5248 (6) | 0.4207 (6) | 0.12987 (14) | 0.0103 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.0051 (2) | 0.0051 (2) | 0.0039 (3) | 0.00253 (11) | 0.000 | 0.000 |
Rb1 | 0.0221 (5) | 0.0221 (5) | 0.0051 (5) | 0.0111 (2) | 0.000 | 0.000 |
P1 | 0.0046 (8) | 0.0068 (6) | 0.0050 (6) | 0.0022 (7) | 0.0000 (6) | 0.0008 (5) |
O1 | 0.008 (2) | 0.008 (2) | 0.0097 (17) | 0.0028 (17) | 0.0044 (15) | 0.0025 (14) |
Sn2 | 0.0055 (2) | 0.0055 (2) | 0.0037 (3) | 0.00275 (11) | 0.000 | 0.000 |
Rb2 | 0.0304 (6) | 0.0304 (6) | 0.0073 (6) | 0.0152 (3) | 0.000 | 0.000 |
O2 | 0.009 (2) | 0.018 (2) | 0.009 (2) | 0.008 (2) | 0.0020 (17) | −0.0029 (17) |
O3 | 0.014 (2) | 0.010 (2) | 0.0064 (17) | 0.0077 (19) | −0.0023 (16) | 0.0001 (16) |
O4 | 0.011 (2) | 0.008 (2) | 0.0100 (17) | 0.003 (2) | −0.0050 (17) | −0.0005 (16) |
Sn1—O2i | 2.015 (4) | P1—Rb2 | 3.595 (2) |
Sn1—O2ii | 2.015 (4) | O1—Sn2 | 2.029 (4) |
Sn1—O2 | 2.015 (4) | O1—Rb2 | 2.952 (4) |
Sn1—O3iii | 2.033 (4) | Sn2—O1xii | 2.029 (4) |
Sn1—O3iv | 2.033 (4) | Sn2—O1xiii | 2.029 (4) |
Sn1—O3v | 2.033 (4) | Sn2—O4xiv | 2.033 (4) |
Sn1—Rb1vi | 3.5915 (13) | Sn2—O4xv | 2.033 (4) |
Rb1—O3vii | 2.794 (4) | Sn2—O4viii | 2.033 (4) |
Rb1—O3viii | 2.794 (4) | Sn2—Rb2 | 3.7278 (13) |
Rb1—O3ix | 2.794 (4) | Rb2—O1xvi | 2.952 (4) |
Rb1—O3 | 2.793 (4) | Rb2—O1xii | 2.952 (4) |
Rb1—O3x | 2.794 (4) | Rb2—O1xvii | 2.952 (4) |
Rb1—O3xi | 2.794 (4) | Rb2—O1iv | 2.952 (4) |
Rb1—O4vii | 3.289 (5) | Rb2—O1xiii | 2.952 (4) |
Rb1—O4x | 3.288 (5) | Rb2—O2xvii | 3.375 (5) |
Rb1—O4ix | 3.288 (5) | Rb2—O2xvi | 3.375 (5) |
Rb1—O4viii | 3.288 (5) | Rb2—O2xii | 3.375 (5) |
Rb1—O4xi | 3.288 (5) | Rb2—O2iv | 3.375 (5) |
Rb1—O4 | 3.288 (5) | Rb2—O2xiii | 3.375 (5) |
P1—O2 | 1.523 (4) | Rb2—O2 | 3.376 (5) |
P1—O1 | 1.529 (4) | O3—Sn1v | 2.034 (4) |
P1—O3 | 1.533 (4) | O4—Sn2xiv | 2.033 (4) |
P1—O4 | 1.537 (4) | ||
O2i—Sn1—O2ii | 91.47 (17) | Rb2—P1—Rb1 | 121.07 (4) |
O2i—Sn1—O2 | 91.47 (17) | P1—O1—Sn2 | 149.8 (3) |
O2ii—Sn1—O2 | 91.47 (17) | P1—O1—Rb2 | 101.98 (17) |
O2i—Sn1—O3iii | 83.62 (17) | Sn2—O1—Rb2 | 95.11 (15) |
O2ii—Sn1—O3iii | 102.00 (17) | O1—Sn2—O1xii | 86.16 (16) |
O2—Sn1—O3iii | 165.74 (17) | O1—Sn2—O1xiii | 86.16 (16) |
O2i—Sn1—O3iv | 102.00 (17) | O1xii—Sn2—O1xiii | 86.16 (16) |
