metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Benzyl phenyl sulfoxide-κO)di­chloridodi­phenyl­tin(IV)

aExperimental Center, Linyi University, Linyi 276000, People's Republic of China, bShandong Water Polytechnic, Rizhao 276826, People's Republic of China, and cDepartment of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China
*Correspondence e-mail: guoxiatan@163.com

(Received 13 April 2011; accepted 18 April 2011; online 29 April 2011)

The SnIV atom in the title compound, [Sn(C6H5)2Cl2(C13H12OS)], displays a distorted C2Cl2O trigonal–bipyramidal coordination environment, with a mean Sn—C distance of 2.121 (9) Å and with Sn—O = 2.331 (2) Å. The SnIV atom is displaced by 0.169 (2) Å from the equatorial C2Cl plane towards the direction of the second axially bonded Cl atom.

Related literature

For background to organotin compounds, see: Davies et al. (2008[Davies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). In Tin Chemistry: Fundamentals, Frontiers and Applications. Chichester: John Wiley & Sons.]); Tian et al. (2005[Tian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem. 99, 1646-1652.]). For related structures, see: Sadiq-ur-Rehman et al. (2007[Sadiq-ur-Rehman, Saeed, S., Ali, S., Shahzadi, S. & Helliwell, M. (2007). Acta Cryst. E63, m1788.]); Ng & Rheingold (1989[Ng, S. W. & Rheingold, A. L. (1989). J. Organomet. Chem. 378, 339-345.]); Bao et al. (1995[Bao, J. C., Shao, P. X., Wang, R. J., Wang, H. G. & Yao, X. K. (1995). Polyhedron, 14, 927-933.]); Dang (2009[Dang, Y.-Q. (2009). Acta Cryst. E65, m1306.]); Sousa et al. (2009[Sousa, G. F., Ellena, J., Malta, V. R. S. & Ardisson, J. D. (2009). J. Braz. Chem. Soc. 20, 1441-1447.]); Yu et al. (1992[Yu, X.-L., Bao, J.-C., Shao, P.-X., Yao, X.-K., Wang, H.-G. & Wang, R.-J. (1992). Chin. J. Struct. Chem. 11, 373-376.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)2Cl2(C13H12OS)]

  • Mr = 560.08

  • Triclinic, [P \overline 1]

  • a = 9.979 (5) Å

  • b = 10.577 (6) Å

  • c = 12.104 (4) Å

  • α = 87.728 (5)°

  • β = 81.196 (3)°

  • γ = 69.995 (5)°

  • V = 1186.2 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.41 mm−1

  • T = 295 K

  • 0.31 × 0.24 × 0.20 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Bruker, 1996[Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.670, Tmax = 0.766

  • 4959 measured reflections

  • 4170 independent reflections

  • 3546 reflections with I > 2σ(I)

  • Rint = 0.020

  • 3 standard reflections every 97 reflections intensity decay: 1.9%

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.056

  • S = 1.01

  • 4170 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: XSCANS (Bruker, 1996[Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Organotin compounds have received considerable attention due to their structural diversity and an increase in terms of industrial, agricultural and biological applications (Davies et al., 2008; Tian et al., 2005).

Several structures of organotin sulfoxide complexes, such as dichloridobis(dimethylsulfoxide-κO)diphenyltin (Sadiq-ur-Rehman et al., 2007), dichloridodimethyl(dibenzylsulfoxide-κO)tin (Ng & Rheingold, 1989), [bis(phenylsulfinyl)ethane-κO,O']dichloridodiphenyltin (Bao et al., 1995), bis(benzylphenylsulfoxide-κO)dichloridodiphenyltin (Dang, 2009) or dibutyldichloro(2-phenyl-1,3-dithiane-1,3-dioxide-κO)tin (Sousa et al., 2009), have been reported. As a continuation of these studies, the structure of the title compound, (I), is described here.

The coordination environment of the SnIV atom in (I) can be described as a distorted trigonal bipyramid with two phenyl groups and the Cl1 atom occupying the equatorial positions whereas the axial positions are occupied by the Cl2 atom and the sulfoxide O1 atom (Fig. 1). The Sn atom is slightly displaced from the equatorial plane defined by the C2Cl set and is located 0.169 (2) Å in the direction of the axial Cl2 atom. The Sn—C and Sn—Cl bond lengths are similar to these found in [1,2-bis(phenylsulfinyl)ethane-κO,O]bis(dichloridodiphenyltin) (Yu et al., 1992). However, the Sn—O bond length (2.331 (2) Å) is shorter than that in the previously mentioned structure (2.417 (2) Å). The dihedral angle between the two phenyl rings bound to the Sn atom is 55.9 (2)°; the dihedral angle between the phenyl rings in the sulfoxide ligand is 34.7 (2)°.

