metal-organic compounds
Aquachloridobis(diphenylglyoximato-κ2N,N′)cobalt(III) dihydrate
aDepartment of Chemistry, Loyola College (Autonomous), Sterling Road, Nungambakkam, Chennai 600 034, Tamil Nadu, India
*Correspondence e-mail: dayalan77@gmail.com
The 14H11N2O2)2Cl(H2O)]·2H2O or [Co(dpgH)2Cl(H2O)]·2H2O, where dpgH− is diphenyl glyoximate, consists of one-half of a [Co(dpgH)2Cl(H2O)] complex and one solvent water molecule. The complex is completed through inversion symmetry, with the CoIII atom situated at the centre of symmetry. The coordination geometry around the CoIII atom is distorted octahedral with the four N atoms of the two dpgH− ligands forming an approximate square plane with N—Co—N bite angles of 81.13 (14) and 98.87 (14)°. The Cl− ligand and the water molecule are disordered in a 1:1 ratio and are in the axial positions, almost perpendicular to the plane of the glyoximate ligands [O—Co—Cl = 175.3 (10)°]. The two glyoximate ligands are linked by strong intramolecular O—H⋯O hydrogen bonds. In addition, O—H⋯O interactions involving the solvent water molecules and O—H⋯N hydrogen-bonding interactions are also observed. The solvent water molecule is disordered over five positions with different occupancies.
of the title complex, [Co(CRelated literature
For related complexes, see: Gupta et al. (2003); Randaccio (1999); Brown & Satyanarayana (1992); Gilaberte et al. (1988). For the nature of equatorial ligands, see: Varhelyi et al. (1999). For similar structures, see: Meera et al. (2009). For details of the synthesis, see: Toscano et al. (1983); Gupta et al. (2001). For spectroscopic studies related to the complex, see: Gupta et al. (2004); Lopez et al. (1992); Silverstein & Bassler (1984); Mandal & Gupta (2005).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811014280/wm2477sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811014280/wm2477Isup2.hkl
Cobalt(II) chloride hexahydrate was thoroughly ground and mixed with diphenylglyoxime in a 1:2 molar ratio in an aqueous solution of acetone. The reaction mixture was stirred for five hours at an elevated temperature (Toscano et al., 1983; Gupta et al., 2001). The resulting brown mass was filtered, washed with acetone, ether and dried in a desiccator. Brown coloured crystals appeared in two to three days on slow evaporation of the ═N stretching vibration of oxime in its complex was observed at 1385 cm-1 and the intramolecular hydrogen bonded –OH around 3140 cm-1. A moderate peak around 1090 cm-1 may be assigned to the C=N—O stretching of the oxime. The band around 540 cm-1 could be attributed to cobalt(III)-nitrogen stretching. The 1H NMR spectrum of the complex in acetone-d6 shows three different signals corresponding to the three different aromatic protons of the diphenylglyoximate (Gupta et al., 2004; Lopez et al., 1992). The H atoms in the second and the sixth position of the benzene ring of the diphenylglyoximate show a doublet at 7.2 p.p.m., while the third and fifth H atoms show a triplet at 7.4 p.p.m.. Similarly, the fourth one gives a triplet at 7.3 p.p.m..The oxime –OH protons resonate at 9.1 p.p.m.. A singlet around 8.5 p.p.m. represents the protons of the –OH group of the aqua ligand (Silverstein & Bassler, 1984; Mandal & Gupta, 2005).
