metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m549-m550

{2-[(η5-Cyclo­penta­dien­yl)di­phenyl­meth­yl]-1H-imidazolido-κN}bis­­(N,N-di­ethyl­amido)­titanium(IV)

aKey Laboratory of Synthetic and Natural Chemistry of the Ministry of Education, College of Chemistry and Material Science, The North-West University of Xi'an, Taibai Bei Avenue 229, Xi'an 710069, Shaanxi Province, People's Republic of China
*Correspondence e-mail: niewl126@126.com

(Received 23 March 2011; accepted 3 April 2011; online 7 April 2011)

The chemically achiral title mol­ecule, [Ti(C4H10N)2(C21H16N2)], crystallizes in the chiral space group P21. All three N atoms coordinating to the TiIV atom adopt planar environments [sums of valence angles = 359.5 (6), 360.0 (7) and 360.0 (6)°], which is indicative of pπdπ donation from all of these N atoms to the metal and, thus, of the formal 18 e nature of the complex. The overall coordination about the TiIV atom is distorted tetra­hedral, assuming the cyclo­penta­dienyl ring occupies one coordination site. The Ti—Nimidazole amide-type bond is longer by approximately 0.16 Å than the other two Ti—Namide bonds.

Related literature

For structural parameters of η5-CpTi-tris­(sec-amido)-type complexes, see: Rhodes et al. (2002[Rhodes, B., Chien, J. C. W., Wood, J. S., Chandrasekaran, A. & Rausch, M. D. (2002). Appl. Organomet. Chem. 16, 323-330.]); Li et al. (2003[Li, H., Li, L., Marks, T. J., Liable-Sands, L. & Rheingold, A. L. (2003). J. Am. Chem. Soc. 125, 10788-10789.]); Seo et al. (2001[Seo, W. S., Cho, Y. J., Yoon, S. C., Park, J. T. & Park, Y. (2001). J. Organomet. Chem. 640, 79-84.]); Kunz et al. (2001[Kunz, K., Erker, G., Doering, S., Froehlich, R. & Kehr, G. (2001). J. Am. Chem. Soc. 123, 6181-6182.], 2002[Kunz, K., Erker, G., Doering, S., Bredeau, S., Kehr, G. & Froehlich, R. (2002). Organometallics, 21, 1031-1041.]); Carpenetti et al. (1996[Carpenetti, D. W., Kloppenburg, L., Kupec, J. T. & Petersen, J. L. (1996). Organometallics, 15, 1572-1581.]); Bertolasi et al. (2007[Bertolasi, V., Boaretto, R., Chierotti, M. R., Gobetto, R. & Sostero, S. (2007). J. Chem. Soc. Dalton Trans. pp. 5179-5189.]); Wu et al. (2006[Wu, C. J., Lee, S. H., Yun, H. & Lee, B. Y. (2006). J. Organomet. Chem. 691, 5626-5634.]); Cano et al. (2005[Cano, J., Sudupe, M., Royo, P. & Mosquera, M. E. G. (2005). Organometallics, 24, 2424-2432.]); Martin et al. (1994[Martin, A., Mena, M., Yelamos, C., Serrano, R. & Raithby, P. R. (1994). J. Organomet. Chem. 467, 79-84.]). For two related TiIV complexes, see: Wang et al. (2009[Wang, X., Nie, W., Ge, F. & Borzov, M. V. (2009). Acta Cryst. C65, m255-m259.]). For the structural parameters of 1H-imidazol(in)-2-yl side-chain functionalized cyclo­penta­dienes and their Li, Ti, and Zr complexes, see: Krut'ko et al. (2006[Krut'ko, D. P., Borzov, M. V., Liao, L., Nie, W., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2006). Russ. Chem. Bull. 55, 1574-1580.]); Nie et al. (2008[Nie, W., Liao, L., Xu, W., Borzov, M. V., Krut'ko, D. P., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2008). J. Organomet. Chem. 693, 2355-2368.]); Sun et al. (2009[Sun, G., Tian, C., Nie, W. & Borzov, M. V. (2009). Acta Cryst. E65, m478.], 2010[Sun, Q., Nie, W. & Borzov, M. V. (2010). Acta Cryst. E66, o285-o286.]); Ge et al. (2010[Ge, F., Nie, W., Borzov, M. V. & Churakov, A. V. (2010). Acta Cryst. E66, m546-m547.]). For synthetic details, see: Curtis & Brown (1980[Curtis, N. J. & Brown, R. S. (1980). J. Org. Chem. 45, 4038-4040.]); Bürger & Dämmen (1974[Bürger, H. & Dämmen, U. (1974). Z. Anorg. Allg. Chem. 407, 201-210.]); Bradley & Thomas (1960[Bradley, D. C. & Thomas, I. M. (1960). J. Chem. Soc. pp. 3857-3861.]); Chajara & Ottosson (2004[Chajara, K. & Ottosson, H. (2004). Tetrahedron Lett. 45, 6741-6744.]); Armarego & Perrin (1997[Armarego, W. L. F. & Perrin, D. D. (1997). Purification of Laboratory Chemicals, 4th ed. Oxford: Pergamon.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti(C4H10N)2(C21H16N2)]

  • Mr = 488.52

  • Monoclinic, P 21

  • a = 8.6495 (6) Å

  • b = 17.9486 (12) Å

  • c = 9.1130 (6) Å

  • β = 110.603 (1)°

  • V = 1324.27 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 K

  • 0.35 × 0.23 × 0.08 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.888, Tmax = 0.973

  • 7145 measured reflections

  • 4906 independent reflections

  • 4031 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 0.99

  • 4906 reflections

  • 311 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2209 Friedel pairs

  • Flack parameter: 0.02 (3)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2.

