inorganic compounds
Diammonium tricadmium tris(sulfate) dihydroxide dihydrate
aDepartment of Chemistry, East China University of Science and Technology, School of Chemistry and Molecular Engineering, Mei Long Road 130, Shanghai 200237, People's Republic of China
*Correspondence e-mail: yoshikiyin@ecust.edu.cn
The title compound, (NH4)2Cd3(SO4)3(OH)2(H2O)2, has been obtained serendipitously. It is isotypic with the heavier alkali analogues M2Cd3(SO4)3(OH)2(H2O)2 (M = K, Rb, Cs). The structure contains two Cd2+ ions, one in a general position and one with m. The former Cd2+ ion is coordinated by three O atoms of three SO4 groups, two hydroxide O atoms and one water O atom, the latter Cd2+ ion by four O atoms of four SO4 groups and two hydroxide O atoms, both in a distorted octahedral coordination geometry. This arrangement leads to the formation of a layered framework extending parallel to (100), with the ammonium cations situated in the voids. O—H⋯O hydrogen bonds involving the water molecules, hydroxide groups and sulfate O atoms, as well as N—H⋯O hydrogen bonds between ammonium cations and sulfate O atoms consolidate the crystal packing.
Related literature
For the isotypic K and Cs analogues, see: Louer & Louer (1982), and for the Rb analogue, see: Swain & Guru Row (2006).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2001); cell SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2006) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811012979/wm2470sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811012979/wm2470Isup2.hkl
All reagents were obtained from commercial sources and used without further purification. A mixture of CdSO4.8/3H2O (0.2565 g, 1.0 mmol), 1H-benzimidazole-5,6-dicarboxylate (0.1236 g,0.6 mmol), CH3CN (6 ml) and 4 ml water were added to a 23 ml Teflon-lined stainless container, which was heated to 423 K and held at that temperature for 5 days. After cooling to room temperature in 24 h, colourless crystals were recovered by filtration (yield 49% based on CdSO4.8/3H2O).
The H atoms were localized from a difference Fourier map. Their coordinates were refined independently with O—H distances restrained to 0.85 (2) Å and the H—H = 1.30 (2)Å for the water H atoms. The isotropic temperature parameters of the H atoms were refined with 1.2Ueq of the parent atom. H atoms of the ammonium cation were placed in calculated positions, with N—H = 0.90Å, Uiso(H) = 1.2 Ueq(N). The deepest hole in the final Fourier map is 0.8 Å from Cd2.