Related literature top

For background to organotin compounds, see: Davies et al. (2008); Tian et al. (2005). For related structures, see: Sadiq-ur-Rehman et al. (2007); Ng & Rheingold (1989); Bao et al. (1995); Dang (2009); Sousa et al. (2009); Yu et al. (1992).

Experimental top

Benzylphenylsulfoxide (0.865 g, 4 mmol) and diphenyltin dichloride (1.374 g, 4 mmol) were refluxed in methanol (40 ml) for 1 h, and then the colorless solution was concentrated under reduce pressure and cooled. The solid product obtained was filtered off and recrystallised from ethanol. Colourless crystals suitable for X-ray analysis were obtained from the solvent by slow evaporation (yield 80%; m.p. 378–379 K).

Refinement top

H atoms were placed at calculated positions (C—H = 0.97 Å for methylene and C—H = 0.93 Å for aromatic H atoms) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS (Bruker, 1996); data reduction: XSCANS (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
(Benzyl phenyl sulfoxide-κO)dichloridodiphenyltin(IV) top
Crystal data top
[Sn(C6H5)2Cl2(C13H12OS)]Z = 2
Mr = 560.08F(000) = 560
Triclinic, P1Dx = 1.568 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.979 (5) ÅCell parameters from 28 reflections
b = 10.577 (6) Åθ = 5.4–12.5°
c = 12.104 (4) ŵ = 1.41 mm1
α = 87.728 (5)°T = 295 K
β = 81.196 (3)°Block, colourless
γ = 69.995 (5)°0.31 × 0.24 × 0.20 mm
V = 1186.2 (10) Å3
Data collection top
Bruker P4
diffractometer
3546 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω scansh = 111
Absorption correction: ψ scan
(XSCANS; Bruker, 1996)
k = 1212
Tmin = 0.670, Tmax = 0.766l = 1414
4959 measured reflections3 standard reflections every 97 reflections
4170 independent reflections intensity decay: 1.9%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0246P)2 + 0.1469P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4170 reflectionsΔρmax = 0.26 e Å3
272 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0111 (5)
Crystal data top
[Sn(C6H5)2Cl2(C13H12OS)]γ = 69.995 (5)°
Mr = 560.08V = 1186.2 (10) Å3
Triclinic, P1Z = 2
a = 9.979 (5) ÅMo Kα radiation
b = 10.577 (6) ŵ = 1.41 mm1
c = 12.104 (4) ÅT = 295 K
α = 87.728 (5)°0.31 × 0.24 × 0.20 mm
β = 81.196 (3)°
Data collection top
Bruker P4
diffractometer
3546 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Bruker, 1996)
Rint = 0.020
Tmin = 0.670, Tmax = 0.7663 standard reflections every 97 reflections
4959 measured reflections intensity decay: 1.9%
4170 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.01Δρmax = 0.26 e Å3
4170 reflectionsΔρmin = 0.34 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7386 (3)0.1721 (3)1.0500 (2)0.0430 (7)
H1A0.82390.10081.02980.052*
C20.7161 (3)0.2382 (3)1.1502 (3)0.0522 (8)
H2A0.78580.21091.19740.063*
C30.5907 (3)0.3446 (3)1.1814 (3)0.0495 (8)
H3A0.57590.38901.24930.059*
C40.4878 (3)0.3847 (3)1.1118 (3)0.0503 (8)
H4A0.40320.45671.13250.060*
C50.5097 (3)0.3183 (3)1.0111 (2)0.0442 (7)
H5A0.43940.34590.96440.053*
C60.6355 (3)0.2108 (3)0.9784 (2)0.0358 (6)
C70.7105 (3)0.1817 (3)0.6623 (2)0.0398 (6)