of the complex in ethanol. Elemental analysis, obtained by analytical method, agreed well with the theoretical data expected for the formula of the complex, C28H28N4O7ClCo. Anal., % (calc., %): C 53.97 (53.58); H 4.94 (4.47); N 9.05 (8.93). The CThe O atom of the solvent water molecule in the lattice is disordered over five positions O4A, O4B, O4C, O4D, O4E with different site occupancy factor. The
of occupancy by means of free variable in each case is 0.302, 0.250, 0.131, 0.198 and 0.119 for O4A, O4B, O4C, O4D and O4E, respectively. The O atoms of water were refined anisotropically with equal anisotropic displacement parameters. The disordered chloride (Cl1) and oxygen (O3) atom sharing the axial position were refined with equal site occupancies of 1:1. The H atoms bound to aromatic carbon were constrained to ride on their parent atom with d(C—H) = 0.93Å and Uiso(H) =1.2Uequ(C). The position of the H atom bound to the hydroxyl group was identified from the difference in the and constrained to a distance of d(O2—H2) = 0.92 (1) Å. H positions of the positionally disordered lattice water molecules could not be found from difference maps and were eventually omitted from refinement.Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).[Co(C14H11N2O2)2Cl(H2O)]·2H2O | F(000) = 648 |
Mr = 626.92 | Dx = 1.363 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2441 reflections |
a = 12.0709 (4) Å | θ = 2.8–25.0° |
b = 5.9689 (2) Å | µ = 0.70 mm−1 |
c = 21.9224 (5) Å | T = 293 K |
β = 104.770 (1)° | Block, brown |
V = 1527.32 (8) Å3 | 0.30 × 0.20 × 0.20 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 2682 independent reflections |
Radiation source: fine-focus sealed tube | 2431 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ω and ϕ scan | θmax = 25.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −14→14 |
Tmin = 0.761, Tmax = 0.861 | k = −7→7 |
13610 measured reflections | l = −25→26 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.062 | H-atom parameters constrained |
wR(F2) = 0.199 | w = 1/[σ2(Fo2) + (0.1021P)2 + 2.2574P] where P = (Fo2 + 2Fc2)/3 |
S = 1.25 | (Δ/σ)max < 0.001 |
2682 reflections | Δρmax = 0.92 e Å−3 |
215 parameters | Δρmin = −0.53 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.025 (3) |
[Co(C14H11N2O2)2Cl(H2O)]·2H2O | V = 1527.32 (8) Å3 |
Mr = 626.92 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.0709 (4) Å | µ = 0.70 mm−1 |
b = 5.9689 (2) Å | T = 293 K |
c = 21.9224 (5) Å | 0.30 × 0.20 × 0.20 mm |
β = 104.770 (1)° |