Data collection: SMART (Bruker, 2001); cell
SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The asymmetric unit of (I), with displacement parameters shown at the 30% probability level. | |
Fig. 2. View of the two-dimensional network structure of (I) parallel to (100) in the polyhedral representation. | |
Fig. 3. Three-dimensional supramolecular structure of (I), built up through hydrogen bonding. NH4+ ions have been omitted for clarity. |
Cd3H6O16S3·2NH4 | F(000) = 1392 |
Mr = 731.51 | Dx = 3.240 Mg m−3 |
Orthorhombic, Cmc21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2c -2 | Cell parameters from 12815 reflections |
a = 18.906 (3) Å | θ = 1.7–27.5° |
b = 7.9483 (11) Å | µ = 4.72 mm−1 |
c = 9.9809 (13) Å | T = 296 K |
V = 1499.8 (4) Å3 | Block, colourless |
Z = 4 | 0.12 × 0.10 × 0.08 mm |
Bruker SMART CCD diffractometer | 1770 independent reflections |
Radiation source: fine-focus sealed tube | 1739 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
ϕ and ω–scans | θmax = 27.5°, θmin = 3.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −24→24 |
Tmin = 0.601, Tmax = 0.704 | k = −10→10 |
7060 measured reflections | l = −12→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.066 | w = 1/[σ2(Fo2) + (0.0328P)2 + 1.1583P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
1770 reflections | Δρmax = 0.68 e Å−3 |
118 parameters | Δρmin = −1.31 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 825 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.07 (4) |
Cd3H6O16S3·2NH4 | V = 1499.8 (4) Å3 |
Mr = 731.51 | Z = 4 |
Orthorhombic, Cmc21 | Mo Kα radiation |
a = 18.906 (3) Å | µ = 4.72 mm−1 |
b = 7.9483 (11) Å | T = 296 K |
c = 9.9809 (13) Å | 0.12 × 0.10 × 0.08 mm |
Bruker SMART CCD diffractometer | 1770 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1739 reflections with I > 2σ(I) |
Tmin = 0.601, Tmax = 0.704 | Rint = 0.051 |
7060 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.066 | Δρmax = 0.68 e Å−3 |
S = 1.08 | Δρmin = −1.31 e Å−3 |
1770 reflections | Absolute structure: Flack (1983), 825 Friedel pairs |
118 parameters | Absolute structure parameter: −0.07 (4) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.588435 (18) | 0.46065 (4) | 0.29502 (5) | 0.01981 (11) | |
Cd2 | 0.5000 | 0.19102 (5) | 0.58110 (4) | 0.01744 (12) | |
S1 | 0.67635 (6) | 0.30002 (13) | 0.57340 (14) | 0.0184 (2) | |
S2 | 0.5000 | 0.8103 (2) | 0.41513 (16) | 0.0192 (4) | |
O1 | 0.6589 (3) | 0.4252 (6) | 0.4718 (4) | 0.0387 (11) | |
O2 | 0.6223 (2) | 0.1661 (4) | 0.5730 (5) | 0.0299 (8) | |
O3 | 0.7446 (2) | 0.2229 (5) | 0.5454 (5) | 0.0357 (11) | |
O4 | 0.6794 (2) | 0.3814 (5) | 0.7053 (4) | 0.0299 (9) | |
O5 | 0.5621 (3) | 0.7036 (8) | 0.4165 (6) | 0.0583 (18) | |
O6 | 0.5000 | 0.9205 (6) | 0.3000 (7) | 0.0500 (19) | |
O7 | 0.5000 | 0.9098 (6) | 0.5395 (5) | 0.0303 (13) | |
O8 | 0.5000 | 0.5445 (5) | 0.1571 (5) | 0.0192 (11) | |
H8A | 0.5000 | 0.4922 | 0.0828 | 0.029* | |
O9 | 0.5000 | 0.2910 (6) | 0.3712 (5) | 0.0201 (10) | |
H9A | 0.5000 | 0.1896 | 0.3440 | 0.030* | |
O10 | 0.6329 (2) | 0.2327 (5) | 0.1789 (4) | 0.0293 (8) | |
H10A | 0.6695 | 0.2468 | 0.1308 | 0.044* | |
H10B | 0.5985 | 0.2025 | 0.1297 | 0.044* | |
N1 | 0.6921 (3) | 0.9615 (4) | 0.3464 (5) | 0.0238 (10) | |
H1A | 0.6950 | 0.9457 | 0.4356 | 0.029* | |
H1B | 0.6538 | 1.0244 | 0.3276 | 0.029* | |
H1C | 0.7312 | 1.0147 | 0.3174 | 0.029* | |
H1D | 0.6883 | 0.8612 | 0.3052 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.02190 (18) | 0.01799 (18) | 0.01954 (18) | 0.00123 (11) | −0.00023 (14) | 0.00305 (13) |
Cd2 | 0.0246 (3) | 0.0116 (2) | 0.0161 (2) | 0.000 | 0.000 | −0.00027 (18) |
S1 | 0.0206 (6) | 0.0174 (5) | 0.0172 (5) | 0.0020 (4) | −0.0014 (5) | 0.0002 (4) |
S2 | 0.0299 (10) | 0.0120 (7) | 0.0157 (8) | 0.000 | 0.000 | −0.0020 (5) |
O1 | 0.051 (3) | 0.034 (2) | 0.032 (2) | −0.014 (2) | −0.024 (2) | 0.0156 (18) |
O2 | 0.028 (2) | 0.0217 (15) | 0.040 (2) | −0.0028 (14) | −0.0029 (18) | −0.0014 (18) |
O3 | 0.027 (2) | 0.036 (3) | 0.045 (2) | 0.0036 (19) | 0.0040 (16) | −0.0123 (17) |
O4 | 0.036 (2) | 0.034 (2) | 0.0201 (17) | 0.0036 (18) | −0.0002 (15) | −0.0073 (15) |
O5 | 0.059 (4) | 0.066 (3) | 0.051 (3) | 0.042 (3) | −0.027 (3) | −0.034 (3) |
O6 | 0.120 (6) | 0.016 (2) | 0.014 (2) | 0.000 | 0.000 | −0.001 (3) |
O7 | 0.063 (4) | 0.011 (2) | 0.016 (2) | 0.000 | 0.000 | −0.0070 (19) |
O8 | 0.031 (3) | 0.014 (2) | 0.012 (2) | 0.000 | 0.000 | −0.0018 (16) |
O9 | 0.023 (3) | 0.016 (2) | 0.021 (2) | 0.000 | 0.000 | 0.0034 (17) |
O10 | 0.024 (2) | 0.0293 (19) | 0.034 (2) | 0.0021 (16) | −0.0009 (16) | −0.0066 (17) |
N1 | 0.034 (3) | 0.016 (2) | 0.022 (2) | 0.0022 (15) | −0.0038 (19) | −0.0032 (17) |
Cd1—O1 | 2.228 (4) | S2—O6 | 1.444 (6) |
Cd1—O8 | 2.266 (3) | S2—O5ii | 1.449 (5) |
Cd1—O9 | 2.278 (3) | S2—O5 | 1.449 (5) |
Cd1—O10 | 2.309 (4) | S2—O7 | 1.472 (5) |
Cd1—O4i | 2.310 (4) | O4—Cd1v | 2.310 (4) |
Cd1—O5 | 2.333 (5) | O6—Cd2vi | 2.358 (6) |
Cd1—Cd1ii | 3.3439 (8) | O7—Cd2vii | 2.274 (5) |
Cd2—O8iii | 2.235 (4) | O8—Cd2vi | 2.235 (4) |