Supporting information


Comment top

Cyclopentadienes (Cp-s) with pendant 1H-imidazol(in)-2-yl side-chain functional groups, their mono- and di-Li salts, and group 4 transition metal complexes of general type [η5-Cp-(C1 or C2)-imidazol(in)e)-κN]-MIVLn [M = Ti, Zr; Ln = Cl3, (NR2)2] have been described previously (Krut'ko et al., 2006; Nie et al., 2008; Sun et al., 2009; Wang et al., 2009; Ge et al., 2010; Sun et al., 2010). The present contribution reports the structural investigation of the closest analogue of two TiIV 18e- (η5-Cp)tris(sec-amido)- type complexes described recently by Wang et al. (2009).

The title complex, [Ti(C4H10N)2(C21H16N2)], (I), was prepared by treatment of 2-[(cyclopentadienyl)diphenylmethyl]-1H-imidazole, C21H18N2, (II), with Ti(NEt2)4 in toluene by an analogy to what described in Wang et al. (2009) (see Experimental for more details). Of interest, despite its molecule is chemically achiral, (I) crystallizes in the chiral space group P21. The TiIV is in a distorted tetrahedral environment (assuming the Cp-ring occupies one coordination site), with all three N-atoms coordinating to the Ti-centre adopting planar environments [valent angles sums 359.5 (6), 360.0 (7), and 360.0 (6)°, respectively] what is indicative of the pπdπ donation from all of these N-atoms to the metal and, thus, of the formal 18e- nature of the complex. The Ti—Nimidazole amido-type bond is approximately by 0.16 Å longer than the other two Ti—N amido-bonds, presumably due to the ridgid bridge constraint and/or certain electronic effects (e.g. involvment of the Nimidazole p-AO into the aromatic system of the heterocycle ring).

The bond lengths and angles at the Ti atom are close to those reported by Wang et al. (2009). The distance of the r.m.s. plane (PL1) of the Cp ring (C11–C15) to the Ti atom is 2.057 Å. The Ti atom only slightly deviates from the r.m.s. plane (PL2) of the imidazole C1/N1/C2/C3/N2 ring by 0.201 (5) Å, with the PL1–PL2 angle being 101.58 (14)°.

Analysis of the Cambridge Structural Database (version 5.27, release: May 2009) (Allen, 2002) reveals 16 structurally characterized Ti complexes of similar η5-CpTi-tris(sec-amido) types (22 independent fragments) (Rhodes et al., 2002; Li et al., 2003; Seo et al., 2001; Kunz et al., 2002; Carpenetti et al., 1996; Kunz et al., 2001; Bertolasi et al., 2007; Wu et al., 2006; Cano et al., 2005; Martin et al., 1994). Noteworthy, that except of η5-Cp*-Ti(NMe2)3 (Martin et al., 1994) all these complexes as in case of compound (I) contain, at least, one amido-functionality linked to the Cp-ring with a flexible bridge.

Related literature top

For structural parameters of η5-CpTi-tris(sec-amido)-type complexes, see: Rhodes et al. (2002); Li et al. (2003); Seo et al. (2001); Kunz et al. (2001, 2002); Carpenetti et al. (1996); Bertolasi et al. (2007); Wu et al. (2006); Cano et al. (2005); Martin et al. (1994). For two related TiIV complexes, see: Wang et al. (2009). For the structural parameters of 1H-imidazol(in)-2-yl side-chain functionalized cyclopentadienes and their Li, Ti, and Zr complexes, see: Krut'ko et al. (2006); Nie et al. (2008); Sun et al. (2009, 2010); Ge et al. (2010). For synthetic details, see: Curtis & Brown (1980); Bürger & Dämmen (1974); Bradley & Thomas (1960); Chajara & Ottosson (2004); Armarego & Perrin (1997). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

All operations were performed under Ar atmosphere in conventional glassware or in all-sealed evacuated glass vessels with application of a high-vacuum line (the residual pressure of non-condensable gases within 1.5–1.0×10 -3 Torr; 1 Torr = 133 Pa). 5-(Diphenylmethylidene)cyclopenta-1,3-diene (6,6-diphenylfulvene) was prepared as described by Chajara & Ottosson (2004). Ti(NEt2)4 was prepared as described earlier by Bürger & Dämmen (1974); Bradley & Thomas (1960). 1-Diethoxymethyl-1H-imidazole and its 2-lithiated derivative were prepared as described by Curtis & Brown (1980). All other chemicals were commercially available and purified by conventional methods (Armarego & Perrin, 1997). Solvents were purified by distillation over sodium benzophenoneketyl (diethyl ether, THF), Na—K alloy (toluene, hexane, benzene), and CaH2 (chloroform). The deuterated solvent (C6D6) was dried similarly. Compound (I) was prepared in a full analogy to what was described by Wang et al. (2009). The NMR spectra were recorded on a Varian INOVA-400 instrument. For 1H spectrum, the TMS (δH = 0.00 and δC = 0.0) resonance was used as an internal reference standard. 1H NMR (298 K, C6D6): δ = 0.70 (virt. t, an X-part of an ABX3 spin system, 12 H, 3JAX = 3JBX = 6.7 Hz, NCH2CH3), 3.12, 3.46 (both virt. dq, an AB-part of an ABX3 spin system, 4 H + 4H, 3JAX = 3JBX = 6.7 Hz, 2JAB = 14.0 Hz, NCH2CH3), 5.74 (unresolved m, 4 H, CH in Cp), 7.04, 7.15, 7.86 (all m, p-, m-, and o-CH in Ph, in respective order), 7.21, 7.55 (an AB spin system, 1 H + 1 H, 2JAB = 1.2 Hz, imidazole ring protons).