O2ii—Sn1—O3iv | 165.74 (17) | O1—Sn2—O4xiv | 93.48 (16) |
O2—Sn1—O3iv | 83.62 (17) | O1xii—Sn2—O4xiv | 89.54 (16) |
O3iii—Sn1—O3iv | 84.32 (17) | O1xiii—Sn2—O4xiv | 175.70 (16) |
O2i—Sn1—O3v | 165.74 (17) | O1—Sn2—O4xv | 175.70 (16) |
O2ii—Sn1—O3v | 83.62 (17) | O1xii—Sn2—O4xv | 93.48 (16) |
O2—Sn1—O3v | 102.00 (17) | O1xiii—Sn2—O4xv | 89.54 (16) |
O3iii—Sn1—O3v | 84.32 (17) | O4xiv—Sn2—O4xv | 90.80 (16) |
O3iv—Sn1—O3v | 84.32 (17) | O1—Sn2—O4viii | 89.54 (16) |
O2i—Sn1—Rb1vi | 124.22 (12) | O1xii—Sn2—O4viii | 175.70 (16) |
O2ii—Sn1—Rb1vi | 124.22 (12) | O1xiii—Sn2—O4viii | 93.48 (16) |
O2—Sn1—Rb1vi | 124.22 (12) | O4xiv—Sn2—O4viii | 90.80 (16) |
O3iii—Sn1—Rb1vi | 50.81 (11) | O4xv—Sn2—O4viii | 90.80 (16) |
O3iv—Sn1—Rb1vi | 50.81 (11) | O1—Sn2—Rb2 | 52.06 (11) |
O3v—Sn1—Rb1vi | 50.81 (11) | O1xii—Sn2—Rb2 | 52.06 (11) |
O3vii—Rb1—O3viii | 58.49 (13) | O1xiii—Sn2—Rb2 | 52.06 (11) |
O3vii—Rb1—O3ix | 58.49 (13) | O4xiv—Sn2—Rb2 | 124.70 (11) |
O3viii—Rb1—O3ix | 58.49 (13) | O4xv—Sn2—Rb2 | 124.69 (11) |
O3vii—Rb1—O3 | 180.0 | O4viii—Sn2—Rb2 | 124.69 (11) |
O3viii—Rb1—O3 | 121.51 (13) | O1xvi—Rb2—O1xii | 180.0 (3) |
O3ix—Rb1—O3 | 121.51 (13) | O1xvi—Rb2—O1xvii | 56.00 (13) |
O3vii—Rb1—O3x | 121.51 (13) | O1xii—Rb2—O1xvii | 124.00 (13) |
O3viii—Rb1—O3x | 121.51 (13) | O1xvi—Rb2—O1iv | 56.00 (13) |
O3ix—Rb1—O3x | 180.0 | O1xii—Rb2—O1iv | 124.00 (13) |
O3—Rb1—O3x | 58.49 (13) | O1xvii—Rb2—O1iv | 56.00 (13) |
O3vii—Rb1—O3xi | 121.51 (13) | O1xvi—Rb2—O1xiii | 124.00 (13) |
O3viii—Rb1—O3xi | 180.0 | O1xii—Rb2—O1xiii | 56.00 (13) |
O3ix—Rb1—O3xi | 121.51 (13) | O1xvii—Rb2—O1xiii | 124.00 (13) |
O3—Rb1—O3xi | 58.49 (13) | O1iv—Rb2—O1xiii | 180.00 (17) |
O3x—Rb1—O3xi | 58.49 (13) | O1xvi—Rb2—O1 | 124.00 (13) |
O3vii—Rb1—O4vii | 47.14 (10) | O1xii—Rb2—O1 | 56.00 (13) |
O3viii—Rb1—O4vii | 75.80 (10) | O1xvii—Rb2—O1 | 180.0 |
O3ix—Rb1—O4vii | 105.07 (10) | O1iv—Rb2—O1 | 124.00 (13) |
O3—Rb1—O4vii | 132.87 (10) | O1xiii—Rb2—O1 | 56.00 (13) |
O3x—Rb1—O4vii | 74.93 (10) | O1xvi—Rb2—O2xvii | 94.20 (11) |
O3xi—Rb1—O4vii | 104.20 (10) | O1xii—Rb2—O2xvii | 85.80 (11) |
O3vii—Rb1—O4x | 104.20 (11) | O1xvii—Rb2—O2xvii | 44.81 (10) |
O3viii—Rb1—O4x | 74.93 (10) | O1iv—Rb2—O2xvii | 95.50 (10) |