Cd2—O9 | 2.241 (5) | O8—Cd1ii | 2.266 (3) |
Cd2—O7iv | 2.274 (5) | O8—H8A | 0.8500 |
Cd2—O2 | 2.323 (4) | O9—Cd1ii | 2.278 (3) |
Cd2—O2ii | 2.323 (4) | O9—H9A | 0.8501 |
Cd2—O6iii | 2.358 (6) | O10—H10A | 0.8500 |
Cd2—H9A | 2.3665 | O10—H10B | 0.8501 |
S1—O3 | 1.456 (4) | N1—H1A | 0.9000 |
S1—O1 | 1.459 (4) | N1—H1B | 0.9001 |
S1—O4 | 1.468 (4) | N1—H1C | 0.9001 |
S1—O2 | 1.475 (4) | N1—H1D | 0.9000 |
O1—Cd1—O8 | 163.57 (18) | O2—Cd2—Cd1iii | 120.64 (10) |
O1—Cd1—O9 | 95.73 (17) | O2ii—Cd2—Cd1iii | 69.55 (10) |
O8—Cd1—O9 | 80.52 (14) | O6iii—Cd2—Cd1iii | 76.00 (12) |
O1—Cd1—O10 | 94.62 (17) | Cd1v—Cd2—Cd1iii | 51.115 (14) |
O8—Cd1—O10 | 101.21 (15) | O8iii—Cd2—H9A | 110.1 |
O9—Cd1—O10 | 88.27 (16) | O9—Cd2—H9A | 21.0 |
O1—Cd1—O4i | 86.03 (15) | O7iv—Cd2—H9A | 79.2 |
O8—Cd1—O4i | 98.85 (13) | O2—Cd2—H9A | 88.0 |
O9—Cd1—O4i | 175.79 (16) | O2ii—Cd2—H9A | 88.0 |
O10—Cd1—O4i | 87.77 (15) | O6iii—Cd2—H9A | 157.7 |
O1—Cd1—O5 | 79.68 (19) | Cd1v—Cd2—H9A | 123.7 |
O8—Cd1—O5 | 85.11 (16) | Cd1iii—Cd2—H9A | 123.7 |
O9—Cd1—O5 | 99.2 (2) | O3—S1—O1 | 110.7 (3) |
O10—Cd1—O5 | 171.0 (2) | O3—S1—O4 | 108.8 (3) |
O4i—Cd1—O5 | 84.9 (2) | O1—S1—O4 | 109.4 (3) |
O1—Cd1—Cd1ii | 126.71 (14) | O3—S1—O2 | 108.0 (2) |
O8—Cd1—Cd1ii | 42.45 (9) | O1—S1—O2 | 109.5 (3) |
O9—Cd1—Cd1ii | 42.79 (8) | O4—S1—O2 | 110.3 (3) |
O10—Cd1—Cd1ii | 111.34 (10) | O6—S2—O5ii | 111.2 (3) |
O4i—Cd1—Cd1ii | 138.11 (10) | O6—S2—O5 | 111.2 (3) |
O5—Cd1—Cd1ii | 77.68 (16) | O5ii—S2—O5 | 108.3 (6) |
O1—Cd1—Cd2vi | 141.66 (12) | O6—S2—O7 | 110.2 (3) |
O8—Cd1—Cd2vi | 30.33 (10) | O5ii—S2—O7 | 107.9 (2) |
O9—Cd1—Cd2vi | 106.86 (9) | O5—S2—O7 | 107.9 (2) |
O10—Cd1—Cd2vi | 116.18 (10) | S1—O1—Cd1 | 140.5 (3) |
O4i—Cd1—Cd2vi | 73.69 (10) | S1—O2—Cd2 | 128.9 (2) |
O5—Cd1—Cd2vi | 66.61 (14) | S1—O4—Cd1v | 123.9 (2) |
Cd1ii—Cd1—Cd2vi | 64.443 (7) | S2—O5—Cd1 | 130.8 (3) |
O8iii—Cd2—O9 | 89.07 (18) | S2—O6—Cd2vi | 120.6 (3) |
O8iii—Cd2—O7iv | 170.68 (18) | S2—O7—Cd2vii | 133.0 (3) |
O9—Cd2—O7iv | 100.25 (17) | Cd2vi—O8—Cd1ii | 118.87 (13) |
O8iii—Cd2—O2 | 95.29 (9) | Cd2vi—O8—Cd1 | 118.87 (13) |
O9—Cd2—O2 | 89.88 (12) | Cd1ii—O8—Cd1 | 95.09 (18) |
O7iv—Cd2—O2 | 84.82 (8) | Cd2vi—O8—H8A | 99.4 |
O8iii—Cd2—O2ii | 95.29 (9) | Cd1ii—O8—H8A | 112.7 |
O9—Cd2—O2ii | 89.88 (12) | Cd1—O8—H8A | 112.7 |
O7iv—Cd2—O2ii | 84.82 (9) | Cd2—O9—Cd1ii | 121.45 (15) |
O2—Cd2—O2ii | 169.42 (18) | Cd2—O9—Cd1 | 121.45 (15) |
O8iii—Cd2—O6iii | 92.24 (18) | Cd1ii—O9—Cd1 | 94.41 (17) |
O9—Cd2—O6iii | 178.69 (19) | Cd2—O9—H9A | 87.8 |
O7iv—Cd2—O6iii | 78.44 (18) | Cd1ii—O9—H9A | 117.0 |