A crystal of (I) suitable for X-ray diffraction analysis was picked up from the isolated material and mounted inside a Lindemann glass capillary (diameter 0.5 mm; N2-filled glove-box).

Refinement top

H atoms were treated as riding atoms with distances C—H = 0.96 (CH3), 0.97 (CH2), 0.93 Å (CArH), and Uiso(H) = 1.5 Ueq(C), 1.2 Ueq(C), and 1.2 Ueq(C), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecule of compound (I) in the asymmetric unit with the labelling scheme. Displacement ellipsoids are shown at the 50% probability level. All H atoms have been omitted for clarity.
{2-[(η5-Cyclopentadienyl)diphenylmethyl]-1H-imidazolido- κN}bis(N,N-diethylamido)titanium(IV) top
Crystal data top
[Ti(C4H10N)2(C21H16N2)]F(000) = 520
Mr = 488.52Dx = 1.225 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5258 reflections
a = 8.6495 (6) Åθ = 2.6–28.2°
b = 17.9486 (12) ŵ = 0.35 mm1
c = 9.1130 (6) ÅT = 296 K
β = 110.603 (1)°Block, brown
V = 1324.27 (15) Å30.35 × 0.23 × 0.08 mm
Z = 2
Data collection top
Bruker SMART APEXII
diffractometer
4906 independent reflections
Radiation source: fine-focus sealed tube4031 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.333 pixels mm-1θmax = 26.0°, θmin = 2.3°
ϕ and ω scansh = 810
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2222
Tmin = 0.888, Tmax = 0.973l = 119
7145 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0594P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
4906 reflectionsΔρmax = 0.21 e Å3
311 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 2209 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
[Ti(C4H10N)2(C21H16N2)]V = 1324.27 (15) Å3
Mr = 488.52Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.6495 (6) ŵ = 0.35 mm1
b = 17.9486 (12) ÅT = 296 K
c = 9.1130 (6) Å0.35 × 0.23 × 0.08 mm
β = 110.603 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
4906 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4031 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.973Rint = 0.022
7145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.102Δρmax = 0.21 e Å3
S = 0.99Δρmin = 0.21 e Å3
4906 reflectionsAbsolute structure: Flack (1983), 2209 Friedel pairs
311 parametersAbsolute structure parameter: 0.02 (3)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.80413 (5)0.23594 (2)0.88291 (5)0.03379 (13)
N10.5871 (3)0.24357 (15)0.9268 (3)0.0402 (5)
N20.3929 (3)0.21126 (16)1.0254 (4)0.0546 (8)
N30.7642 (3)0.23863 (19)0.6661 (3)0.0484 (5)
N40.8943 (3)0.33169 (14)0.9552 (3)0.0423 (6)
C10.5246 (3)0.19024 (16)0.9950 (4)0.0371 (6)
C20.4852 (4)0.30452 (18)0.9156 (4)0.0514 (9)
H20.49470.35110.87470.062*
C30.3696 (5)0.2835 (2)0.9755 (5)0.0592 (10)
H30.28540.31400.98180.071*
C40.5952 (3)0.11126 (15)1.0097 (3)0.0347 (6)
C110.7649 (3)0.12130 (15)0.9937 (3)0.0354 (6)
C120.8975 (3)0.15962 (18)1.1051 (4)0.0433 (7)
H120.89770.17791.20070.052*
C131.0270 (4)0.1656 (2)1.0498 (4)0.0547 (9)
H131.12820.18851.10080.066*
C140.9777 (4)0.13112 (19)0.9038 (5)0.0572 (10)
H141.04070.12740.83990.069*
C150.8150 (4)0.10237 (16)0.8682 (4)0.0455 (8)
H150.75370.07610.77870.055*
C210.6162 (3)0.07332 (17)1.1669 (3)0.0390 (7)
C220.7484 (4)0.0259 (2)1.2372 (4)0.0585 (9)