Bruker APEXII CCD diffractometer | 2682 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 2431 reflections with I > 2σ(I) |
Tmin = 0.761, Tmax = 0.861 | Rint = 0.030 |
13610 measured reflections |
R[F2 > 2σ(F2)] = 0.062 | 1 restraint |
wR(F2) = 0.199 | H-atom parameters constrained |
S = 1.25 | Δρmax = 0.92 e Å−3 |
2682 reflections | Δρmin = −0.53 e Å−3 |
215 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.3917 (4) | 0.0079 (7) | 0.0955 (2) | 0.0349 (9) | |
C2 | 0.5064 (3) | 0.0989 (7) | 0.12232 (19) | 0.0342 (9) | |
C3 | 0.3003 (4) | 0.0027 (8) | 0.1290 (2) | 0.0404 (11) | |
C4 | 0.2296 (4) | −0.1819 (9) | 0.1254 (2) | 0.0519 (12) | |
H4 | 0.2423 | −0.3092 | 0.1037 | 0.062* | |
C5 | 0.1405 (5) | −0.1770 (12) | 0.1539 (3) | 0.0668 (16) | |
H5 | 0.0927 | −0.3009 | 0.1508 | 0.080* | |
C6 | 0.1215 (5) | 0.0054 (12) | 0.1864 (3) | 0.0677 (18) | |
H6 | 0.0610 | 0.0062 | 0.2055 | 0.081* | |
C7 | 0.1911 (5) | 0.1880 (11) | 0.1913 (3) | 0.0619 (15) | |
H7 | 0.1784 | 0.3131 | 0.2139 | 0.074* | |
C8 | 0.2809 (4) | 0.1867 (9) | 0.1625 (2) | 0.0482 (11) | |
H8 | 0.3284 | 0.3112 | 0.1660 | 0.058* | |
C9 | 0.5534 (3) | 0.1512 (8) | 0.19009 (18) | 0.0353 (9) | |
C10 | 0.5471 (4) | −0.0079 (8) | 0.2349 (2) | 0.0457 (11) | |
H10 | 0.5078 | −0.1412 | 0.2227 | 0.055* | |
C11 | 0.5994 (5) | 0.0313 (11) | 0.2977 (2) | 0.0576 (14) | |
H11 | 0.5969 | −0.0767 | 0.3279 | 0.069* | |
C12 | 0.6550 (4) | 0.2299 (11) | 0.3153 (2) | 0.0604 (16) | |
H12 | 0.6900 | 0.2559 | 0.3576 | 0.073* | |
C13 | 0.6600 (4) | 0.3909 (10) | 0.2718 (2) | 0.0519 (13) | |
H13 | 0.6972 | 0.5259 | 0.2844 | 0.062* | |
C14 | 0.6092 (4) | 0.3513 (8) | 0.2090 (2) | 0.0432 (11) | |
H14 | 0.6125 | 0.4599 | 0.1791 | 0.052* | |
N1 | 0.3780 (3) | −0.0578 (6) | 0.03761 (16) | 0.0335 (8) | |
N2 | 0.5663 (3) | 0.1165 (6) | 0.08134 (15) | 0.0325 (8) | |
O1 | 0.2790 (2) | −0.1374 (6) | 0.00398 (14) | 0.0455 (8) | |
O2 | 0.6748 (2) | 0.1866 (6) | 0.09899 (14) | 0.0416 (8) | |
H2A | 0.7025 | 0.1849 | 0.0685 | 0.10 (3)* | |
Co1 | 0.5000 | 0.0000 | 0.0000 | 0.0294 (3) | |
Cl1 | 0.5813 (10) | −0.3227 (16) | 0.0360 (5) | 0.0429 (13) | 0.50 |
O3 | 0.564 (2) | −0.296 (4) | 0.0254 (12) | 0.044 (7) | 0.50 |
O4A | 0.7645 (12) | 0.624 (3) | 0.0072 (7) | 0.084 (3) | 0.302 (9) |
O4B | 0.9669 (16) | 0.417 (4) | 0.0424 (9) | 0.084 (3) | 0.250 (10) |
O4C | 0.875 (3) | 0.618 (7) | 0.0176 (17) | 0.084 (3) | 0.131 (9) |
O4D | 1.023 (2) | 0.437 (5) | −0.0007 (13) | 0.084 (3) | 0.198 (9) |