O2—Cd2—O6iii | 90.00 (12) | Cd1—O9—H9A | 117.0 |
O2ii—Cd2—O6iii | 90.00 (12) | Cd1—O10—H10A | 118.4 |
O8iii—Cd2—Cd1v | 30.80 (7) | Cd1—O10—H10B | 103.5 |
O9—Cd2—Cd1v | 105.18 (11) | H10A—O10—H10B | 109.5 |
O7iv—Cd2—Cd1v | 143.41 (9) | H1A—N1—H1B | 109.5 |
O2—Cd2—Cd1v | 69.55 (10) | H1A—N1—H1C | 109.5 |
O2ii—Cd2—Cd1v | 120.64 (10) | H1B—N1—H1C | 109.5 |
O6iii—Cd2—Cd1v | 76.00 (12) | H1A—N1—H1D | 109.5 |
O8iii—Cd2—Cd1iii | 30.80 (7) | H1B—N1—H1D | 109.5 |
O9—Cd2—Cd1iii | 105.18 (11) | H1C—N1—H1D | 109.5 |
O7iv—Cd2—Cd1iii | 143.41 (9) | ||
O3—S1—O1—Cd1 | 105.4 (5) | O5—S2—O7—Cd2vii | 121.6 (4) |
O4—S1—O1—Cd1 | −134.6 (5) | O1—Cd1—O8—Cd2vi | 72.2 (6) |
O2—S1—O1—Cd1 | −13.6 (6) | O9—Cd1—O8—Cd2vi | 150.2 (2) |
O8—Cd1—O1—S1 | 106.0 (6) | O10—Cd1—O8—Cd2vi | −123.5 (2) |
O9—Cd1—O1—S1 | 30.2 (6) | O4i—Cd1—O8—Cd2vi | −34.0 (2) |
O10—Cd1—O1—S1 | −58.5 (6) | O5—Cd1—O8—Cd2vi | 50.0 (3) |
O4i—Cd1—O1—S1 | −146.0 (6) | Cd1ii—Cd1—O8—Cd2vi | 127.1 (3) |
O5—Cd1—O1—S1 | 128.5 (6) | O1—Cd1—O8—Cd1ii | −54.8 (6) |
Cd1ii—Cd1—O1—S1 | 62.5 (6) | O9—Cd1—O8—Cd1ii | 23.12 (17) |
Cd2vi—Cd1—O1—S1 | 156.8 (4) | O10—Cd1—O8—Cd1ii | 109.44 (16) |
O3—S1—O2—Cd2 | −171.0 (3) | O4i—Cd1—O8—Cd1ii | −161.09 (15) |
O1—S1—O2—Cd2 | −50.3 (4) | O5—Cd1—O8—Cd1ii | −77.1 (2) |
O4—S1—O2—Cd2 | 70.2 (4) | Cd2vi—Cd1—O8—Cd1ii | −127.1 (3) |
O8iii—Cd2—O2—S1 | −18.0 (4) | O8iii—Cd2—O9—Cd1ii | −59.33 (18) |
O9—Cd2—O2—S1 | 71.1 (4) | O7iv—Cd2—O9—Cd1ii | 120.67 (18) |
O7iv—Cd2—O2—S1 | 171.4 (4) | O2—Cd2—O9—Cd1ii | −154.6 (2) |
O2ii—Cd2—O2—S1 | 159.8 (9) | O2ii—Cd2—O9—Cd1ii | 36.0 (2) |
O6iii—Cd2—O2—S1 | −110.2 (4) | Cd1v—Cd2—O9—Cd1ii | −85.89 (17) |
Cd1v—Cd2—O2—S1 | −35.2 (3) | Cd1iii—Cd2—O9—Cd1ii | −32.8 (2) |
Cd1iii—Cd2—O2—S1 | −36.5 (4) | O8iii—Cd2—O9—Cd1 | 59.33 (18) |
O3—S1—O4—Cd1v | 175.6 (3) | O7iv—Cd2—O9—Cd1 | −120.67 (18) |
O1—S1—O4—Cd1v | 54.5 (3) | O2—Cd2—O9—Cd1 | −36.0 (2) |
O2—S1—O4—Cd1v | −66.0 (3) | O2ii—Cd2—O9—Cd1 | 154.6 (2) |
O6—S2—O5—Cd1 | −77.9 (6) | Cd1v—Cd2—O9—Cd1 | 32.8 (2) |
O5ii—S2—O5—Cd1 | 44.7 (8) | Cd1iii—Cd2—O9—Cd1 | 85.89 (17) |
O7—S2—O5—Cd1 | 161.1 (5) | O1—Cd1—O9—Cd2 | 9.6 (2) |
O1—Cd1—O5—S2 | −156.4 (6) | O8—Cd1—O9—Cd2 | −154.3 (2) |
O8—Cd1—O5—S2 | 17.4 (6) | O10—Cd1—O9—Cd2 | 104.0 (2) |
O9—Cd1—O5—S2 | −62.2 (6) | O5—Cd1—O9—Cd2 | −70.9 (2) |
O4i—Cd1—O5—S2 | 116.8 (6) | Cd1ii—Cd1—O9—Cd2 | −131.3 (3) |
Cd1ii—Cd1—O5—S2 | −24.9 (5) | Cd2vi—Cd1—O9—Cd2 | −139.10 (15) |
Cd2vi—Cd1—O5—S2 | 42.3 (5) | O1—Cd1—O9—Cd1ii | 140.89 (19) |
O5ii—S2—O6—Cd2vi | −60.4 (3) | O8—Cd1—O9—Cd1ii | −22.97 (17) |