H220.82850.01991.19180.070*
C230.7638 (6)0.0125 (3)1.3726 (5)0.0729 (13)
H230.85110.04551.41500.087*
C240.6505 (5)0.0021 (2)1.4449 (4)0.0674 (11)
H240.66260.02661.53820.081*
C250.5211 (5)0.0442 (2)1.3793 (4)0.0667 (11)
H250.44360.05101.42750.080*
C260.5025 (4)0.0819 (2)1.2406 (4)0.0519 (8)
H260.41230.11321.19690.062*
C310.4818 (3)0.06271 (16)0.8743 (3)0.0371 (6)
C320.5116 (4)0.01293 (19)0.8684 (4)0.0516 (8)
H320.60110.03420.94660.062*
C330.4118 (5)0.0571 (2)0.7495 (4)0.0639 (10)
H330.43400.10780.74850.077*
C340.2792 (5)0.0267 (2)0.6321 (5)0.0609 (11)
H340.21160.05650.55140.073*
C350.2480 (5)0.0478 (2)0.6356 (4)0.0611 (9)
H350.15840.06880.55700.073*
C360.3485 (4)0.09227 (19)0.7552 (4)0.0492 (8)
H360.32590.14290.75550.059*
C410.8291 (5)0.2021 (2)0.5546 (5)0.0678 (10)
H41A0.74390.20140.45140.081*
H41B0.85780.15090.58700.081*
C420.9794 (5)0.2417 (4)0.5458 (5)0.0835 (12)
H42A1.02550.21340.48180.125*
H42B1.06000.24670.64930.125*
H42C0.94820.29020.50060.125*
C430.6389 (5)0.2954 (2)0.5932 (5)0.0649 (10)
H43A0.67860.32700.52760.078*
H43B0.62530.32640.67490.078*
C440.4723 (6)0.2641 (3)0.4946 (6)0.0979 (16)
H44A0.48420.23350.41280.147*
H44B0.39770.30430.44900.147*
H44C0.42930.23470.55940.147*
C510.9457 (4)0.38919 (18)0.8705 (4)0.0523 (8)
H51A0.93700.36960.76860.063*
H51B1.06120.40040.92680.063*
C520.8487 (5)0.4608 (2)0.8464 (6)0.0828 (13)
H52A0.88700.49450.78480.124*
H52B0.86370.48300.94630.124*
H52C0.73360.45040.79270.124*
C530.9123 (5)0.3530 (2)1.1150 (5)0.0635 (10)
H53A0.86730.31341.16050.076*
H53B0.84630.39731.11030.076*
C541.0848 (7)0.3683 (4)1.2218 (6)0.1085 (19)
H54A1.12610.41161.18580.163*
H54B1.15350.32631.22230.163*
H54C1.08560.37701.32610.163*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0344 (2)0.0293 (2)0.0416 (2)0.0000 (2)0.01819 (18)0.0026 (3)
N10.0359 (10)0.0304 (13)0.0572 (14)0.0000 (12)0.0199 (10)0.0029 (14)
N20.0435 (14)0.0494 (18)0.084 (2)0.0053 (11)0.0391 (15)0.0057 (14)
N30.0594 (13)0.0446 (14)0.0430 (12)0.0077 (17)0.0203 (10)0.0006 (16)
N40.0415 (14)0.0349 (14)0.0521 (16)0.0049 (11)0.0186 (13)0.0021 (12)
C10.0321 (14)0.0349 (17)0.0459 (17)0.0004 (12)0.0156 (13)0.0050 (13)
C20.0457 (18)0.0329 (18)0.077 (3)0.0088 (14)0.0237 (18)0.0003 (16)
C30.0466 (19)0.047 (2)0.092 (3)0.0143 (16)0.035 (2)0.0057 (19)
C40.0321 (14)0.0338 (15)0.0425 (16)0.0008 (11)0.0186 (12)0.0008 (12)
C110.0349 (14)0.0314 (15)0.0456 (17)0.0049 (11)0.0212 (13)0.0080 (12)
C120.0340 (15)0.0463 (18)0.0485 (17)0.0035 (14)0.0133 (13)0.0138 (15)
C130.0332 (15)0.054 (2)0.078 (2)0.0061 (15)0.0215 (16)0.024 (2)
C140.0511 (19)0.045 (2)0.095 (3)0.0150 (16)0.050 (2)0.0195 (19)
C150.0584 (19)0.0292 (16)0.065 (2)0.0063 (14)0.0414 (17)0.0053 (14)
C210.0392 (15)0.0381 (16)0.0440 (17)0.0108 (13)0.0199 (13)0.0018 (13)
C220.060 (2)0.061 (2)0.065 (2)0.0084 (18)0.0344 (19)0.0193 (18)
C230.071 (3)0.078 (3)0.067 (3)0.002 (2)0.022 (2)0.033 (2)
C240.078 (3)0.075 (3)0.049 (2)0.017 (2)0.022 (2)0.0128 (19)
C250.074 (3)0.083 (3)0.059 (2)0.024 (2)0.042 (2)0.005 (2)
C260.0480 (18)0.064 (2)0.0507 (19)0.0111 (16)0.0264 (16)0.0032 (16)
C310.0409 (15)0.0345 (16)0.0434 (16)0.0025 (12)0.0242 (13)0.0002 (12)