C80.7903 (3)0.0972 (3)0.5733 (3)0.0545 (8)
H8A0.82770.00490.58410.065*
C90.8148 (4)0.1490 (5)0.4686 (3)0.0718 (11)
H9A0.86740.09160.40910.086*
C100.7618 (4)0.2846 (5)0.4527 (3)0.0731 (11)
H10A0.77970.31940.38240.088*
C110.6830 (5)0.3691 (4)0.5390 (3)0.0814 (12)
H11A0.64720.46140.52770.098*
C120.6561 (4)0.3176 (3)0.6440 (3)0.0619 (9)
H12A0.60070.37550.70250.074*
C130.2765 (3)0.0805 (3)0.7273 (3)0.0526 (8)
H13A0.35630.00340.71130.063*
H13B0.18950.05840.74880.063*
C140.2623 (3)0.1608 (3)0.6234 (3)0.0473 (7)
C150.3841 (4)0.1643 (4)0.5531 (3)0.0602 (9)
H15A0.47500.11600.57100.072*
C160.3713 (5)0.2394 (4)0.4561 (3)0.0794 (12)
H16A0.45350.24210.40950.095*
C170.2376 (6)0.3093 (4)0.4293 (4)0.0875 (13)
H17A0.22910.35900.36400.105*
C180.1176 (5)0.3065 (4)0.4974 (4)0.0804 (12)
H18A0.02720.35500.47880.096*
C190.1282 (4)0.2322 (3)0.5946 (3)0.0607 (9)
H19A0.04510.23030.64040.073*
C200.1536 (3)0.3141 (3)0.8516 (2)0.0427 (7)
C210.1612 (3)0.4285 (3)0.7968 (3)0.0536 (8)
H21A0.24770.42980.75610.064*
C220.0383 (4)0.5415 (3)0.8031 (3)0.0615 (9)
H22A0.04240.62010.76770.074*
C230.0899 (4)0.5380 (3)0.8615 (3)0.0599 (9)
H23A0.17270.61360.86480.072*
C240.0951 (3)0.4224 (4)0.9152 (3)0.0598 (9)
H24A0.18210.42060.95450.072*
C250.0255 (3)0.3099 (3)0.9117 (3)0.0537 (8)
H25A0.02150.23230.94890.064*
Cl10.61881 (10)0.09242 (8)0.83415 (8)0.0626 (2)
Cl20.93145 (8)0.02330 (10)0.82750 (7)0.0661 (3)
O10.43433 (19)0.20989 (19)0.80186 (16)0.0443 (5)
S10.30677 (8)0.16446 (8)0.84580 (6)0.04423 (19)
Sn10.67532 (2)0.10548 (2)0.824114 (16)0.03808 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0342 (16)0.0413 (16)0.0478 (17)0.0049 (13)0.0073 (13)0.0003 (13)
C20.0475 (19)0.0552 (19)0.0500 (18)0.0069 (16)0.0201 (15)0.0006 (15)
C30.054 (2)0.0461 (18)0.0476 (18)0.0138 (16)0.0096 (15)0.0060 (14)
C40.0411 (18)0.0449 (18)0.0565 (19)0.0040 (14)0.0056 (15)0.0063 (14)
C50.0358 (16)0.0427 (17)0.0503 (17)0.0068 (13)0.0109 (14)0.0014 (13)
C60.0322 (15)0.0379 (15)0.0371 (14)0.0128 (12)0.0038 (12)0.0041 (12)
C70.0388 (16)0.0450 (16)0.0362 (15)0.0150 (13)0.0053 (12)0.0022 (12)
C80.0489 (19)0.057 (2)0.0492 (19)0.0089 (16)0.0008 (15)0.0081 (15)
C90.069 (3)0.104 (3)0.0415 (19)0.030 (2)0.0020 (18)0.014 (2)
C100.082 (3)0.110 (3)0.045 (2)0.056 (3)0.0114 (19)0.017 (2)
C110.115 (4)0.062 (2)0.075 (3)0.038 (2)0.024 (3)0.025 (2)
C120.075 (2)0.050 (2)0.053 (2)0.0143 (18)0.0022 (18)0.0014 (16)
C130.0453 (18)0.0452 (18)0.070 (2)0.0173 (15)0.0125 (16)0.0030 (15)
C140.0482 (19)0.0409 (17)0.0559 (19)0.0146 (15)0.0163 (15)0.0074 (14)
C150.053 (2)0.066 (2)0.061 (2)0.0161 (18)0.0111 (17)0.0123 (18)
C160.093 (3)0.097 (3)0.058 (2)0.046 (3)0.010 (2)0.001 (2)
C170.123 (4)0.090 (3)0.064 (3)0.048 (3)0.035 (3)0.013 (2)
C180.086 (3)0.072 (3)0.086 (3)0.014 (2)0.048 (3)0.000 (2)
C190.051 (2)0.064 (2)0.070 (2)0.0184 (18)0.0192 (18)0.0073 (18)
C200.0330 (16)0.0493 (17)0.0436 (16)0.0112 (14)0.0061 (13)0.0009 (13)
C210.0438 (18)0.054 (2)0.061 (2)0.0180 (16)0.0014 (15)0.0038 (16)
C220.055 (2)0.049 (2)0.073 (2)0.0116 (17)0.0039 (18)0.0097 (17)