O5—S2—O6—Cd2vi | 60.4 (3) | O10—Cd1—O9—Cd1ii | −124.63 (17) |
O7—S2—O6—Cd2vi | 180.0 | O5—Cd1—O9—Cd1ii | 60.45 (19) |
O6—S2—O7—Cd2vii | 0.000 (2) | Cd2vi—Cd1—O9—Cd1ii | −7.76 (18) |
O5ii—S2—O7—Cd2vii | −121.6 (4) |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x+1, y, z; (iii) −x+1, −y+1, z+1/2; (iv) x, y−1, z; (v) x, −y+1, z+1/2; (vi) −x+1, −y+1, z−1/2; (vii) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H10B···O7vi | 0.85 | 2.25 | 3.087 (5) | 167 |
O10—H10B···O5i | 0.85 | 2.36 | 2.985 (6) | 131 |
O9—H9A···O6iv | 0.85 | 2.18 | 3.029 (7) | 173 |
O8—H8A···O5i | 0.85 | 2.56 | 3.322 (9) | 150 |
O8—H8A···O5vi | 0.85 | 2.56 | 3.322 (9) | 150 |
N1—H1B···O10vii | 0.90 | 2.26 | 2.948 (6) | 133 |
N1—H1D···O4i | 0.90 | 2.18 | 3.077 (5) | 180 |
N1—H1C···O4viii | 0.90 | 2.19 | 3.074 (7) | 168 |
N1—H1A···O3ix | 0.90 | 2.38 | 2.995 (6) | 126 |
N1—H1D···O2i | 0.90 | 2.64 | 3.196 (7) | 121 |
Symmetry codes: (i) x, −y+1, z−1/2; (iv) x, y−1, z; (vi) −x+1, −y+1, z−1/2; (vii) x, y+1, z; (viii) −x+3/2, −y+3/2, z−1/2; (ix) −x+3/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | Cd3H6O16S3·2NH4 |
Mr | 731.51 |
Crystal system, space group | Orthorhombic, Cmc21 |
Temperature (K) | 296 |
a, b, c (Å) | 18.906 (3), 7.9483 (11), 9.9809 (13) |
V (Å3) | 1499.8 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.72 |
Crystal size (mm) | 0.12 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.601, 0.704 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7060, 1770, 1739 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.066, 1.08 |
No. of reflections | 1770 |
No. of parameters | 118 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.68, −1.31 |
Absolute structure | Flack (1983), 825 Friedel pairs |
Absolute structure parameter | −0.07 (4) |
Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006) and DIAMOND (Brandenburg, 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H10B···O7i | 0.85 | 2.25 | 3.087 (5) | 167 |
O10—H10B···O5ii | 0.85 | 2.36 | 2.985 (6) | 131 |
O9—H9A···O6iii | 0.85 | 2.18 | 3.029 (7) | 173 |
O8—H8A···O5ii | 0.85 | 2.56 | 3.322 (9) | 150 |
O8—H8A···O5i | 0.85 | 2.56 | 3.322 (9) | 150 |
N1—H1B···O10iv | 0.90 | 2.26 | 2.948 (6) | 133 |
N1—H1D···O4ii | 0.90 | 2.18 | 3.077 (5) | 180 |
N1—H1C···O4v | 0.90 | 2.19 | 3.074 (7) | 168 |
N1—H1A···O3vi | 0.90 | 2.38 | 2.995 (6) | 126 |
N1—H1D···O2ii | 0.90 | 2.64 | 3.196 (7) | 121 |
Symmetry codes: (i) −x+1, −y+1, z−1/2; (ii) x, −y+1, z−1/2; (iii) x, y−1, z; (iv) x, y+1, z; (v) −x+3/2, −y+3/2, z−1/2; (vi) −x+3/2, y+1/2, z. |