O3ix—Rb1—O4x | 132.86 (10) | O1xiii—Rb2—O2xvii | 84.50 (10) |
O3—Rb1—O4x | 75.80 (11) | O1—Rb2—O2xvii | 135.19 (10) |
O3x—Rb1—O4x | 47.14 (10) | O1xvi—Rb2—O2xvi | 44.81 (10) |
O3xi—Rb1—O4x | 105.07 (10) | O1xii—Rb2—O2xvi | 135.19 (10) |
O4vii—Rb1—O4x | 66.94 (5) | O1xvii—Rb2—O2xvi | 95.50 (10) |
O3vii—Rb1—O4ix | 75.80 (11) | O1iv—Rb2—O2xvi | 94.20 (11) |
O3viii—Rb1—O4ix | 105.07 (10) | O1xiii—Rb2—O2xvi | 85.80 (11) |
O3ix—Rb1—O4ix | 47.14 (10) | O1—Rb2—O2xvi | 84.50 (10) |
O3—Rb1—O4ix | 104.20 (11) | O2xvii—Rb2—O2xvi | 115.54 (5) |
O3x—Rb1—O4ix | 132.87 (10) | O1xvi—Rb2—O2xii | 135.19 (10) |
O3xi—Rb1—O4ix | 74.93 (10) | O1xii—Rb2—O2xii | 44.81 (10) |
O4vii—Rb1—O4ix | 113.06 (5) | O1xvii—Rb2—O2xii | 84.50 (10) |
O4x—Rb1—O4ix | 180.0 | O1iv—Rb2—O2xii | 85.80 (11) |
O3vii—Rb1—O4viii | 105.07 (10) | O1xiii—Rb2—O2xii | 94.20 (11) |
O3viii—Rb1—O4viii | 47.14 (10) | O1—Rb2—O2xii | 95.50 (10) |
O3ix—Rb1—O4viii | 75.80 (11) | O2xvii—Rb2—O2xii | 64.46 (5) |
O3—Rb1—O4viii | 74.93 (10) | O2xvi—Rb2—O2xii | 180.00 (19) |
O3x—Rb1—O4viii | 104.20 (11) | O1xvi—Rb2—O2iv | 95.50 (10) |
O3xi—Rb1—O4viii | 132.87 (10) | O1xii—Rb2—O2iv | 84.50 (10) |
O4vii—Rb1—O4viii | 113.06 (5) | O1xvii—Rb2—O2iv | 94.20 (11) |
O4x—Rb1—O4viii | 66.94 (5) | O1iv—Rb2—O2iv | 44.81 (10) |
O4ix—Rb1—O4viii | 113.06 (5) | O1xiii—Rb2—O2iv | 135.19 (10) |
O3vii—Rb1—O4xi | 74.93 (10) | O1—Rb2—O2iv | 85.80 (11) |
O3viii—Rb1—O4xi | 132.86 (10) | O2xvii—Rb2—O2iv | 115.54 (5) |
O3ix—Rb1—O4xi | 104.20 (11) | O2xvi—Rb2—O2iv | 115.54 (5) |
O3—Rb1—O4xi | 105.08 (10) | O2xii—Rb2—O2iv | 64.46 (5) |
O3x—Rb1—O4xi | 75.80 (11) | O1xvi—Rb2—O2xiii | 84.50 (10) |
O3xi—Rb1—O4xi | 47.14 (10) | O1xii—Rb2—O2xiii | 95.50 (10) |
O4vii—Rb1—O4xi | 66.94 (5) | O1xvii—Rb2—O2xiii | 85.80 (11) |
O4x—Rb1—O4xi | 113.06 (5) | O1iv—Rb2—O2xiii | 135.19 (10) |
O4ix—Rb1—O4xi | 66.94 (5) | O1xiii—Rb2—O2xiii | 44.81 (10) |
O4viii—Rb1—O4xi | 180.0 | O1—Rb2—O2xiii | 94.20 (11) |
O3vii—Rb1—O4 | 132.86 (10) | O2xvii—Rb2—O2xiii | 64.46 (5) |
O3viii—Rb1—O4 | 104.20 (10) | O2xvi—Rb2—O2xiii | 64.46 (5) |
O3ix—Rb1—O4 | 74.92 (10) | O2xii—Rb2—O2xiii | 115.54 (5) |
O3—Rb1—O4 | 47.14 (10) | O2iv—Rb2—O2xiii | 180.0 (2) |
O3x—Rb1—O4 | 105.08 (10) | O1xvi—Rb2—O2 | 85.80 (11) |