C320.063 (2)0.0382 (18)0.053 (2)0.0042 (15)0.0196 (17)0.0009 (15)
C330.085 (3)0.043 (2)0.063 (2)0.0104 (19)0.025 (2)0.0089 (18)
C340.062 (2)0.065 (3)0.057 (2)0.018 (2)0.023 (2)0.019 (2)
C350.0541 (19)0.066 (3)0.057 (2)0.0007 (18)0.0109 (17)0.0064 (19)
C360.0462 (17)0.0469 (19)0.0514 (19)0.0036 (15)0.0131 (15)0.0002 (16)
C410.085 (3)0.070 (2)0.054 (2)0.007 (2)0.032 (2)0.0125 (18)
C420.093 (3)0.101 (3)0.077 (2)0.017 (3)0.055 (2)0.005 (3)
C430.078 (2)0.052 (2)0.058 (2)0.0039 (19)0.0161 (19)0.0087 (18)
C440.074 (3)0.113 (4)0.081 (3)0.001 (3)0.005 (2)0.008 (3)
C510.0487 (18)0.0391 (18)0.066 (2)0.0058 (15)0.0161 (17)0.0060 (16)
C520.074 (3)0.045 (2)0.118 (4)0.005 (2)0.019 (3)0.016 (2)
C530.071 (3)0.060 (2)0.065 (2)0.016 (2)0.030 (2)0.014 (2)
C540.093 (4)0.151 (6)0.067 (3)0.030 (3)0.009 (3)0.030 (3)
Geometric parameters (Å, º) top
Ti1—N31.883 (2)C24—H240.9300
Ti1—N41.906 (2)C25—C261.392 (5)
Ti1—N12.057 (2)C25—H250.9300
Ti1—C122.341 (3)C26—H260.9300
Ti1—C132.358 (3)C31—C361.381 (4)
Ti1—C112.368 (3)C31—C321.386 (4)
Ti1—C142.372 (3)C32—C331.375 (5)
Ti1—C152.405 (3)C32—H320.9300
N1—C11.353 (4)C33—C341.377 (6)
N1—C21.386 (4)C33—H330.9300
N2—C11.318 (4)C34—C351.368 (5)
N2—C31.365 (5)C34—H340.9300
N3—C431.465 (5)C35—C361.383 (5)
N3—C411.476 (4)C35—H350.9300
N4—C511.450 (4)C36—H360.9300
N4—C531.460 (5)C41—C421.508 (6)
C1—C41.531 (4)C41—H41A0.9700
C2—C31.351 (5)C41—H41B0.9700
C2—H20.9300C42—H42A0.9600
C3—H30.9300C42—H42B0.9600
C4—C111.536 (4)C42—H42C0.9600
C4—C211.539 (4)C43—C441.512 (6)
C4—C311.547 (4)C43—H43A0.9700
C11—C151.399 (4)C43—H43B0.9700
C11—C121.414 (4)C44—H44A0.9600
C12—C131.385 (4)C44—H44B0.9600
C12—H120.9300C44—H44C0.9600
C13—C141.391 (5)C51—C521.508 (5)
C13—H130.9300C51—H51A0.9700
C14—C151.425 (5)C51—H51B0.9700
C14—H140.9300C52—H52A0.9600
C15—H150.9300C52—H52B0.9600
C21—C261.380 (4)C52—H52C0.9600
C21—C221.388 (5)C53—C541.492 (6)
C22—C231.378 (5)C53—H53A0.9700
C22—H220.9300C53—H53B0.9700
C23—C241.373 (6)C54—H54A0.9600
C23—H230.9300C54—H54B0.9600
C24—C251.353 (6)C54—H54C0.9600
N3—Ti1—N4103.96 (13)C26—C21—C4122.2 (3)
N3—Ti1—N1111.06 (10)C22—C21—C4120.6 (3)
N4—Ti1—N199.38 (10)C23—C22—C21121.6 (3)
N3—Ti1—C12143.42 (14)C23—C22—H22119.2
N4—Ti1—C12104.71 (12)C21—C22—H22119.2
N1—Ti1—C1286.06 (10)C24—C23—C22120.1 (4)
N3—Ti1—C13119.81 (13)C24—C23—H23119.9
N4—Ti1—C1396.74 (13)C22—C23—H23119.9
N1—Ti1—C13120.34 (11)C25—C24—C23119.3 (4)
C12—Ti1—C1334.29 (11)C25—C24—H24120.3
N3—Ti1—C11117.95 (13)C23—C24—H24120.3
N4—Ti1—C11137.59 (11)C24—C25—C26120.9 (4)
N1—Ti1—C1172.40 (10)C24—C25—H25119.5
C12—Ti1—C1134.94 (11)C26—C25—H25119.5
C13—Ti1—C1157.80 (10)C21—C26—C25120.8 (4)
N3—Ti1—C1488.97 (14)C21—C26—H26119.6
N4—Ti1—C14121.12 (12)C25—C26—H26119.6
N1—Ti1—C14129.20 (11)C36—C31—C32117.4 (3)
C12—Ti1—C1456.66 (13)C36—C31—C4122.0 (3)
C13—Ti1—C1434.21 (13)C32—C31—C4120.5 (3)
C11—Ti1—C1457.19 (10)C33—C32—C31121.5 (3)
N3—Ti1—C1587.91 (13)C33—C32—H32119.3
N4—Ti1—C15153.99 (12)C31—C32—H32119.3
N1—Ti1—C1597.66 (10)C32—C33—C34120.3 (4)
C12—Ti1—C1557.06 (12)C32—C33—H33119.9
C13—Ti1—C1557.54 (13)C34—C33—H33119.9
C11—Ti1—C1534.08 (9)C35—C34—C33119.1 (4)
C14—Ti1—C1534.70 (11)C35—C34—H34120.4
C1—N1—C2104.2 (2)C33—C34—H34120.4
C1—N1—Ti1125.6 (2)C34—C35—C36120.5 (4)
C2—N1—Ti1129.7 (2)C34—C35—H35119.7
C1—N2—C3103.8 (3)C36—C35—H35119.7
C43—N3—C41113.4 (3)C31—C36—C35121.1 (3)
C43—N3—Ti1109.1 (2)C31—C36—H36119.4
C41—N3—Ti1137.5 (3)C35—C36—H36119.4
C51—N4—C53113.6 (3)N3—C41—C42111.8 (3)
C51—N4—Ti1128.5 (2)N3—C41—H41A109.3
C53—N4—Ti1117.9 (2)C42—C41—H41A109.3
N2—C1—N1114.1 (3)N3—C41—H41B109.3
N2—C1—C4126.5 (3)C42—C41—H41B109.3
N1—C1—C4118.9 (2)H41A—C41—H41B107.9
C3—C2—N1106.9 (3)C41—C42—H42A109.5
C3—C2—H2126.5C41—C42—H42B109.5
N1—C2—H2126.5H42A—C42—H42B109.5
C2—C3—N2110.9 (3)C41—C42—H42C109.5
C2—C3—H3124.6H42A—C42—H42C109.5
N2—C3—H3124.6H42B—C42—H42C109.5
C1—C4—C11104.4 (2)N3—C43—C44114.1 (4)
C1—C4—C21113.8 (2)N3—C43—H43A108.7
C11—C4—C21109.7 (2)C44—C43—H43A108.7
C1—C4—C31109.3 (2)N3—C43—H43B108.7
C11—C4—C31110.5 (2)C44—C43—H43B108.7
C21—C4—C31109.1 (2)H43A—C43—H43B107.6
C15—C11—C12107.4 (3)C43—C44—H44A109.5
C15—C11—C4129.0 (3)C43—C44—H44B109.5
C12—C11—C4123.3 (3)H44A—C44—H44B109.5
C15—C11—Ti174.39 (16)C43—C44—H44C109.5
C12—C11—Ti171.46 (16)H44A—C44—H44C109.5
C4—C11—Ti1115.30 (17)H44B—C44—H44C109.5
C13—C12—C11109.4 (3)N4—C51—C52115.1 (3)
C13—C12—Ti173.52 (18)N4—C51—H51A108.5
C11—C12—Ti173.60 (16)C52—C51—H51A108.5
C13—C12—H12125.3N4—C51—H51B108.5
C11—C12—H12125.3C52—C51—H51B108.5
Ti1—C12—H12119.3H51A—C51—H51B107.5
C12—C13—C14107.3 (3)C51—C52—H52A109.5
C12—C13—Ti172.19 (17)C51—C52—H52B109.5
C14—C13—Ti173.47 (18)H52A—C52—H52B109.5
C12—C13—H13126.3C51—C52—H52C109.5
C14—C13—H13126.3H52A—C52—H52C109.5
Ti1—C13—H13119.9H52B—C52—H52C109.5
C13—C14—C15109.0 (3)N4—C53—C54115.5 (4)
C13—C14—Ti172.32 (19)N4—C53—H53A108.4
C15—C14—Ti173.90 (17)C54—C53—H53A108.4
C13—C14—H14125.5N4—C53—H53B108.4
C15—C14—H14125.5C54—C53—H53B108.4
Ti1—C14—H14120.0H53A—C53—H53B107.5
C11—C15—C14106.9 (3)C53—C54—H54A109.5
C11—C15—Ti171.53 (16)C53—C54—H54B109.5
C14—C15—Ti171.40 (18)H54A—C54—H54B109.5
C11—C15—H15126.6C53—C54—H54C109.5
C14—C15—H15126.6H54A—C54—H54C109.5
Ti1—C15—H15122.3H54B—C54—H54C109.5
C26—C21—C22117.2 (3)
N3—Ti1—N1—C1116.2 (3)C14—Ti1—C12—C1337.6 (2)
N4—Ti1—N1—C1134.7 (2)C15—Ti1—C12—C1379.3 (2)
C12—Ti1—N1—C130.5 (3)N3—Ti1—C12—C1156.3 (2)
C13—Ti1—N1—C131.2 (3)N4—Ti1—C12—C11163.17 (17)
C11—Ti1—N1—C12.4 (2)N1—Ti1—C12—C1164.50 (17)
C14—Ti1—N1—C19.4 (3)C13—Ti1—C12—C11116.6 (3)
C15—Ti1—N1—C125.5 (3)C14—Ti1—C12—C1179.0 (2)
N3—Ti1—N1—C273.5 (3)C15—Ti1—C12—C1137.26 (16)
N4—Ti1—N1—C235.5 (3)C11—C12—C13—C140.2 (4)
C12—Ti1—N1—C2139.8 (3)Ti1—C12—C13—C1465.6 (2)
C13—Ti1—N1—C2139.1 (3)C11—C12—C13—Ti165.4 (2)
C11—Ti1—N1—C2172.6 (3)N3—Ti1—C13—C12143.4 (2)
C14—Ti1—N1—C2179.7 (3)N4—Ti1—C13—C12106.3 (2)
C15—Ti1—N1—C2164.2 (3)N1—Ti1—C13—C121.3 (3)
N4—Ti1—N3—C4364.0 (2)C11—Ti1—C13—C1237.2 (2)
N1—Ti1—N3—C4342.0 (3)C14—Ti1—C13—C12115.0 (3)
C12—Ti1—N3—C43155.3 (2)C15—Ti1—C13—C1277.8 (2)
C13—Ti1—N3—C43170.4 (2)N3—Ti1—C13—C1428.4 (2)
C11—Ti1—N3—C43122.6 (2)N4—Ti1—C13—C14138.76 (19)
C14—Ti1—N3—C43174.1 (3)N1—Ti1—C13—C14116.21 (19)
C15—Ti1—N3—C43139.4 (2)C12—Ti1—C13—C14115.0 (3)
N4—Ti1—N3—C41112.6 (4)C11—Ti1—C13—C1477.7 (2)
N1—Ti1—N3—C41141.4 (3)C15—Ti1—C13—C1437.12 (18)
C12—Ti1—N3—C4128.1 (4)C12—C13—C14—C150.6 (4)
C13—Ti1—N3—C416.2 (4)Ti1—C13—C14—C1565.3 (2)