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Louer, M. & Louer, D. (1982). Rev. Chim. Miner.19, 162-171. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Gοttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Swain, D. & Guru Row, T. N. (2006). Acta Cryst. E62, i74–i76. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, (NH4)2Cd3(SO4)3(OH)2(H2O)2, (I), formed accidentally under hydrothermal reaction conditions. Our intended target product was to synthesis a coordination compound from 1H-benzimidazole-5,6-dicarboxylate and CdSO4.8/3H2O. The presence of ammonium ions in the finally obtained compound points to an internal redox process that presumably has caused a (partly) reduction of the nitrogen atoms of 1H-benzimidazole-5,6-dicarboxylate or the nitrate anions. (NH4)2Cd3(SO4)3(OH)2(H2O)2 is isotypic with other M2Cd3(SO4)3(OH)2(H2O)2 members (M = K, Cs (Louer & Louer, 1982); M = Rb (Swain & Guru Row, 2006)).
The asymmetric unit of (I) is illustrated in Fig. 1. The crystal structure of (NH4)2Cd3(SO4)3(OH)2(H2O)2 is made up from two different Cd2+ ions (one on a general position (Cd1), one with site symmetry m (Cd2)), two sulfate ions (likewise one on a general position and the other with site symmetry m), two hydroxide groups, one water molecule and one NH4+ cation. Both Cd2+ cations are six-coordinated in an octahedral coordination geometry. Cd2 is coordinated by four sulfate ions and two hydroxide ions, while Cd1 is coordinated by three sulfate ons, two hydroxide anions and one water molecule. There are four types of oxygen atoms in the crystal structure of the title compound. The O3 atom of one SO42- anion is solely bound to the S atom, O8 and O9 represent the oxygen atoms of hydroxide groups shared by three Cd atoms, O10 is the water O atom bound to one Cd atom and all other O atoms represent sulfate O atoms coordinated to only one Cd atom.
As can be seen in Fig. 2, the Cd(1)O6 polyhedra are connected by sharing edges of OH groups. Cd(2)O6 octahedra and SO4 tetrahedra are linked to these dimers via common corners, thus forming a two-dimensional network extending parallel to the bc plane. The NH4+ cations are situated in the voids of the layers. Through formation of N—H···O and O—H···O hydrogen bonds a three-dimensional structure is formed. Since all water and hydroxide groups and most of the sulfate O atoms are involved in hydrogen bonding, the resulting network can be considered as relatively stable (Table 2, Fig. 3).