O4E | 1.002 (3) | 0.295 (9) | 0.028 (2) | 0.084 (3) | 0.119 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.033 (2) | 0.038 (2) | 0.034 (2) | −0.0038 (17) | 0.0086 (17) | −0.0021 (16) |
C2 | 0.031 (2) | 0.037 (2) | 0.034 (2) | −0.0015 (17) | 0.0082 (17) | 0.0000 (17) |
C3 | 0.033 (2) | 0.054 (3) | 0.033 (2) | −0.0056 (19) | 0.0075 (18) | −0.0005 (18) |
C4 | 0.054 (3) | 0.059 (3) | 0.046 (3) | −0.016 (2) | 0.019 (2) | −0.004 (2) |
C5 | 0.054 (3) | 0.087 (4) | 0.064 (3) | −0.030 (3) | 0.023 (3) | 0.003 (3) |
C6 | 0.045 (3) | 0.109 (5) | 0.057 (3) | −0.008 (3) | 0.027 (3) | −0.003 (3) |
C7 | 0.049 (3) | 0.083 (4) | 0.058 (3) | 0.010 (3) | 0.022 (2) | −0.009 (3) |
C8 | 0.039 (2) | 0.058 (3) | 0.050 (3) | −0.002 (2) | 0.015 (2) | −0.005 (2) |
C9 | 0.0275 (19) | 0.046 (2) | 0.033 (2) | 0.0019 (18) | 0.0090 (16) | −0.0058 (18) |
C10 | 0.041 (3) | 0.057 (3) | 0.041 (2) | 0.002 (2) | 0.013 (2) | −0.001 (2) |
C11 | 0.053 (3) | 0.083 (4) | 0.036 (3) | 0.013 (3) | 0.011 (2) | 0.009 (2) |
C12 | 0.038 (3) | 0.104 (5) | 0.035 (2) | 0.008 (3) | 0.002 (2) | −0.020 (3) |
C13 | 0.038 (2) | 0.067 (3) | 0.050 (3) | −0.003 (2) | 0.011 (2) | −0.023 (3) |
C14 | 0.035 (2) | 0.053 (3) | 0.043 (2) | −0.005 (2) | 0.0112 (18) | −0.008 (2) |
N1 | 0.0282 (17) | 0.0370 (18) | 0.0344 (18) | −0.0050 (14) | 0.0061 (14) | −0.0023 (15) |
N2 | 0.0278 (17) | 0.0378 (19) | 0.0312 (16) | −0.0044 (14) | 0.0061 (13) | −0.0015 (14) |
O1 | 0.0311 (15) | 0.065 (2) | 0.0411 (16) | −0.0167 (15) | 0.0101 (13) | −0.0096 (15) |
O2 | 0.0272 (15) | 0.060 (2) | 0.0369 (15) | −0.0128 (14) | 0.0064 (12) | −0.0088 (14) |
Co1 | 0.0256 (5) | 0.0331 (5) | 0.0286 (5) | −0.0046 (3) | 0.0054 (3) | −0.0011 (3) |
Cl1 | 0.044 (3) | 0.0374 (18) | 0.041 (3) | 0.0015 (18) | −0.001 (3) | 0.004 (2) |
O3 | 0.027 (8) | 0.064 (12) | 0.031 (8) | −0.003 (7) | −0.012 (5) | 0.016 (5) |
O4A | 0.062 (6) | 0.103 (9) | 0.087 (7) | 0.019 (6) | 0.021 (5) | 0.004 (6) |
O4B | 0.062 (6) | 0.103 (9) | 0.087 (7) | 0.019 (6) | 0.021 (5) | 0.004 (6) |
O4C | 0.062 (6) | 0.103 (9) | 0.087 (7) | 0.019 (6) | 0.021 (5) | 0.004 (6) |
O4D | 0.062 (6) | 0.103 (9) | 0.087 (7) | 0.019 (6) | 0.021 (5) | 0.004 (6) |
O4E | 0.062 (6) | 0.103 (9) | 0.087 (7) | 0.019 (6) | 0.021 (5) | 0.004 (6) |
C1—N1 | 1.298 (6) | C11—C12 | 1.368 (9) |
C1—C2 | 1.463 (6) | C11—H11 | 0.9300 |
C1—C3 | 1.473 (6) | C12—C13 | 1.366 (8) |
C2—N2 | 1.294 (5) | C12—H12 | 0.9300 |
C2—C9 | 1.482 (6) | C13—C14 | 1.377 (6) |
C3—C8 | 1.375 (7) | C13—H13 | 0.9300 |
C3—C4 | 1.383 (7) | C14—H14 | 0.9300 |
C4—C5 | 1.375 (7) | N1—O1 | 1.323 (4) |
C4—H4 | 0.9300 | N1—Co1 | 1.894 (3) |
C5—C6 | 1.353 (9) | N2—O2 | 1.334 (4) |
C5—H5 | 0.9300 | N2—Co1 | 1.891 (3) |
C6—C7 | 1.363 (9) | O2—H2A | 0.8200 |
C6—H6 | 0.9300 | Co1—N2i | 1.891 (3) |
C7—C8 | 1.386 (7) | Co1—N1i | 1.894 (3) |
C7—H7 | 0.9300 | Co1—O3 | 1.95 (3) |
C8—H8 | 0.9300 | Co1—O3i | 1.95 (3) |
C9—C14 | 1.382 (6) | Co1—Cl1 | 2.214 (11) |
C9—C10 | 1.382 (6) | Co1—Cl1i | 2.214 (11) |
C10—C11 | 1.381 (7) | O4D—O4Dii | 0.94 (4) |
C10—H10 | 0.9300 | ||
O4A···O3iii | 2.592 (4) | O4A···CL1iii | 2.470 (2) |
O4A···O1i | 2.951 (2) | ||
N1—C1—C2 | 112.1 (4) | C13—C14—C9 | 120.5 (5) |
N1—C1—C3 | 123.8 (4) | C13—C14—H14 | 119.8 |
C2—C1—C3 | 124.0 (4) | C9—C14—H14 | 119.8 |
N2—C2—C1 | 113.0 (4) | C1—N1—O1 | 121.7 (3) |
N2—C2—C9 | 122.6 (4) | C1—N1—Co1 | 116.8 (3) |
C1—C2—C9 | 124.2 (4) | O1—N1—Co1 | 121.0 (3) |
C8—C3—C4 | 118.7 (4) | C2—N2—O2 | 120.4 (3) |
C8—C3—C1 | 120.1 (4) | C2—N2—Co1 | 116.6 (3) |
C4—C3—C1 | 121.2 (4) | O2—N2—Co1 | 122.5 (2) |
C5—C4—C3 | 120.0 (5) | N2—O2—H2A | 109.5 |
C5—C4—H4 | 120.0 | N2—Co1—N2i | 179.998 (1) |
C3—C4—H4 | 120.0 | N2—Co1—N1 | 81.13 (14) |
C6—C5—C4 | 120.9 (5) | N2i—Co1—N1 | 98.87 (14) |
C6—C5—H5 | 119.5 | N2—Co1—N1i | 98.87 (14) |
C4—C5—H5 | 119.5 | N2i—Co1—N1i | 81.13 (14) |
C5—C6—C7 | 120.1 (5) | N1—Co1—N1i | 180.00 (17) |
C5—C6—H6 | 120.0 | N2—Co1—O3 | 91.3 (7) |
C7—C6—H6 | 120.0 | N2i—Co1—O3 | 88.7 (7) |
C6—C7—C8 | 119.8 (5) | N1—Co1—O3 | 90.4 (9) |
C6—C7—H7 | 120.1 | N1i—Co1—O3 | 89.6 (9) |
C8—C7—H7 | 120.1 | N2—Co1—O3i | 88.7 (7) |
C3—C8—C7 | 120.5 (5) | N2i—Co1—O3i | 91.3 (7) |
C3—C8—H8 | 119.7 | N1—Co1—O3i | 89.6 (9) |
C7—C8—H8 | 119.7 | N1i—Co1—O3i | 90.4 (9) |
C14—C9—C10 | 119.5 (4) | O3—Co1—O3i | 179.999 (2) |
C14—C9—C2 | 121.0 (4) | N2—Co1—Cl1 | 86.6 (3) |
C10—C9—C2 | 119.4 (4) | N2i—Co1—Cl1 | 93.4 (3) |
C11—C10—C9 | 119.9 (5) | N1—Co1—Cl1 | 90.6 (3) |
C11—C10—H10 | 120.1 | N1i—Co1—Cl1 | 89.4 (3) |
C9—C10—H10 | 120.1 | O3—Co1—Cl1 | 4.7 (10) |
C12—C11—C10 | 119.6 (5) | O3i—Co1—Cl1 | 175.3 (10) |
C12—C11—H11 | 120.2 | N2—Co1—Cl1i | 93.4 (3) |
C10—C11—H11 | 120.2 | N2i—Co1—Cl1i | 86.6 (3) |
C13—C12—C11 | 121.3 (4) | N1—Co1—Cl1i | 89.4 (3) |
C13—C12—H12 | 119.4 | N1i—Co1—Cl1i | 90.6 (3) |
C11—C12—H12 | 119.4 | O3—Co1—Cl1i | 175.3 (10) |
C12—C13—C14 | 119.3 (5) | O3i—Co1—Cl1i | 4.7 (10) |
C12—C13—H13 | 120.3 | Cl1—Co1—Cl1i | 179.999 (1) |
C14—C13—H13 | 120.3 | ||
N1—C1—C2—N2 | 6.6 (5) | C1—C2—N2—O2 | −176.8 (3) |
C3—C1—C2—N2 | −170.3 (4) | C9—C2—N2—O2 | −0.8 (6) |
N1—C1—C2—C9 | −169.3 (4) | C1—C2—N2—Co1 | −5.3 (5) |
C3—C1—C2—C9 | 13.8 (7) | C9—C2—N2—Co1 | 170.7 (3) |
N1—C1—C3—C8 | −132.9 (5) | C2—N2—Co1—N2i | 164 (6) |
C2—C1—C3—C8 | 43.6 (6) | O2—N2—Co1—N2i | −25 (6) |
N1—C1—C3—C4 | 44.5 (7) | C2—N2—Co1—N1 | 2.1 (3) |
C2—C1—C3—C4 | −139.0 (5) | O2—N2—Co1—N1 | 173.5 (3) |
C8—C3—C4—C5 | 1.4 (7) | C2—N2—Co1—N1i | −177.9 (3) |
C1—C3—C4—C5 | −176.0 (5) | O2—N2—Co1—N1i | −6.5 (3) |
C3—C4—C5—C6 | −0.9 (8) | C2—N2—Co1—O3 | −88.1 (10) |
C4—C5—C6—C7 | 0.0 (9) | O2—N2—Co1—O3 | 83.2 (10) |
C5—C6—C7—C8 | 0.4 (9) | C2—N2—Co1—O3i | 91.9 (10) |
C4—C3—C8—C7 | −1.0 (7) | O2—N2—Co1—O3i | −96.8 (10) |
C1—C3—C8—C7 | 176.4 (4) | C2—N2—Co1—Cl1 | −89.0 (4) |
C6—C7—C8—C3 | 0.1 (8) | O2—N2—Co1—Cl1 | 82.4 (4) |
N2—C2—C9—C14 | 50.7 (6) | C2—N2—Co1—Cl1i | 91.0 (4) |
C1—C2—C9—C14 | −133.8 (4) | O2—N2—Co1—Cl1i | −97.6 (4) |
N2—C2—C9—C10 | −125.5 (5) | C1—N1—Co1—N2 | 2.0 (3) |
C1—C2—C9—C10 | 50.0 (6) | O1—N1—Co1—N2 | 174.3 (3) |
C14—C9—C10—C11 | −1.9 (7) | C1—N1—Co1—N2i | −178.0 (3) |
C2—C9—C10—C11 | 174.4 (4) | O1—N1—Co1—N2i | −5.7 (3) |
C9—C10—C11—C12 | 1.4 (7) | C1—N1—Co1—N1i | −133 (100) |
C10—C11—C12—C13 | −0.1 (8) | O1—N1—Co1—N1i | 39 (100) |
C11—C12—C13—C14 | −0.8 (7) | C1—N1—Co1—O3 | 93.2 (8) |
C12—C13—C14—C9 | 0.2 (7) | O1—N1—Co1—O3 | −94.5 (8) |
C10—C9—C14—C13 | 1.1 (6) | C1—N1—Co1—O3i | −86.8 (8) |
C2—C9—C14—C13 | −175.1 (4) | O1—N1—Co1—O3i | 85.5 (8) |
C2—C1—N1—O1 | −177.4 (4) | C1—N1—Co1—Cl1 | 88.4 (4) |
C3—C1—N1—O1 | −0.5 (6) | O1—N1—Co1—Cl1 | −99.2 (4) |
C2—C1—N1—Co1 | −5.1 (5) | C1—N1—Co1—Cl1i | −91.6 (4) |
C3—C1—N1—Co1 | 171.8 (3) | O1—N1—Co1—Cl1i | 80.8 (4) |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+2, −y+1, −z; (iii) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O1i | 0.82 | 1.68 | 2.477 (4) | 162 |
O2—H2A···N1i | 0.82 | 2.40 | 2.999 (4) | 130 |
O4A···O3iii | 2.592 (4) |
Symmetry codes: (i) −x+1, −y, −z; (iii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Co(C14H11N2O2)2Cl(H2O)]·2H2O |
Mr | 626.92 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 12.0709 (4), 5.9689 (2), 21.9224 (5) |
β (°) | 104.770 (1) |
V (Å3) | 1527.32 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.70 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1999) |
Tmin, Tmax | 0.761, 0.861 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13610, 2682, 2431 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.199, 1.25 |
No. of reflections | 2682 |
No. of parameters | 215 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.92, −0.53 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).
Co1—N2i | 1.891 (3) | Co1—O3 | 1.95 (3) |
Co1—N1i | 1.894 (3) | Co1—Cl1 | 2.214 (11) |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O1i | 0.82 | 1.68 | 2.477 (4) | 162.0 |
O2—H2A···N1i | 0.82 | 2.40 | 2.999 (4) | 130.1 |
O4A···O3ii | . | . | 2.592 (4) | . |
Symmetry codes: (i) −x+1, −y, −z; (ii) x, y+1, z. |
Acknowledgements
The authors are thankful to Rev. Dr B. Jeyaraj, S. J., Principal, Loyola College (Autonomous), Chennai 34, India, for providing the necessary facilities, the Head, SAIF, CDRI, Lucknow, India, for supplying elemental data, and the Head, SAIF, IIT Madras, Chennai 36, India, for recording NMR spectra and for X-ray data collection.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Brown, K. L. & Satyanarayana, S. (1992). J. Am. Chem. Soc. 114, 5674–5684. CrossRef CAS Google Scholar
Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gilaberte, J. M., Lopez, C. & Alvarez, S. (1988). J. Organomet. Chem. 342, C13–C14. CrossRef CAS Google Scholar
Gupta, B. D., Tiwari, U., Barley, T. & Cordes, W. (2001). J. Organomet. Chem. 629, 83–92. Web of Science CSD CrossRef CAS Google Scholar
Gupta, B. D., Vijayaikanth, V. & Sing, V. (2004). Organometallics, 23, 2067–2079. Web of Science CSD CrossRef Google Scholar
Gupta, B. D., Yamuna, R., Veena, S. & Tiwari, U. (2003). Organometallics, 22, 226–232. CrossRef CAS Google Scholar
Lopez, C., Alavarez, S., Solans, X. & Font-Bardia, M. (1992). Polyhedron, 11, 1637. CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mandal, D. & Gupta, B. D. (2005). J. Organomet. Chem. 690, 3746–3754. Web of Science CSD CrossRef CAS Google Scholar
Meera, P., Revathi, C. & Dayalan, A. (2009). Acta Cryst. E65, m140–m141. Web of Science CSD CrossRef IUCr Journals Google Scholar
Randaccio, L. (1999). Comments Inorg. Chem. 21, 327–376. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Silverstein, R. M. & Bassler, G. C. (1984). Spectrometric Identification of Organic Compounds, 2nd ed., pp. 459–460. New York: John Wiley & Sons Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Toscano, P. J., Swider, S., Marzilli, L. G., Phor, N. B. & Randaccio, L. (1983). Inorg. Chem. 22, 3416–3421. CSD CrossRef CAS Google Scholar
Varhelyi, C. S., Zsako, J., Megyes, T. J., Majdik, K. & Liptay, G. (1999). Periodica Polytech. Ser. Chem. Eng. 43, 41–49. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The dioxime complexes of cobalt(III), known as cobaloximes, and their derivatives have been found to mimic vitamin-B12 coenzyme. The studies on steric and electronic effects of cobaloximes helped in the successful design of novel derivatives with desired properties (Gupta et al., 2003; Randaccio, 1999; Brown & Satyanarayana, 1992; Gilaberte et al., 1988). Among the stereoisomeric benzildioximes (syn, amphi, anti), only the anti isomer shows chelation properties towards transition metal ions (Varhelyi et al., 1999).
In the structure of the title compound, [Co(C14H11N2O2)2Cl(H2O)].2H2O, or [Co(dpgH)2Cl(H2O)].2H2O, where dpgH- = diphenyl glyoximate, two halves of the complex molecule are related through inversion symmetry with CoIII situated at the centre of symmetry. The coordination geometry around CoIII is a slightly distorted octahedron (Fig. 1) with the four N atoms of the dpgH- ligand forming an approximate square plane. The bite angles N1—Co—N2 of the equatorial ligands are 81.13 (14) and 98.87 (14)°, respectively. The Cl- ligand and the water molecule are in axial positions and are disordered in a 1:1 ratio. They are almost perpendicular to the plane containing the equatorial dpgH- ligand (O3—Co1—Cl1 = 175.3 (10)°). The two glyoximate ligands are linked by strong intramolecular O—H···O hydrogen bonds. In addition, O1—H1···N2 hydrogen bonding interaction is also observed (Fig. 2). A similar interaction was observed for a related complex (Meera et al., 2009). The lattice water molecule (O4) is disordered over five positions with different occupancies. Although the H positions of the disordered water molecules could not be located, close O···O interactions suggest likewise an involvement in hydrogen bonding (Table 2).