C11—Ti1—N3—C4160.8 (4)C12—C13—C14—Ti164.7 (2)
C14—Ti1—N3—C419.3 (4)N3—Ti1—C14—C13155.6 (2)
C15—Ti1—N3—C4144.0 (4)N4—Ti1—C14—C1349.9 (2)
N3—Ti1—N4—C519.0 (3)N1—Ti1—C14—C1387.7 (2)
N1—Ti1—N4—C51123.6 (3)C12—Ti1—C14—C1337.70 (19)
C12—Ti1—N4—C51148.1 (3)C11—Ti1—C14—C1379.7 (2)
C13—Ti1—N4—C51114.1 (3)C15—Ti1—C14—C13116.6 (3)
C11—Ti1—N4—C51162.3 (2)N3—Ti1—C14—C1587.8 (2)
C14—Ti1—N4—C5188.4 (3)N4—Ti1—C14—C15166.45 (19)
C15—Ti1—N4—C51106.1 (3)N1—Ti1—C14—C1528.9 (3)
N3—Ti1—N4—C53169.3 (3)C12—Ti1—C14—C1578.9 (2)
N1—Ti1—N4—C5354.7 (3)C13—Ti1—C14—C15116.6 (3)
C12—Ti1—N4—C5333.6 (3)C11—Ti1—C14—C1536.88 (18)
C13—Ti1—N4—C5367.6 (3)C12—C11—C15—C141.2 (3)
C11—Ti1—N4—C5319.4 (3)C4—C11—C15—C14173.2 (3)
C14—Ti1—N4—C5393.3 (3)Ti1—C11—C15—C1463.1 (2)
C15—Ti1—N4—C5375.6 (3)C12—C11—C15—Ti164.3 (2)
C3—N2—C1—N10.9 (4)C4—C11—C15—Ti1110.2 (3)
C3—N2—C1—C4172.4 (3)C13—C14—C15—C111.2 (4)
C2—N1—C1—N21.0 (4)Ti1—C14—C15—C1163.2 (2)
Ti1—N1—C1—N2173.3 (2)C13—C14—C15—Ti164.3 (2)
C2—N1—C1—C4173.2 (2)N3—Ti1—C15—C11152.97 (19)
Ti1—N1—C1—C414.5 (4)N4—Ti1—C15—C1188.6 (3)
C1—N1—C2—C30.6 (4)N1—Ti1—C15—C1142.0 (2)
Ti1—N1—C2—C3172.5 (2)C12—Ti1—C15—C1138.23 (17)
N1—C2—C3—N20.2 (5)C13—Ti1—C15—C1179.2 (2)
C1—N2—C3—C20.4 (4)C14—Ti1—C15—C11115.8 (3)
N2—C1—C4—C11168.7 (3)N3—Ti1—C15—C1491.2 (2)
N1—C1—C4—C1120.1 (3)N4—Ti1—C15—C1427.2 (4)
N2—C1—C4—C2149.1 (4)N1—Ti1—C15—C14157.8 (2)
N1—C1—C4—C21139.7 (3)C12—Ti1—C15—C1477.6 (2)
N2—C1—C4—C3173.1 (4)C13—Ti1—C15—C1436.6 (2)
N1—C1—C4—C3198.1 (3)C11—Ti1—C15—C14115.8 (3)
C1—C4—C11—C15107.5 (3)C1—C4—C21—C2638.4 (4)
C21—C4—C11—C15130.2 (3)C11—C4—C21—C26154.9 (3)
C31—C4—C11—C159.9 (4)C31—C4—C21—C2684.0 (3)
C1—C4—C11—C1266.2 (3)C1—C4—C21—C22144.5 (3)
C21—C4—C11—C1256.1 (3)C11—C4—C21—C2228.0 (4)
C31—C4—C11—C12176.4 (3)C31—C4—C21—C2293.1 (3)
C1—C4—C11—Ti117.5 (3)C26—C21—C22—C231.5 (6)
C21—C4—C11—Ti1139.78 (19)C4—C21—C22—C23175.7 (4)
C31—C4—C11—Ti199.9 (2)C21—C22—C23—C242.6 (7)
N3—Ti1—C11—C1530.9 (2)C22—C23—C24—C252.1 (7)
N4—Ti1—C11—C15139.5 (2)C23—C24—C25—C260.7 (6)
N1—Ti1—C11—C15135.9 (2)C22—C21—C26—C250.0 (5)
C12—Ti1—C11—C15114.9 (3)C4—C21—C26—C25177.1 (3)
C13—Ti1—C11—C1578.4 (2)C24—C25—C26—C210.4 (6)
C14—Ti1—C11—C1537.6 (2)C1—C4—C31—C365.5 (4)
N3—Ti1—C11—C12145.87 (18)C11—C4—C31—C36108.9 (3)
N4—Ti1—C11—C1224.5 (2)C21—C4—C31—C36130.5 (3)
N1—Ti1—C11—C12109.15 (18)C1—C4—C31—C32174.7 (3)
C13—Ti1—C11—C1236.54 (19)C11—C4—C31—C3271.0 (3)
C14—Ti1—C11—C1277.4 (2)C21—C4—C31—C3249.7 (3)
C15—Ti1—C11—C12114.9 (3)C36—C31—C32—C330.5 (5)
N3—Ti1—C11—C495.3 (2)C4—C31—C32—C33179.6 (3)
N4—Ti1—C11—C494.3 (2)C31—C32—C33—C340.4 (6)
N1—Ti1—C11—C49.69 (19)C32—C33—C34—C350.2 (6)
C12—Ti1—C11—C4118.8 (3)C33—C34—C35—C360.2 (6)
C13—Ti1—C11—C4155.4 (3)C32—C31—C36—C350.5 (5)
C14—Ti1—C11—C4163.8 (3)C4—C31—C36—C35179.6 (3)
C15—Ti1—C11—C4126.2 (3)C34—C35—C36—C310.4 (6)
C15—C11—C12—C130.9 (3)C43—N3—C41—C4291.0 (4)
C4—C11—C12—C13174.0 (3)Ti1—N3—C41—C4285.5 (5)
Ti1—C11—C12—C1365.4 (2)C41—N3—C43—C4474.6 (4)
C15—C11—C12—Ti166.3 (2)Ti1—N3—C43—C44107.9 (4)
C4—C11—C12—Ti1108.6 (2)C53—N4—C51—C5262.0 (4)
N3—Ti1—C12—C1360.3 (3)Ti1—N4—C51—C52116.3 (3)
N4—Ti1—C12—C1380.2 (2)C51—N4—C53—C5462.7 (5)
N1—Ti1—C12—C13178.9 (2)Ti1—N4—C53—C54118.7 (4)
C11—Ti1—C12—C13116.6 (3)

Experimental details

Crystal data
Chemical formula[Ti(C4H10N)2(C21H16N2)]
Mr488.52
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)8.6495 (6), 17.9486 (12), 9.1130 (6)
β (°) 110.603 (1)
V3)1324.27 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.35 × 0.23 × 0.08
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.888, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
7145, 4906, 4031
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 0.99
No. of reflections4906
No. of parameters311
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21
Absolute structureFlack (1983), 2209 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

 

Footnotes

Part of the Masters degree thesis, The North-West University, Xi'an 2011 People's Republic of China.

Acknowledgements

Financial support from the National Natural Science Foundation of China (project Nos. 20702041 and 21072157) and the Shaanxi Province Administration of Foreign Experts Bureau Foundation (grant No. 20106100079) is gratefully acknowledged. The authors are grateful to Mr Wang Minchang and Mr Su Pengfei (Xi'an Modern Chemistry Research Institute) for their help in carrying out the NMR spectroscopy and X-ray diffraction experiments.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArmarego, W. L. F. & Perrin, D. D. (1997). Purification of Laboratory Chemicals, 4th ed. Oxford: Pergamon.  Google Scholar
First citationBertolasi, V., Boaretto, R., Chierotti, M. R., Gobetto, R. & Sostero, S. (2007). J. Chem. Soc. Dalton Trans. pp. 5179–5189.  CSD CrossRef Google Scholar
First citationBradley, D. C. & Thomas, I. M. (1960). J. Chem. Soc. pp. 3857–3861.  CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBürger, H. & Dämmen, U. (1974). Z. Anorg. Allg. Chem. 407, 201–210.  Google Scholar
First citationCano, J., Sudupe, M., Royo, P. & Mosquera, M. E. G. (2005). Organometallics, 24, 2424–2432.  Web of Science CSD CrossRef CAS Google Scholar
First citationCarpenetti, D. W., Kloppenburg, L., Kupec, J. T. & Petersen, J. L. (1996). Organometallics, 15, 1572–1581.  CSD CrossRef CAS Web of Science Google Scholar
First citationChajara, K. & Ottosson, H. (2004). Tetrahedron Lett. 45, 6741–6744.  CrossRef CAS Google Scholar
First citationCurtis, N. J. & Brown, R. S. (1980). J. Org. Chem. 45, 4038–4040.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGe, F., Nie, W., Borzov, M. V. & Churakov, A. V. (2010). Acta Cryst. E66, m546–m547.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrut'ko, D. P., Borzov, M. V., Liao, L., Nie, W., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2006). Russ. Chem. Bull. 55, 1574–1580.  CAS Google Scholar
First citationKunz, K., Erker, G., Doering, S., Bredeau, S., Kehr, G. & Froehlich, R. (2002). Organometallics, 21, 1031–1041.  Web of Science CSD CrossRef CAS Google Scholar
First citationKunz, K., Erker, G., Doering, S., Froehlich, R. & Kehr, G. (2001). J. Am. Chem. Soc. 123, 6181–6182.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, H., Li, L., Marks, T. J., Liable-Sands, L. & Rheingold, A. L. (2003). J. Am. Chem. Soc. 125, 10788–10789.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMartin, A., Mena, M., Yelamos, C., Serrano, R. & Raithby, P. R. (1994). J. Organomet. Chem. 467, 79–84.  CSD CrossRef CAS Web of Science Google Scholar
First citationNie, W., Liao, L., Xu, W., Borzov, M. V., Krut'ko, D. P., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2008). J. Organomet. Chem. 693, 2355–2368.  Web of Science CrossRef CAS Google Scholar
First citationRhodes, B., Chien, J. C. W., Wood, J. S., Chandrasekaran, A. & Rausch, M. D. (2002). Appl. Organomet. Chem. 16, 323–330.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeo, W. S., Cho, Y. J., Yoon, S. C., Park, J. T. & Park, Y. (2001). J. Organomet. Chem. 640, 79–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Q., Nie, W. & Borzov, M. V. (2010). Acta Cryst. E66, o285–o286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, G., Tian, C., Nie, W. & Borzov, M. V. (2009). Acta Cryst. E65, m478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, X., Nie, W., Ge, F. & Borzov, M. V. (2009). Acta Cryst. C65, m255–m259.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, C. J., Lee, S. H., Yun, H. & Lee, B. Y. (2006). J. Organomet. Chem. 691, 5626–5634.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m549-m550
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds