metal-organic compounds
{2-[(η5-Cyclopentadienyl)diphenylmethyl]-1H-imidazolido-κN}bis(N,N-diethylamido)titanium(IV)
aKey Laboratory of Synthetic and Natural Chemistry of the Ministry of Education, College of Chemistry and Material Science, The North-West University of Xi'an, Taibai Bei Avenue 229, Xi'an 710069, Shaanxi Province, People's Republic of China
*Correspondence e-mail: niewl126@126.com
The chemically achiral title molecule, [Ti(C4H10N)2(C21H16N2)], crystallizes in the P21. All three N atoms coordinating to the TiIV atom adopt planar environments [sums of valence angles = 359.5 (6), 360.0 (7) and 360.0 (6)°], which is indicative of pπ–dπ donation from all of these N atoms to the metal and, thus, of the formal 18 e− nature of the complex. The overall coordination about the TiIV atom is distorted tetrahedral, assuming the cyclopentadienyl ring occupies one coordination site. The Ti—Nimidazole amide-type bond is longer by approximately 0.16 Å than the other two Ti—Namide bonds.
Related literature
For structural parameters of η5-CpTi-tris(sec-amido)-type complexes, see: Rhodes et al. (2002); Li et al. (2003); Seo et al. (2001); Kunz et al. (2001, 2002); Carpenetti et al. (1996); Bertolasi et al. (2007); Wu et al. (2006); Cano et al. (2005); Martin et al. (1994). For two related TiIV complexes, see: Wang et al. (2009). For the structural parameters of 1H-imidazol(in)-2-yl side-chain functionalized cyclopentadienes and their Li, Ti, and Zr complexes, see: Krut'ko et al. (2006); Nie et al. (2008); Sun et al. (2009, 2010); Ge et al. (2010). For synthetic details, see: Curtis & Brown (1980); Bürger & Dämmen (1974); Bradley & Thomas (1960); Chajara & Ottosson (2004); Armarego & Perrin (1997). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and OLEX2.
Supporting information
10.1107/S1600536811012396/wm2469sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811012396/wm2469Isup2.hkl
All operations were performed under Ar atmosphere in conventional glassware or in all-sealed evacuated glass vessels with application of a high-vacuum line (the residual pressure of non-condensable gases within 1.5–1.0×10 -3 Torr; 1 Torr = 133 Pa). 5-(Diphenylmethylidene)cyclopenta-1,3-diene (6,6-diphenylfulvene) was prepared as described by Chajara & Ottosson (2004). Ti(NEt2)4 was prepared as described earlier by Bürger & Dämmen (1974); Bradley & Thomas (1960). 1-Diethoxymethyl-1H-imidazole and its 2-lithiated derivative were prepared as described by Curtis & Brown (1980). All other chemicals were commercially available and purified by conventional methods (Armarego & Perrin, 1997). Solvents were purified by distillation over sodium benzophenoneketyl (diethyl ether, THF), Na—K alloy (toluene, hexane, benzene), and CaH2 (chloroform). The deuterated solvent (C6D6) was dried similarly. Compound (I) was prepared in a full analogy to what was described by Wang et al. (2009). The NMR spectra were recorded on a Varian INOVA-400 instrument. For 1H spectrum, the TMS (δH = 0.00 and δC = 0.0) resonance was used as an internal reference standard. 1H NMR (298 K, C6D6): δ = 0.70 (virt. t, an X-part of an ABX3 spin system, 12 H, 3JAX = 3JBX = 6.7 Hz, NCH2CH3), 3.12, 3.46 (both virt. dq, an AB-part of an ABX3 spin system, 4 H + 4H, 3JAX = 3JBX = 6.7 Hz, 2JAB = 14.0 Hz, NCH2CH3), 5.74 (unresolved m, 4 H, CH in Cp), 7.04, 7.15, 7.86 (all m, p-, m-, and o-CH in Ph, in respective order), 7.21, 7.55 (an AB spin system, 1 H + 1 H, 2JAB = 1.2 Hz, imidazole ring protons).
A crystal of (I) suitable for X-ray
was picked up from the isolated material and mounted inside a Lindemann glass capillary (diameter 0.5 mm; N2-filled glove-box).H atoms were treated as riding atoms with distances C—H = 0.96 (CH3), 0.97 (CH2), 0.93 Å (CArH), and Uiso(H) = 1.5 Ueq(C), 1.2 Ueq(C), and 1.2 Ueq(C), respectively.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).Fig. 1. The molecule of compound (I) in the asymmetric unit with the labelling scheme. Displacement ellipsoids are shown at the 50% probability level. All H atoms have been omitted for clarity. |
[Ti(C4H10N)2(C21H16N2)] | F(000) = 520 |
Mr = 488.52 | Dx = 1.225 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 5258 reflections |
a = 8.6495 (6) Å | θ = 2.6–28.2° |
b = 17.9486 (12) Å | µ = 0.35 mm−1 |
c = 9.1130 (6) Å | T = 296 K |
β = 110.603 (1)° | Block, brown |
V = 1324.27 (15) Å3 | 0.35 × 0.23 × 0.08 mm |
Z = 2 |
Bruker SMART APEXII diffractometer | 4906 independent reflections |
Radiation source: fine-focus sealed tube | 4031 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 8.333 pixels mm-1 | θmax = 26.0°, θmin = 2.3° |
ϕ and ω scans | h = −8→10 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −22→22 |
Tmin = 0.888, Tmax = 0.973 | l = −11→9 |
7145 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0594P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max < 0.001 |
4906 reflections | Δρmax = 0.21 e Å−3 |
311 parameters | Δρmin = −0.21 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 2209 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.02 (3) |
[Ti(C4H10N)2(C21H16N2)] | V = 1324.27 (15) Å3 |
Mr = 488.52 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 8.6495 (6) Å | µ = 0.35 mm−1 |
b = 17.9486 (12) Å | T = 296 K |
c = 9.1130 (6) Å | 0.35 × 0.23 × 0.08 mm |
β = 110.603 (1)° |
Bruker SMART APEXII diffractometer | 4906 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 4031 reflections with I > 2σ(I) |
Tmin = 0.888, Tmax = 0.973 | Rint = 0.022 |
7145 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.102 | Δρmax = 0.21 e Å−3 |
S = 0.99 | Δρmin = −0.21 e Å−3 |
4906 reflections | Absolute structure: Flack (1983), 2209 Friedel pairs |
311 parameters | Absolute structure parameter: 0.02 (3) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ti1 | 0.80413 (5) | 0.23594 (2) | 0.88291 (5) | 0.03379 (13) | |
N1 | 0.5871 (3) | 0.24357 (15) | 0.9268 (3) | 0.0402 (5) | |
N2 | 0.3929 (3) | 0.21126 (16) | 1.0254 (4) | 0.0546 (8) | |
N3 | 0.7642 (3) | 0.23863 (19) | 0.6661 (3) | 0.0484 (5) | |
N4 | 0.8943 (3) | 0.33169 (14) | 0.9552 (3) | 0.0423 (6) | |
C1 | 0.5246 (3) | 0.19024 (16) | 0.9950 (4) | 0.0371 (6) | |
C2 | 0.4852 (4) | 0.30452 (18) | 0.9156 (4) | 0.0514 (9) | |
H2 | 0.4947 | 0.3511 | 0.8747 | 0.062* | |
C3 | 0.3696 (5) | 0.2835 (2) | 0.9755 (5) | 0.0592 (10) | |
H3 | 0.2854 | 0.3140 | 0.9818 | 0.071* | |
C4 | 0.5952 (3) | 0.11126 (15) | 1.0097 (3) | 0.0347 (6) | |
C11 | 0.7649 (3) | 0.12130 (15) | 0.9937 (3) | 0.0354 (6) | |
C12 | 0.8975 (3) | 0.15962 (18) | 1.1051 (4) | 0.0433 (7) | |
H12 | 0.8977 | 0.1779 | 1.2007 | 0.052* | |
C13 | 1.0270 (4) | 0.1656 (2) | 1.0498 (4) | 0.0547 (9) | |
H13 | 1.1282 | 0.1885 | 1.1008 | 0.066* | |
C14 | 0.9777 (4) | 0.13112 (19) | 0.9038 (5) | 0.0572 (10) | |
H14 | 1.0407 | 0.1274 | 0.8399 | 0.069* | |
C15 | 0.8150 (4) | 0.10237 (16) | 0.8682 (4) | 0.0455 (8) | |
H15 | 0.7537 | 0.0761 | 0.7787 | 0.055* | |
C21 | 0.6162 (3) | 0.07332 (17) | 1.1669 (3) | 0.0390 (7) | |
C22 | 0.7484 (4) | 0.0259 (2) | 1.2372 (4) | 0.0585 (9) | |
H22 | 0.8285 | 0.0199 | 1.1918 | 0.070* | |
C23 | 0.7638 (6) | −0.0125 (3) | 1.3726 (5) | 0.0729 (13) | |
H23 | 0.8511 | −0.0455 | 1.4150 | 0.087* | |
C24 | 0.6505 (5) | −0.0021 (2) | 1.4449 (4) | 0.0674 (11) | |
H24 | 0.6626 | −0.0266 | 1.5382 | 0.081* | |
C25 | 0.5211 (5) | 0.0442 (2) | 1.3793 (4) | 0.0667 (11) | |
H25 | 0.4436 | 0.0510 | 1.4275 | 0.080* | |
C26 | 0.5025 (4) | 0.0819 (2) | 1.2406 (4) | 0.0519 (8) | |
H26 | 0.4123 | 0.1132 | 1.1969 | 0.062* | |
C31 | 0.4818 (3) | 0.06271 (16) | 0.8743 (3) | 0.0371 (6) | |
C32 | 0.5116 (4) | −0.01293 (19) | 0.8684 (4) | 0.0516 (8) | |
H32 | 0.6011 | −0.0342 | 0.9466 | 0.062* | |
C33 | 0.4118 (5) | −0.0571 (2) | 0.7495 (4) | 0.0639 (10) | |
H33 | 0.4340 | −0.1078 | 0.7485 | 0.077* | |
C34 | 0.2792 (5) | −0.0267 (2) | 0.6321 (5) | 0.0609 (11) | |
H34 | 0.2116 | −0.0565 | 0.5514 | 0.073* | |
C35 | 0.2480 (5) | 0.0478 (2) | 0.6356 (4) | 0.0611 (9) | |
H35 | 0.1584 | 0.0688 | 0.5570 | 0.073* | |
C36 | 0.3485 (4) | 0.09227 (19) | 0.7552 (4) | 0.0492 (8) | |
H36 | 0.3259 | 0.1429 | 0.7555 | 0.059* | |
C41 | 0.8291 (5) | 0.2021 (2) | 0.5546 (5) | 0.0678 (10) | |
H41A | 0.7439 | 0.2014 | 0.4514 | 0.081* | |
H41B | 0.8578 | 0.1509 | 0.5870 | 0.081* | |
C42 | 0.9794 (5) | 0.2417 (4) | 0.5458 (5) | 0.0835 (12) | |
H42A | 1.0255 | 0.2134 | 0.4818 | 0.125* | |
H42B | 1.0600 | 0.2467 | 0.6493 | 0.125* | |
H42C | 0.9482 | 0.2902 | 0.5006 | 0.125* | |
C43 | 0.6389 (5) | 0.2954 (2) | 0.5932 (5) | 0.0649 (10) | |
H43A | 0.6786 | 0.3270 | 0.5276 | 0.078* | |
H43B | 0.6253 | 0.3264 | 0.6749 | 0.078* | |
C44 | 0.4723 (6) | 0.2641 (3) | 0.4946 (6) | 0.0979 (16) | |
H44A | 0.4842 | 0.2335 | 0.4128 | 0.147* | |
H44B | 0.3977 | 0.3043 | 0.4490 | 0.147* | |
H44C | 0.4293 | 0.2347 | 0.5594 | 0.147* | |
C51 | 0.9457 (4) | 0.38919 (18) | 0.8705 (4) | 0.0523 (8) | |
H51A | 0.9370 | 0.3696 | 0.7686 | 0.063* | |
H51B | 1.0612 | 0.4004 | 0.9268 | 0.063* | |
C52 | 0.8487 (5) | 0.4608 (2) | 0.8464 (6) | 0.0828 (13) | |
H52A | 0.8870 | 0.4945 | 0.7848 | 0.124* | |
H52B | 0.8637 | 0.4830 | 0.9463 | 0.124* | |
H52C | 0.7336 | 0.4504 | 0.7927 | 0.124* | |
C53 | 0.9123 (5) | 0.3530 (2) | 1.1150 (5) | 0.0635 (10) | |
H53A | 0.8673 | 0.3134 | 1.1605 | 0.076* | |
H53B | 0.8463 | 0.3973 | 1.1103 | 0.076* | |
C54 | 1.0848 (7) | 0.3683 (4) | 1.2218 (6) | 0.1085 (19) | |
H54A | 1.1261 | 0.4116 | 1.1858 | 0.163* | |
H54B | 1.1535 | 0.3263 | 1.2223 | 0.163* | |
H54C | 1.0856 | 0.3770 | 1.3261 | 0.163* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ti1 | 0.0344 (2) | 0.0293 (2) | 0.0416 (2) | 0.0000 (2) | 0.01819 (18) | 0.0026 (3) |
N1 | 0.0359 (10) | 0.0304 (13) | 0.0572 (14) | 0.0000 (12) | 0.0199 (10) | −0.0029 (14) |
N2 | 0.0435 (14) | 0.0494 (18) | 0.084 (2) | 0.0053 (11) | 0.0391 (15) | −0.0057 (14) |
N3 | 0.0594 (13) | 0.0446 (14) | 0.0430 (12) | −0.0077 (17) | 0.0203 (10) | −0.0006 (16) |
N4 | 0.0415 (14) | 0.0349 (14) | 0.0521 (16) | −0.0049 (11) | 0.0186 (13) | −0.0021 (12) |
C1 | 0.0321 (14) | 0.0349 (17) | 0.0459 (17) | −0.0004 (12) | 0.0156 (13) | −0.0050 (13) |
C2 | 0.0457 (18) | 0.0329 (18) | 0.077 (3) | 0.0088 (14) | 0.0237 (18) | −0.0003 (16) |
C3 | 0.0466 (19) | 0.047 (2) | 0.092 (3) | 0.0143 (16) | 0.035 (2) | −0.0057 (19) |
C4 | 0.0321 (14) | 0.0338 (15) | 0.0425 (16) | −0.0008 (11) | 0.0186 (12) | 0.0008 (12) |
C11 | 0.0349 (14) | 0.0314 (15) | 0.0456 (17) | 0.0049 (11) | 0.0212 (13) | 0.0080 (12) |
C12 | 0.0340 (15) | 0.0463 (18) | 0.0485 (17) | 0.0035 (14) | 0.0133 (13) | 0.0138 (15) |
C13 | 0.0332 (15) | 0.054 (2) | 0.078 (2) | 0.0061 (15) | 0.0215 (16) | 0.024 (2) |
C14 | 0.0511 (19) | 0.045 (2) | 0.095 (3) | 0.0150 (16) | 0.050 (2) | 0.0195 (19) |
C15 | 0.0584 (19) | 0.0292 (16) | 0.065 (2) | 0.0063 (14) | 0.0414 (17) | 0.0053 (14) |
C21 | 0.0392 (15) | 0.0381 (16) | 0.0440 (17) | −0.0108 (13) | 0.0199 (13) | −0.0018 (13) |
C22 | 0.060 (2) | 0.061 (2) | 0.065 (2) | 0.0084 (18) | 0.0344 (19) | 0.0193 (18) |
C23 | 0.071 (3) | 0.078 (3) | 0.067 (3) | 0.002 (2) | 0.022 (2) | 0.033 (2) |
C24 | 0.078 (3) | 0.075 (3) | 0.049 (2) | −0.017 (2) | 0.022 (2) | 0.0128 (19) |
C25 | 0.074 (3) | 0.083 (3) | 0.059 (2) | −0.024 (2) | 0.042 (2) | −0.005 (2) |
C26 | 0.0480 (18) | 0.064 (2) | 0.0507 (19) | −0.0111 (16) | 0.0264 (16) | −0.0032 (16) |
C31 | 0.0409 (15) | 0.0345 (16) | 0.0434 (16) | −0.0025 (12) | 0.0242 (13) | 0.0002 (12) |
C32 | 0.063 (2) | 0.0382 (18) | 0.053 (2) | 0.0042 (15) | 0.0196 (17) | 0.0009 (15) |
C33 | 0.085 (3) | 0.043 (2) | 0.063 (2) | −0.0104 (19) | 0.025 (2) | −0.0089 (18) |
C34 | 0.062 (2) | 0.065 (3) | 0.057 (2) | −0.018 (2) | 0.023 (2) | −0.019 (2) |
C35 | 0.0541 (19) | 0.066 (3) | 0.057 (2) | 0.0007 (18) | 0.0109 (17) | −0.0064 (19) |
C36 | 0.0462 (17) | 0.0469 (19) | 0.0514 (19) | 0.0036 (15) | 0.0131 (15) | 0.0002 (16) |
C41 | 0.085 (3) | 0.070 (2) | 0.054 (2) | −0.007 (2) | 0.032 (2) | −0.0125 (18) |
C42 | 0.093 (3) | 0.101 (3) | 0.077 (2) | −0.017 (3) | 0.055 (2) | −0.005 (3) |
C43 | 0.078 (2) | 0.052 (2) | 0.058 (2) | −0.0039 (19) | 0.0161 (19) | 0.0087 (18) |
C44 | 0.074 (3) | 0.113 (4) | 0.081 (3) | 0.001 (3) | −0.005 (2) | 0.008 (3) |
C51 | 0.0487 (18) | 0.0391 (18) | 0.066 (2) | −0.0058 (15) | 0.0161 (17) | 0.0060 (16) |
C52 | 0.074 (3) | 0.045 (2) | 0.118 (4) | 0.005 (2) | 0.019 (3) | 0.016 (2) |
C53 | 0.071 (3) | 0.060 (2) | 0.065 (2) | −0.016 (2) | 0.030 (2) | −0.014 (2) |
C54 | 0.093 (4) | 0.151 (6) | 0.067 (3) | −0.030 (3) | 0.009 (3) | −0.030 (3) |
Ti1—N3 | 1.883 (2) | C24—H24 | 0.9300 |
Ti1—N4 | 1.906 (2) | C25—C26 | 1.392 (5) |
Ti1—N1 | 2.057 (2) | C25—H25 | 0.9300 |
Ti1—C12 | 2.341 (3) | C26—H26 | 0.9300 |
Ti1—C13 | 2.358 (3) | C31—C36 | 1.381 (4) |
Ti1—C11 | 2.368 (3) | C31—C32 | 1.386 (4) |
Ti1—C14 | 2.372 (3) | C32—C33 | 1.375 (5) |
Ti1—C15 | 2.405 (3) | C32—H32 | 0.9300 |
N1—C1 | 1.353 (4) | C33—C34 | 1.377 (6) |
N1—C2 | 1.386 (4) | C33—H33 | 0.9300 |
N2—C1 | 1.318 (4) | C34—C35 | 1.368 (5) |
N2—C3 | 1.365 (5) | C34—H34 | 0.9300 |
N3—C43 | 1.465 (5) | C35—C36 | 1.383 (5) |
N3—C41 | 1.476 (4) | C35—H35 | 0.9300 |
N4—C51 | 1.450 (4) | C36—H36 | 0.9300 |
N4—C53 | 1.460 (5) | C41—C42 | 1.508 (6) |
C1—C4 | 1.531 (4) | C41—H41A | 0.9700 |
C2—C3 | 1.351 (5) | C41—H41B | 0.9700 |
C2—H2 | 0.9300 | C42—H42A | 0.9600 |
C3—H3 | 0.9300 | C42—H42B | 0.9600 |
C4—C11 | 1.536 (4) | C42—H42C | 0.9600 |
C4—C21 | 1.539 (4) | C43—C44 | 1.512 (6) |
C4—C31 | 1.547 (4) | C43—H43A | 0.9700 |
C11—C15 | 1.399 (4) | C43—H43B | 0.9700 |
C11—C12 | 1.414 (4) | C44—H44A | 0.9600 |
C12—C13 | 1.385 (4) | C44—H44B | 0.9600 |
C12—H12 | 0.9300 | C44—H44C | 0.9600 |
C13—C14 | 1.391 (5) | C51—C52 | 1.508 (5) |
C13—H13 | 0.9300 | C51—H51A | 0.9700 |
C14—C15 | 1.425 (5) | C51—H51B | 0.9700 |
C14—H14 | 0.9300 | C52—H52A | 0.9600 |
C15—H15 | 0.9300 | C52—H52B | 0.9600 |
C21—C26 | 1.380 (4) | C52—H52C | 0.9600 |
C21—C22 | 1.388 (5) | C53—C54 | 1.492 (6) |
C22—C23 | 1.378 (5) | C53—H53A | 0.9700 |
C22—H22 | 0.9300 | C53—H53B | 0.9700 |
C23—C24 | 1.373 (6) | C54—H54A | 0.9600 |
C23—H23 | 0.9300 | C54—H54B | 0.9600 |
C24—C25 | 1.353 (6) | C54—H54C | 0.9600 |
N3—Ti1—N4 | 103.96 (13) | C26—C21—C4 | 122.2 (3) |
N3—Ti1—N1 | 111.06 (10) | C22—C21—C4 | 120.6 (3) |
N4—Ti1—N1 | 99.38 (10) | C23—C22—C21 | 121.6 (3) |
N3—Ti1—C12 | 143.42 (14) | C23—C22—H22 | 119.2 |
N4—Ti1—C12 | 104.71 (12) | C21—C22—H22 | 119.2 |
N1—Ti1—C12 | 86.06 (10) | C24—C23—C22 | 120.1 (4) |
N3—Ti1—C13 | 119.81 (13) | C24—C23—H23 | 119.9 |
N4—Ti1—C13 | 96.74 (13) | C22—C23—H23 | 119.9 |
N1—Ti1—C13 | 120.34 (11) | C25—C24—C23 | 119.3 (4) |
C12—Ti1—C13 | 34.29 (11) | C25—C24—H24 | 120.3 |
N3—Ti1—C11 | 117.95 (13) | C23—C24—H24 | 120.3 |
N4—Ti1—C11 | 137.59 (11) | C24—C25—C26 | 120.9 (4) |
N1—Ti1—C11 | 72.40 (10) | C24—C25—H25 | 119.5 |
C12—Ti1—C11 | 34.94 (11) | C26—C25—H25 | 119.5 |
C13—Ti1—C11 | 57.80 (10) | C21—C26—C25 | 120.8 (4) |
N3—Ti1—C14 | 88.97 (14) | C21—C26—H26 | 119.6 |
N4—Ti1—C14 | 121.12 (12) | C25—C26—H26 | 119.6 |
N1—Ti1—C14 | 129.20 (11) | C36—C31—C32 | 117.4 (3) |
C12—Ti1—C14 | 56.66 (13) | C36—C31—C4 | 122.0 (3) |
C13—Ti1—C14 | 34.21 (13) | C32—C31—C4 | 120.5 (3) |
C11—Ti1—C14 | 57.19 (10) | C33—C32—C31 | 121.5 (3) |
N3—Ti1—C15 | 87.91 (13) | C33—C32—H32 | 119.3 |
N4—Ti1—C15 | 153.99 (12) | C31—C32—H32 | 119.3 |
N1—Ti1—C15 | 97.66 (10) | C32—C33—C34 | 120.3 (4) |
C12—Ti1—C15 | 57.06 (12) | C32—C33—H33 | 119.9 |
C13—Ti1—C15 | 57.54 (13) | C34—C33—H33 | 119.9 |
C11—Ti1—C15 | 34.08 (9) | C35—C34—C33 | 119.1 (4) |
C14—Ti1—C15 | 34.70 (11) | C35—C34—H34 | 120.4 |
C1—N1—C2 | 104.2 (2) | C33—C34—H34 | 120.4 |
C1—N1—Ti1 | 125.6 (2) | C34—C35—C36 | 120.5 (4) |
C2—N1—Ti1 | 129.7 (2) | C34—C35—H35 | 119.7 |
C1—N2—C3 | 103.8 (3) | C36—C35—H35 | 119.7 |
C43—N3—C41 | 113.4 (3) | C31—C36—C35 | 121.1 (3) |
C43—N3—Ti1 | 109.1 (2) | C31—C36—H36 | 119.4 |
C41—N3—Ti1 | 137.5 (3) | C35—C36—H36 | 119.4 |
C51—N4—C53 | 113.6 (3) | N3—C41—C42 | 111.8 (3) |
C51—N4—Ti1 | 128.5 (2) | N3—C41—H41A | 109.3 |
C53—N4—Ti1 | 117.9 (2) | C42—C41—H41A | 109.3 |
N2—C1—N1 | 114.1 (3) | N3—C41—H41B | 109.3 |
N2—C1—C4 | 126.5 (3) | C42—C41—H41B | 109.3 |
N1—C1—C4 | 118.9 (2) | H41A—C41—H41B | 107.9 |
C3—C2—N1 | 106.9 (3) | C41—C42—H42A | 109.5 |
C3—C2—H2 | 126.5 | C41—C42—H42B | 109.5 |
N1—C2—H2 | 126.5 | H42A—C42—H42B | 109.5 |
C2—C3—N2 | 110.9 (3) | C41—C42—H42C | 109.5 |
C2—C3—H3 | 124.6 | H42A—C42—H42C | 109.5 |
N2—C3—H3 | 124.6 | H42B—C42—H42C | 109.5 |
C1—C4—C11 | 104.4 (2) | N3—C43—C44 | 114.1 (4) |
C1—C4—C21 | 113.8 (2) | N3—C43—H43A | 108.7 |
C11—C4—C21 | 109.7 (2) | C44—C43—H43A | 108.7 |
C1—C4—C31 | 109.3 (2) | N3—C43—H43B | 108.7 |
C11—C4—C31 | 110.5 (2) | C44—C43—H43B | 108.7 |
C21—C4—C31 | 109.1 (2) | H43A—C43—H43B | 107.6 |
C15—C11—C12 | 107.4 (3) | C43—C44—H44A | 109.5 |
C15—C11—C4 | 129.0 (3) | C43—C44—H44B | 109.5 |
C12—C11—C4 | 123.3 (3) | H44A—C44—H44B | 109.5 |
C15—C11—Ti1 | 74.39 (16) | C43—C44—H44C | 109.5 |
C12—C11—Ti1 | 71.46 (16) | H44A—C44—H44C | 109.5 |
C4—C11—Ti1 | 115.30 (17) | H44B—C44—H44C | 109.5 |
C13—C12—C11 | 109.4 (3) | N4—C51—C52 | 115.1 (3) |
C13—C12—Ti1 | 73.52 (18) | N4—C51—H51A | 108.5 |
C11—C12—Ti1 | 73.60 (16) | C52—C51—H51A | 108.5 |
C13—C12—H12 | 125.3 | N4—C51—H51B | 108.5 |
C11—C12—H12 | 125.3 | C52—C51—H51B | 108.5 |
Ti1—C12—H12 | 119.3 | H51A—C51—H51B | 107.5 |
C12—C13—C14 | 107.3 (3) | C51—C52—H52A | 109.5 |
C12—C13—Ti1 | 72.19 (17) | C51—C52—H52B | 109.5 |
C14—C13—Ti1 | 73.47 (18) | H52A—C52—H52B | 109.5 |
C12—C13—H13 | 126.3 | C51—C52—H52C | 109.5 |
C14—C13—H13 | 126.3 | H52A—C52—H52C | 109.5 |
Ti1—C13—H13 | 119.9 | H52B—C52—H52C | 109.5 |
C13—C14—C15 | 109.0 (3) | N4—C53—C54 | 115.5 (4) |
C13—C14—Ti1 | 72.32 (19) | N4—C53—H53A | 108.4 |
C15—C14—Ti1 | 73.90 (17) | C54—C53—H53A | 108.4 |
C13—C14—H14 | 125.5 | N4—C53—H53B | 108.4 |
C15—C14—H14 | 125.5 | C54—C53—H53B | 108.4 |
Ti1—C14—H14 | 120.0 | H53A—C53—H53B | 107.5 |
C11—C15—C14 | 106.9 (3) | C53—C54—H54A | 109.5 |
C11—C15—Ti1 | 71.53 (16) | C53—C54—H54B | 109.5 |
C14—C15—Ti1 | 71.40 (18) | H54A—C54—H54B | 109.5 |
C11—C15—H15 | 126.6 | C53—C54—H54C | 109.5 |
C14—C15—H15 | 126.6 | H54A—C54—H54C | 109.5 |
Ti1—C15—H15 | 122.3 | H54B—C54—H54C | 109.5 |
C26—C21—C22 | 117.2 (3) | ||
N3—Ti1—N1—C1 | 116.2 (3) | C14—Ti1—C12—C13 | 37.6 (2) |
N4—Ti1—N1—C1 | −134.7 (2) | C15—Ti1—C12—C13 | 79.3 (2) |
C12—Ti1—N1—C1 | −30.5 (3) | N3—Ti1—C12—C11 | −56.3 (2) |
C13—Ti1—N1—C1 | −31.2 (3) | N4—Ti1—C12—C11 | 163.17 (17) |
C11—Ti1—N1—C1 | 2.4 (2) | N1—Ti1—C12—C11 | 64.50 (17) |
C14—Ti1—N1—C1 | 9.4 (3) | C13—Ti1—C12—C11 | −116.6 (3) |
C15—Ti1—N1—C1 | 25.5 (3) | C14—Ti1—C12—C11 | −79.0 (2) |
N3—Ti1—N1—C2 | −73.5 (3) | C15—Ti1—C12—C11 | −37.26 (16) |
N4—Ti1—N1—C2 | 35.5 (3) | C11—C12—C13—C14 | −0.2 (4) |
C12—Ti1—N1—C2 | 139.8 (3) | Ti1—C12—C13—C14 | −65.6 (2) |
C13—Ti1—N1—C2 | 139.1 (3) | C11—C12—C13—Ti1 | 65.4 (2) |
C11—Ti1—N1—C2 | 172.6 (3) | N3—Ti1—C13—C12 | −143.4 (2) |
C14—Ti1—N1—C2 | 179.7 (3) | N4—Ti1—C13—C12 | 106.3 (2) |
C15—Ti1—N1—C2 | −164.2 (3) | N1—Ti1—C13—C12 | 1.3 (3) |
N4—Ti1—N3—C43 | −64.0 (2) | C11—Ti1—C13—C12 | −37.2 (2) |
N1—Ti1—N3—C43 | 42.0 (3) | C14—Ti1—C13—C12 | −115.0 (3) |
C12—Ti1—N3—C43 | 155.3 (2) | C15—Ti1—C13—C12 | −77.8 (2) |
C13—Ti1—N3—C43 | −170.4 (2) | N3—Ti1—C13—C14 | −28.4 (2) |
C11—Ti1—N3—C43 | 122.6 (2) | N4—Ti1—C13—C14 | −138.76 (19) |
C14—Ti1—N3—C43 | 174.1 (3) | N1—Ti1—C13—C14 | 116.21 (19) |
C15—Ti1—N3—C43 | 139.4 (2) | C12—Ti1—C13—C14 | 115.0 (3) |
N4—Ti1—N3—C41 | 112.6 (4) | C11—Ti1—C13—C14 | 77.7 (2) |
N1—Ti1—N3—C41 | −141.4 (3) | C15—Ti1—C13—C14 | 37.12 (18) |
C12—Ti1—N3—C41 | −28.1 (4) | C12—C13—C14—C15 | −0.6 (4) |
C13—Ti1—N3—C41 | 6.2 (4) | Ti1—C13—C14—C15 | −65.3 (2) |
C11—Ti1—N3—C41 | −60.8 (4) | C12—C13—C14—Ti1 | 64.7 (2) |
C14—Ti1—N3—C41 | −9.3 (4) | N3—Ti1—C14—C13 | 155.6 (2) |
C15—Ti1—N3—C41 | −44.0 (4) | N4—Ti1—C14—C13 | 49.9 (2) |
N3—Ti1—N4—C51 | −9.0 (3) | N1—Ti1—C14—C13 | −87.7 (2) |
N1—Ti1—N4—C51 | −123.6 (3) | C12—Ti1—C14—C13 | −37.70 (19) |
C12—Ti1—N4—C51 | 148.1 (3) | C11—Ti1—C14—C13 | −79.7 (2) |
C13—Ti1—N4—C51 | 114.1 (3) | C15—Ti1—C14—C13 | −116.6 (3) |
C11—Ti1—N4—C51 | 162.3 (2) | N3—Ti1—C14—C15 | −87.8 (2) |
C14—Ti1—N4—C51 | 88.4 (3) | N4—Ti1—C14—C15 | 166.45 (19) |
C15—Ti1—N4—C51 | 106.1 (3) | N1—Ti1—C14—C15 | 28.9 (3) |
N3—Ti1—N4—C53 | 169.3 (3) | C12—Ti1—C14—C15 | 78.9 (2) |
N1—Ti1—N4—C53 | 54.7 (3) | C13—Ti1—C14—C15 | 116.6 (3) |
C12—Ti1—N4—C53 | −33.6 (3) | C11—Ti1—C14—C15 | 36.88 (18) |
C13—Ti1—N4—C53 | −67.6 (3) | C12—C11—C15—C14 | −1.2 (3) |
C11—Ti1—N4—C53 | −19.4 (3) | C4—C11—C15—C14 | 173.2 (3) |
C14—Ti1—N4—C53 | −93.3 (3) | Ti1—C11—C15—C14 | 63.1 (2) |
C15—Ti1—N4—C53 | −75.6 (3) | C12—C11—C15—Ti1 | −64.3 (2) |
C3—N2—C1—N1 | −0.9 (4) | C4—C11—C15—Ti1 | 110.2 (3) |
C3—N2—C1—C4 | −172.4 (3) | C13—C14—C15—C11 | 1.2 (4) |
C2—N1—C1—N2 | 1.0 (4) | Ti1—C14—C15—C11 | −63.2 (2) |
Ti1—N1—C1—N2 | 173.3 (2) | C13—C14—C15—Ti1 | 64.3 (2) |
C2—N1—C1—C4 | 173.2 (2) | N3—Ti1—C15—C11 | −152.97 (19) |
Ti1—N1—C1—C4 | −14.5 (4) | N4—Ti1—C15—C11 | 88.6 (3) |
C1—N1—C2—C3 | −0.6 (4) | N1—Ti1—C15—C11 | −42.0 (2) |
Ti1—N1—C2—C3 | −172.5 (2) | C12—Ti1—C15—C11 | 38.23 (17) |
N1—C2—C3—N2 | 0.2 (5) | C13—Ti1—C15—C11 | 79.2 (2) |
C1—N2—C3—C2 | 0.4 (4) | C14—Ti1—C15—C11 | 115.8 (3) |
N2—C1—C4—C11 | −168.7 (3) | N3—Ti1—C15—C14 | 91.2 (2) |
N1—C1—C4—C11 | 20.1 (3) | N4—Ti1—C15—C14 | −27.2 (4) |
N2—C1—C4—C21 | −49.1 (4) | N1—Ti1—C15—C14 | −157.8 (2) |
N1—C1—C4—C21 | 139.7 (3) | C12—Ti1—C15—C14 | −77.6 (2) |
N2—C1—C4—C31 | 73.1 (4) | C13—Ti1—C15—C14 | −36.6 (2) |
N1—C1—C4—C31 | −98.1 (3) | C11—Ti1—C15—C14 | −115.8 (3) |
C1—C4—C11—C15 | −107.5 (3) | C1—C4—C21—C26 | 38.4 (4) |
C21—C4—C11—C15 | 130.2 (3) | C11—C4—C21—C26 | 154.9 (3) |
C31—C4—C11—C15 | 9.9 (4) | C31—C4—C21—C26 | −84.0 (3) |
C1—C4—C11—C12 | 66.2 (3) | C1—C4—C21—C22 | −144.5 (3) |
C21—C4—C11—C12 | −56.1 (3) | C11—C4—C21—C22 | −28.0 (4) |
C31—C4—C11—C12 | −176.4 (3) | C31—C4—C21—C22 | 93.1 (3) |
C1—C4—C11—Ti1 | −17.5 (3) | C26—C21—C22—C23 | 1.5 (6) |
C21—C4—C11—Ti1 | −139.78 (19) | C4—C21—C22—C23 | −175.7 (4) |
C31—C4—C11—Ti1 | 99.9 (2) | C21—C22—C23—C24 | −2.6 (7) |
N3—Ti1—C11—C15 | 30.9 (2) | C22—C23—C24—C25 | 2.1 (7) |
N4—Ti1—C11—C15 | −139.5 (2) | C23—C24—C25—C26 | −0.7 (6) |
N1—Ti1—C11—C15 | 135.9 (2) | C22—C21—C26—C25 | 0.0 (5) |
C12—Ti1—C11—C15 | −114.9 (3) | C4—C21—C26—C25 | 177.1 (3) |
C13—Ti1—C11—C15 | −78.4 (2) | C24—C25—C26—C21 | −0.4 (6) |
C14—Ti1—C11—C15 | −37.6 (2) | C1—C4—C31—C36 | 5.5 (4) |
N3—Ti1—C11—C12 | 145.87 (18) | C11—C4—C31—C36 | −108.9 (3) |
N4—Ti1—C11—C12 | −24.5 (2) | C21—C4—C31—C36 | 130.5 (3) |
N1—Ti1—C11—C12 | −109.15 (18) | C1—C4—C31—C32 | −174.7 (3) |
C13—Ti1—C11—C12 | 36.54 (19) | C11—C4—C31—C32 | 71.0 (3) |
C14—Ti1—C11—C12 | 77.4 (2) | C21—C4—C31—C32 | −49.7 (3) |
C15—Ti1—C11—C12 | 114.9 (3) | C36—C31—C32—C33 | −0.5 (5) |
N3—Ti1—C11—C4 | −95.3 (2) | C4—C31—C32—C33 | 179.6 (3) |
N4—Ti1—C11—C4 | 94.3 (2) | C31—C32—C33—C34 | 0.4 (6) |
N1—Ti1—C11—C4 | 9.69 (19) | C32—C33—C34—C35 | −0.2 (6) |
C12—Ti1—C11—C4 | 118.8 (3) | C33—C34—C35—C36 | 0.2 (6) |
C13—Ti1—C11—C4 | 155.4 (3) | C32—C31—C36—C35 | 0.5 (5) |
C14—Ti1—C11—C4 | −163.8 (3) | C4—C31—C36—C35 | −179.6 (3) |
C15—Ti1—C11—C4 | −126.2 (3) | C34—C35—C36—C31 | −0.4 (6) |
C15—C11—C12—C13 | 0.9 (3) | C43—N3—C41—C42 | 91.0 (4) |
C4—C11—C12—C13 | −174.0 (3) | Ti1—N3—C41—C42 | −85.5 (5) |
Ti1—C11—C12—C13 | −65.4 (2) | C41—N3—C43—C44 | 74.6 (4) |
C15—C11—C12—Ti1 | 66.3 (2) | Ti1—N3—C43—C44 | −107.9 (4) |
C4—C11—C12—Ti1 | −108.6 (2) | C53—N4—C51—C52 | −62.0 (4) |
N3—Ti1—C12—C13 | 60.3 (3) | Ti1—N4—C51—C52 | 116.3 (3) |
N4—Ti1—C12—C13 | −80.2 (2) | C51—N4—C53—C54 | −62.7 (5) |
N1—Ti1—C12—C13 | −178.9 (2) | Ti1—N4—C53—C54 | 118.7 (4) |
C11—Ti1—C12—C13 | 116.6 (3) |
Experimental details
Crystal data | |
Chemical formula | [Ti(C4H10N)2(C21H16N2)] |
Mr | 488.52 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 296 |
a, b, c (Å) | 8.6495 (6), 17.9486 (12), 9.1130 (6) |
β (°) | 110.603 (1) |
V (Å3) | 1324.27 (15) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.35 |
Crystal size (mm) | 0.35 × 0.23 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.888, 0.973 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7145, 4906, 4031 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.102, 0.99 |
No. of reflections | 4906 |
No. of parameters | 311 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.21 |
Absolute structure | Flack (1983), 2209 Friedel pairs |
Absolute structure parameter | 0.02 (3) |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).
Footnotes
‡Part of the Masters degree thesis, The North-West University, Xi'an 2011 People's Republic of China.
Acknowledgements
Financial support from the National Natural Science Foundation of China (project Nos. 20702041 and 21072157) and the Shaanxi Province Administration of Foreign Experts Bureau Foundation (grant No. 20106100079) is gratefully acknowledged. The authors are grateful to Mr Wang Minchang and Mr Su Pengfei (Xi'an Modern Chemistry Research Institute) for their help in carrying out the NMR spectroscopy and X-ray diffraction experiments.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Armarego, W. L. F. & Perrin, D. D. (1997). Purification of Laboratory Chemicals, 4th ed. Oxford: Pergamon. Google Scholar
Bertolasi, V., Boaretto, R., Chierotti, M. R., Gobetto, R. & Sostero, S. (2007). J. Chem. Soc. Dalton Trans. pp. 5179–5189. CSD CrossRef Google Scholar
Bradley, D. C. & Thomas, I. M. (1960). J. Chem. Soc. pp. 3857–3861. CrossRef Web of Science Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bürger, H. & Dämmen, U. (1974). Z. Anorg. Allg. Chem. 407, 201–210. Google Scholar
Cano, J., Sudupe, M., Royo, P. & Mosquera, M. E. G. (2005). Organometallics, 24, 2424–2432. Web of Science CSD CrossRef CAS Google Scholar
Carpenetti, D. W., Kloppenburg, L., Kupec, J. T. & Petersen, J. L. (1996). Organometallics, 15, 1572–1581. CSD CrossRef CAS Web of Science Google Scholar
Chajara, K. & Ottosson, H. (2004). Tetrahedron Lett. 45, 6741–6744. CrossRef CAS Google Scholar
Curtis, N. J. & Brown, R. S. (1980). J. Org. Chem. 45, 4038–4040. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ge, F., Nie, W., Borzov, M. V. & Churakov, A. V. (2010). Acta Cryst. E66, m546–m547. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krut'ko, D. P., Borzov, M. V., Liao, L., Nie, W., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2006). Russ. Chem. Bull. 55, 1574–1580. CAS Google Scholar
Kunz, K., Erker, G., Doering, S., Bredeau, S., Kehr, G. & Froehlich, R. (2002). Organometallics, 21, 1031–1041. Web of Science CSD CrossRef CAS Google Scholar
Kunz, K., Erker, G., Doering, S., Froehlich, R. & Kehr, G. (2001). J. Am. Chem. Soc. 123, 6181–6182. Web of Science CSD CrossRef PubMed CAS Google Scholar
Li, H., Li, L., Marks, T. J., Liable-Sands, L. & Rheingold, A. L. (2003). J. Am. Chem. Soc. 125, 10788–10789. Web of Science CSD CrossRef PubMed CAS Google Scholar
Martin, A., Mena, M., Yelamos, C., Serrano, R. & Raithby, P. R. (1994). J. Organomet. Chem. 467, 79–84. CSD CrossRef CAS Web of Science Google Scholar
Nie, W., Liao, L., Xu, W., Borzov, M. V., Krut'ko, D. P., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2008). J. Organomet. Chem. 693, 2355–2368. Web of Science CrossRef CAS Google Scholar
Rhodes, B., Chien, J. C. W., Wood, J. S., Chandrasekaran, A. & Rausch, M. D. (2002). Appl. Organomet. Chem. 16, 323–330. Web of Science CSD CrossRef CAS Google Scholar
Seo, W. S., Cho, Y. J., Yoon, S. C., Park, J. T. & Park, Y. (2001). J. Organomet. Chem. 640, 79–84. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Q., Nie, W. & Borzov, M. V. (2010). Acta Cryst. E66, o285–o286. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sun, G., Tian, C., Nie, W. & Borzov, M. V. (2009). Acta Cryst. E65, m478. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, X., Nie, W., Ge, F. & Borzov, M. V. (2009). Acta Cryst. C65, m255–m259. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wu, C. J., Lee, S. H., Yun, H. & Lee, B. Y. (2006). J. Organomet. Chem. 691, 5626–5634. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Cyclopentadienes (Cp-s) with pendant 1H-imidazol(in)-2-yl side-chain functional groups, their mono- and di-Li salts, and group 4 transition metal complexes of general type [η5-Cp-(C1 or C2)-imidazol(in)e)-κN]-MIVLn [M = Ti, Zr; Ln = Cl3, (NR2)2] have been described previously (Krut'ko et al., 2006; Nie et al., 2008; Sun et al., 2009; Wang et al., 2009; Ge et al., 2010; Sun et al., 2010). The present contribution reports the structural investigation of the closest analogue of two TiIV 18e- (η5-Cp)tris(sec-amido)- type complexes described recently by Wang et al. (2009).
The title complex, [Ti(C4H10N)2(C21H16N2)], (I), was prepared by treatment of 2-[(cyclopentadienyl)diphenylmethyl]-1H-imidazole, C21H18N2, (II), with Ti(NEt2)4 in toluene by an analogy to what described in Wang et al. (2009) (see Experimental for more details). Of interest, despite its molecule is chemically achiral, (I) crystallizes in the chiral space group P21. The TiIV is in a distorted tetrahedral environment (assuming the Cp-ring occupies one coordination site), with all three N-atoms coordinating to the Ti-centre adopting planar environments [valent angles sums 359.5 (6), 360.0 (7), and 360.0 (6)°, respectively] what is indicative of the pπ–dπ donation from all of these N-atoms to the metal and, thus, of the formal 18e- nature of the complex. The Ti—Nimidazole amido-type bond is approximately by 0.16 Å longer than the other two Ti—N amido-bonds, presumably due to the ridgid bridge constraint and/or certain electronic effects (e.g. involvment of the Nimidazole p-AO into the aromatic system of the heterocycle ring).
The bond lengths and angles at the Ti atom are close to those reported by Wang et al. (2009). The distance of the r.m.s. plane (PL1) of the Cp ring (C11–C15) to the Ti atom is 2.057 Å. The Ti atom only slightly deviates from the r.m.s. plane (PL2) of the imidazole C1/N1/C2/C3/N2 ring by 0.201 (5) Å, with the PL1–PL2 angle being 101.58 (14)°.
Analysis of the Cambridge Structural Database (version 5.27, release: May 2009) (Allen, 2002) reveals 16 structurally characterized Ti complexes of similar η5-CpTi-tris(sec-amido) types (22 independent fragments) (Rhodes et al., 2002; Li et al., 2003; Seo et al., 2001; Kunz et al., 2002; Carpenetti et al., 1996; Kunz et al., 2001; Bertolasi et al., 2007; Wu et al., 2006; Cano et al., 2005; Martin et al., 1994). Noteworthy, that except of η5-Cp*-Ti(NMe2)3 (Martin et al., 1994) all these complexes as in case of compound (I) contain, at least, one amido-functionality linked to the Cp-ring with a flexible bridge.