O3xi—Rb1—O4 | 75.80 (10) | O1xii—Rb2—O2 | 94.20 (11) |
O4vii—Rb1—O4 | 180.0 | O1xvii—Rb2—O2 | 135.19 (10) |
O4x—Rb1—O4 | 113.06 (5) | O1iv—Rb2—O2 | 84.50 (10) |
O4ix—Rb1—O4 | 66.94 (5) | O1xiii—Rb2—O2 | 95.50 (10) |
O4viii—Rb1—O4 | 66.94 (5) | O1—Rb2—O2 | 44.81 (10) |
O4xi—Rb1—O4 | 113.06 (5) | O2xvii—Rb2—O2 | 180.0 |
O2—P1—O1 | 106.4 (3) | O2xvi—Rb2—O2 | 64.47 (5) |
O2—P1—O3 | 108.3 (2) | O2xii—Rb2—O2 | 115.53 (5) |
O1—P1—O3 | 110.1 (3) | O2iv—Rb2—O2 | 64.46 (5) |
O2—P1—O4 | 114.1 (2) | O2xiii—Rb2—O2 | 115.54 (5) |
O1—P1—O4 | 110.6 (2) | P1—O2—Sn1 | 148.8 (3) |
O3—P1—O4 | 107.4 (2) | P1—O2—Rb2 | 85.6 (2) |
O2—P1—Rb2 | 69.43 (19) | Sn1—O2—Rb2 | 125.48 (17) |
O1—P1—Rb2 | 53.44 (15) | P1—O3—Sn1v | 144.2 (3) |
O3—P1—Rb2 | 86.57 (16) | P1—O3—Rb1 | 108.91 (19) |
O4—P1—Rb2 | 162.60 (19) | Sn1v—O3—Rb1 | 94.85 (15) |
O2—P1—Rb1 | 147.0 (2) | P1—O4—Sn2xiv | 134.6 (3) |
O1—P1—Rb1 | 103.79 (16) | P1—O4—Rb1 | 88.59 (19) |
O3—P1—Rb1 | 47.30 (15) | Sn2xiv—O4—Rb1 | 128.46 (15) |
O4—P1—Rb1 | 66.10 (17) |
Symmetry codes: (i) −y+1, x−y, z; (ii) −x+y+1, −x+1, z; (iii) x−y+1, x, −z; (iv) y, −x+y, −z; (v) −x+1, −y+1, −z; (vi) x+1/3, y−1/3, z−1/3; (vii) −x+2/3, −y+4/3, −z+1/3; (viii) y−1/3, −x+y+1/3, −z+1/3; (ix) x−y+2/3, x+1/3, −z+1/3; (x) −x+y, −x+1, z; (xi) −y+1, x−y+1, z; (xii) −x+y, −x, z; (xiii) −y, x−y, z; (xiv) −x+2/3, −y+1/3, −z+1/3; (xv) x−y−1/3, x−2/3, −z+1/3; (xvi) x−y, x, −z; (xvii) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | RbSn2(PO4)3 |
Mr | 607.76 |
Crystal system, space group | Trigonal, R3 |
Temperature (K) | 293 |
a, c (Å) | 8.340 (4), 24.007 (8) |
V (Å3) | 1446.1 (6) |
Z | 6 |
Radiation type | Mo Kα |
µ (mm−1) | 10.76 |
Crystal size (mm) | 0.20 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Rigaku Mercury70 CCD diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.222, 0.615 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3765, 742, 711 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.043, 1.16 |
No. of reflections | 742 |
No. of parameters | 57 |
w = 1/[σ2(Fo2) + (0.0097P)2 + 13.5872P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.65, −0.73 |
Computer programs: CrystalClear (Rigaku, 2004), SHELXS97 (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), SHELXTL (Sheldrick, 2008).
Sn1—O2 | 2.015 (4) | P1—O1 | 1.529 (4) |
Sn1—O3i | 2.033 (4) | P1—O3 | 1.533 (4) |
P1—O2 | 1.523 (4) | P1—O4 | 1.537 (4) |
Symmetry code: (i) y, −x+y, −z. |
Acknowledgements
The authors acknowledge the Doctoral Foundation of Henan Polytechnic University (grant No. B2010–92, 648483).
References
Boilot, J. P., Collin, G. & Colomban, Ph. (1987). Mater. Res. Bull. 22, 669–676. CrossRef CAS Google Scholar
Boujelben, M., Toumi, M. & Mhiri, T. (2007). Acta Cryst. E63, i157. Web of Science CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Duhlev, R. (1994). Acta Cryst. C50, 1525–1527. CrossRef CAS Web of Science IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zatovskii, I. V., Ushchapovskaya, T. I., Slobodyanik, N. S. & Ogorodnik, I. V. (2006). Zh. Neorg. Khim. 51, 41–46. CAS Google Scholar
Zhao, D., Liang, P., Su, L., Chang, H. & Yan, S. (2011). Acta Cryst. E67, i23. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, the AM2(PO4)3 (A = alkali metal; M = Ti, Zr, Ge, Sn) family with NASICON (Na3Zr2Si2PO12; Boilot et al., 1987) -type structures attracted a growing interest due to their intriguing properities, e.g. ionic conductivity of the A cations located in the voids of the three-dimensional NASICON-type framework. This framework is composed of isolated PO4 tetrahedra sharing corners with MO6 octahedra (Fig. 1), and is amenable to a wide variety of chemical substitutions at the various crystallographic positions, thus yielding a large number of closely related compounds, such as NaFeNb(PO4)3 (Zatovskii et al., 2006), Rb2Ca2(SO4)3 (Boujelben et al., 2007) or Al0.5Nb1.5(PO4)3 (Zhao et al., 2011). In order to augment this family of compounds, we prepared crystals of the compound RbSn2(PO4)3 using a solid state reaction route. Unlike the analogous Ti compound RbTi2(PO4)3 which crystallises in space group R3c (Duhlev, 1994), RbSn2(PO4)3 crystallises in space group R3.
A projection of the crystal structure of RbSn2(PO4)3 is given in Fig. 2. It is characterized by the presence of isolated PO4 tetrahedra (1 symmetry) and two different SnO6 octahedra (both 3. symmetry), linked by sharing corner O atoms, to establish a three-dimensional 3∞[Sn2(PO4)3]- framework. This framwork delimits two types of channels in which the twelve-coordinate Rb+ atoms (site symmetry 3.) are located to compensate the negative charges. The PO4 tetrahedra are quite regular, with P–O distances ranging from 1.523 (4) to 1.537 (4) Å. The two SnO6 octahedra exhibit Sn—O distances ranging from 2.015 (4) to 2.033 (4) Å.