C230.0437 (19)0.053 (2)0.070 (2)0.0004 (16)0.0088 (17)0.0004 (17)
C240.0327 (17)0.073 (2)0.068 (2)0.0128 (17)0.0013 (15)0.0051 (18)
C250.0412 (18)0.061 (2)0.0567 (19)0.0175 (16)0.0034 (15)0.0114 (16)
Cl10.0650 (6)0.0415 (4)0.0815 (6)0.0173 (4)0.0152 (5)0.0066 (4)
Cl20.0340 (4)0.0797 (6)0.0649 (5)0.0063 (4)0.0071 (4)0.0047 (4)
O10.0304 (10)0.0503 (12)0.0515 (12)0.0122 (9)0.0082 (9)0.0028 (9)
S10.0355 (4)0.0484 (4)0.0464 (4)0.0117 (3)0.0062 (3)0.0047 (3)
Sn10.03092 (12)0.04049 (12)0.03830 (12)0.00709 (8)0.00347 (8)0.00064 (8)
Geometric parameters (Å, º) top
C1—C21.373 (4)C14—C191.383 (4)
C1—C61.391 (4)C14—C151.383 (4)
C1—H1A0.9300C15—C161.389 (5)
C2—C31.378 (4)C15—H15A0.9300
C2—H2A0.9300C16—C171.368 (6)
C3—C41.372 (4)C16—H16A0.9300
C3—H3A0.9300C17—C181.355 (6)
C4—C51.382 (4)C17—H17A0.9300
C4—H4A0.9300C18—C191.386 (5)
C5—C61.390 (4)C18—H18A0.9300
C5—H5A0.9300C19—H19A0.9300
C6—Sn12.127 (3)C20—C211.376 (4)
C7—C121.373 (4)C20—C251.385 (4)
C7—C81.386 (4)C20—S11.780 (3)
C7—Sn12.114 (3)C21—C221.384 (4)
C8—C91.380 (5)C21—H21A0.9300
C8—H8A0.9300C22—C231.376 (4)
C9—C101.365 (5)C22—H22A0.9300
C9—H9A0.9300C23—C241.375 (5)
C10—C111.360 (5)C23—H23A0.9300
C10—H10A0.9300C24—C251.370 (4)
C11—C121.387 (5)C24—H24A0.9300
C11—H11A0.9300C25—H25A0.9300
C12—H12A0.9300Cl1—Sn12.3410 (13)
C13—C141.487 (4)Cl2—Sn12.4567 (14)
C13—S11.831 (3)O1—S11.525 (2)
C13—H13A0.9700O1—Sn12.331 (2)
C13—H13B0.9700
C2—C1—C6120.8 (3)C14—C15—H15A119.8
C2—C1—H1A119.6C16—C15—H15A119.8
C6—C1—H1A119.6C17—C16—C15119.8 (4)
C1—C2—C3120.4 (3)C17—C16—H16A120.1
C1—C2—H2A119.8C15—C16—H16A120.1
C3—C2—H2A119.8C18—C17—C16120.3 (4)
C4—C3—C2119.8 (3)C18—C17—H17A119.9
C4—C3—H3A120.1C16—C17—H17A119.9
C2—C3—H3A120.1C17—C18—C19120.7 (4)
C3—C4—C5120.0 (3)C17—C18—H18A119.6
C3—C4—H4A120.0C19—C18—H18A119.6
C5—C4—H4A120.0C14—C19—C18120.0 (4)
C4—C5—C6120.9 (3)C14—C19—H19A120.0
C4—C5—H5A119.5C18—C19—H19A120.0
C6—C5—H5A119.5C21—C20—C25121.3 (3)
C5—C6—C1118.1 (3)C21—C20—S1121.5 (2)
C5—C6—Sn1122.5 (2)C25—C20—S1117.2 (2)
C1—C6—Sn1119.4 (2)C20—C21—C22119.0 (3)
C12—C7—C8118.6 (3)C20—C21—H21A120.5
C12—C7—Sn1120.1 (2)C22—C21—H21A120.5
C8—C7—Sn1121.3 (2)C23—C22—C21120.2 (3)
C9—C8—C7120.5 (3)C23—C22—H22A119.9
C9—C8—H8A119.8C21—C22—H22A119.9
C7—C8—H8A119.8C24—C23—C22119.8 (3)
C10—C9—C8119.9 (3)C24—C23—H23A120.1
C10—C9—H9A120.0C22—C23—H23A120.1
C8—C9—H9A120.0C25—C24—C23121.2 (3)
C11—C10—C9120.4 (3)C25—C24—H24A119.4
C11—C10—H10A119.8C23—C24—H24A119.4
C9—C10—H10A119.8C24—C25—C20118.5 (3)
C10—C11—C12120.0 (4)C24—C25—H25A120.7
C10—C11—H11A120.0C20—C25—H25A120.7
C12—C11—H11A120.0S1—O1—Sn1127.97 (11)
C7—C12—C11120.5 (3)O1—S1—C20104.46 (13)
C7—C12—H12A119.7O1—S1—C13105.54 (13)
C11—C12—H12A119.7C20—S1—C1398.91 (14)
C14—C13—S1114.6 (2)C7—Sn1—C6126.64 (11)
C14—C13—H13A108.6C7—Sn1—O182.35 (9)
S1—C13—H13A108.6C6—Sn1—O189.84 (9)
C14—C13—H13B108.6C7—Sn1—Cl1116.24 (8)
S1—C13—H13B108.6C6—Sn1—Cl1115.33 (8)
H13A—C13—H13B107.6O1—Sn1—Cl184.46 (6)
C19—C14—C15118.8 (3)C7—Sn1—Cl294.39 (8)
C19—C14—C13121.0 (3)C6—Sn1—Cl297.34 (8)
C15—C14—C13120.2 (3)O1—Sn1—Cl2172.69 (5)
C14—C15—C16120.4 (3)Cl1—Sn1—Cl291.18 (4)

Experimental details

Crystal data
Chemical formula[Sn(C6H5)2Cl2(C13H12OS)]
Mr560.08
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.979 (5), 10.577 (6), 12.104 (4)
α, β, γ (°)87.728 (5), 81.196 (3), 69.995 (5)
V3)1186.2 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.31 × 0.24 × 0.20
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(XSCANS; Bruker, 1996)
Tmin, Tmax0.670, 0.766
No. of measured, independent and
observed [I > 2σ(I)] reflections
4959, 4170, 3546
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.056, 1.01
No. of reflections4170
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.34

Computer programs: XSCANS (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by Shandong Provincial Natural Science Foundation, China (grant No. ZR2010BL012).

References

First citationBao, J. C., Shao, P. X., Wang, R. J., Wang, H. G. & Yao, X. K. (1995). Polyhedron, 14, 927–933.  CrossRef CAS Google Scholar
First citationBruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDang, Y.-Q. (2009). Acta Cryst. E65, m1306.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDavies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). In Tin Chemistry: Fundamentals, Frontiers and Applications. Chichester: John Wiley & Sons.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNg, S. W. & Rheingold, A. L. (1989). J. Organomet. Chem. 378, 339–345.  CAS Google Scholar
First citationSadiq-ur-Rehman, Saeed, S., Ali, S., Shahzadi, S. & Helliwell, M. (2007). Acta Cryst. E63, m1788.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSousa, G. F., Ellena, J., Malta, V. R. S. & Ardisson, J. D. (2009). J. Braz. Chem. Soc. 20, 1441–1447.  CrossRef Google Scholar
First citationTian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem. 99, 1646–1652.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, X.-L., Bao, J.-C., Shao, P.-X., Yao, X.-K., Wang, H.-G. & Wang, R.-J. (1992). Chin. J. Struct. Chem. 11, 373–376.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds