organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1214

Ethyl 1-benzyl-1,2,3,3a,4,10b-hexa­hydro­pyrrolo­[2′,3′:3,4]pyrrolo­[1,2-a]benzimidazole-2-carboxyl­ate

aDepartment of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
*Correspondence e-mail: mjkurth@ucdavis.edu

(Received 29 March 2011; accepted 15 April 2011; online 29 April 2011)

The title mol­ecule, C22H23N3O2, was obtained via an intra­molecular cyclo­addition of an azomethine ylide and an alkene tethered by a benzimidazole unit. The benzoimidazole unit is essentially planar, with an r.m.s. deviation of 0.0087 Å from the nine constituent atoms. It has a cis fusion of the two pyrrolidine rings as well as a cis ester appendage. The two pyrrolidine rings rings have envelope conformations. The crystal packing is stabilized by aromatic ππ stacking of parallel benzimidazole ring systems, with a centroid-to-centroid distance of 3.518 (6) Å. Weak inter­molecular C—H⋯O contacts may also play a role in the stability of the packing.

Related literature

Polycyclic nitro­gen-containing heterocycles form the basic skeleton of numerous alkaloids and physiologically active compounds, see: Southon & Buckingham (1989[Southon, I. W. & Buckingham, J. (1989). Editors. Dictionary of Alkaloids. New York: Chapman & Hall.]). Conformational studies have been reported for related pyrrolidino[3,4-b]pyrrolidine-2-carboxyl­ates obtained from intra­molecular cyclo­addition of azomethine ylides, see: Cheng et al. (2001[Cheng, Q., Zhang, W., Tagamia, Y. & Oritani, T. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 452-456.]); Meng et al. (2007[Meng, L., Fettinger, C. J. & Kurth, J. M. (2007). Org. Lett. 9, 5055-5058.]). For related literature on the pharmaceutical properties of benzimidazole and pyrrolidine, see: Gudmundsson et al. (2000[Gudmundsson, K. S., Tidwell, J., Lippa, N., Koszalka, G. W., van Draanen, N., Ptak, R. G., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2464-2472.]); Hamilton & Steiner (1997[Hamilton, G. S. & Steiner, J. P. (1997). Curr. Pharm. Des. 3, 405-428.]). For related literature on the azomethine ylide cycloaddition in similar systems, Pedrosa et al. (2006[Pedrosa, R., Andres, C., Nieto, J., Perez-Cuadrado, C. & Francisco, I. S. (2006). Eur. J. Org. Chem. pp. 3259-3265.]); Yang et al. (2006[Yang, X., Luo, S., Fang, F., Liu, P., Lu, Y., He, M. & Zhai, H. (2006). Tetrahedron, 62, 2240-2246.]).

[Scheme 1]

Experimental

Crystal data
  • C22H23N3O2

  • Mr = 361.43

  • Monoclinic, P 21 /n

  • a = 9.2498 (5) Å

  • b = 13.8999 (7) Å

  • c = 14.2258 (7) Å

  • β = 90.345 (1)°

  • V = 1829.00 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 90 K

  • 0.39 × 0.16 × 0.13 mm

Data collection
  • Bruker SMART1000 CCD area-detector diffractometer

  • Absorption correction: numerical (SADABS; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.962, Tmax = 0.989

  • 16147 measured reflections

  • 4194 independent reflections

  • 3080 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.095

  • S = 1.09

  • 4194 reflections

  • 336 parameters

  • All H-atom parameters refined

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O12i 1.005 (15) 2.399 (15) 3.3344 (17) 154.5 (12)
C18—H18⋯O12ii 0.968 (15) 2.514 (16) 3.3505 (17) 144.6 (12)
Symmetry codes: (i) -x, -y+2, -z+2; (ii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polycyclic nitrogen-containing heterocycles form the basic skeleton of numerous alkaloids and physiologically active compounds (Southon & Buckingham, 1989). The title polycyclic N-heterocycle, ethyl 1-benzylpyrrolidino[2',3':3,4]pyrrolidino[1,2-a] benzimidazole-2-carboxylate, was obtained via an intramolecular azomethine ylide cycloaddition and possesses two medicinally relevant pharmacophores – benzimidazole and pyrrolidine (Gudmundsson et al., 2000; Hamilton & Steiner, 1997)– in one rigid molecule; the title compound may afford important bioactivity.

In the structure of the title compound (Fig. 1), the benzoimidazole unit is essentially planar, with a root mean square deviation of 0.0087 Å from the nine constituent atoms. The two pyrrolidine rings have envelope forms and are cis fused, which is consistent with conventional azomethine ylide cycloadditions in similar systems (Pedrosa et al., 2006; Yang et al., 2006). However, unlike the previously reported analogues obtained from an intramolecular azomethine ylide and alkene cycloaddition tethered by an oxazolidin-2-one (Cheng et al., 2001), the ester appendage in the title structure was unambiguously assigned as cis to the angular protons H2A and H10A by X-ray crystallography. The crystal packing (Fig. 2) exhibits ππ stacking of parallel benzimidazole ring systems, with a Cg1···Cg2 distance of 3.518 Å [Cg1 and Cg2 are the centroids of the C3A–C8A benzene ring in one molecule and the C2B/N2/C3A/C8A/N8 imidazole ring in the other molecule, respectively]. Intermolecular C—H···O contacts may also play a role in the stability of the packing.

Related literature top

Polycyclic nitrogen-containing heterocycles form the basic skeleton of numerous alkaloids and physiologically active compounds, see: Southon & Buckingham (1989). Conformational studies have been reported for related pyrrolidino[3,4-b]pyrrolidine-2-carboxylates obtained from intramolecular cycloaddition of azomethine ylides, see: Cheng et al. (2001); Meng et al. (2007). For related literature [Please state how each is related], see: Gudmundsson et al. (2000); Hamilton & Steiner (1997); Pedrosa et al. (2006); Yang et al. (2006).

Experimental top

The title compound was prepared from 1-allyl-1H-benzimidazole-2-carbaldehyde, N-benzylglycine ethyl ester hydrochloride, and triethylamine according to the procedure reported by Meng et al. (2007). Colourless blocks of the title compound were obtained by recrystallization from EtOAc/n-hexane 1:1 with slow evaporation at room temperature. These crystals were suitable for X-ray crystallography.

Refinement top

H atoms were located directly in a difference Fourier map and then allowed to refine freely throughout the final convergence stage. The final structure was refined to convergence [Δ/σ 0.001]. The final difference Fourier map was featureless, indicating that the structure is both correct and complete.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound with a view of the C—H···O (dashed lines) and ππ interactions.
ethyl 11-benzyl-1,8,11-triazatetracyclo[7.6.0.02,7.010,14]pentadeca- 2(7),3,5,8-tetraene-12-carboxylate top
Crystal data top
C22H23N3O2F(000) = 768
Mr = 361.43Dx = 1.313 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7133 reflections
a = 9.2498 (5) Åθ = 2.6–27.5°
b = 13.8999 (7) ŵ = 0.09 mm1
c = 14.2258 (7) ÅT = 90 K
β = 90.345 (1)°Block, colourless
V = 1829.00 (16) Å30.39 × 0.16 × 0.13 mm
Z = 4
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
4194 independent reflections
Radiation source: fine-focus sealed tube3080 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and ϕ scansθmax = 27.5°, θmin = 2.1°
Absorption correction: numerical
(SADABS; Blessing, 1995; Sheldrick, 2007)
h = 1212
Tmin = 0.962, Tmax = 0.989k = 1818
16147 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.3839P]
where P = (Fo2 + 2Fc2)/3
4194 reflections(Δ/σ)max = 0.001
336 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C22H23N3O2V = 1829.00 (16) Å3
Mr = 361.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2498 (5) ŵ = 0.09 mm1
b = 13.8999 (7) ÅT = 90 K
c = 14.2258 (7) Å0.39 × 0.16 × 0.13 mm
β = 90.345 (1)°
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
4194 independent reflections
Absorption correction: numerical
(SADABS; Blessing, 1995; Sheldrick, 2007)
3080 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.989Rint = 0.037
16147 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.095All H-atom parameters refined
S = 1.09Δρmax = 0.37 e Å3
4194 reflectionsΔρmin = 0.27 e Å3
336 parameters
Special details top

Experimental. A colourless block with approximate orthogonal dimensions 0.39 × 0.16 × 0.13 mm3 was placed and optically centered on the Bruker SMART1000 CCD system at -183°C. The initial unit cell was indexed using a least-squares analysis of a random set of reflections collected from three series of 0.3° wide ω scans, 10 s per frame, and 25 frames per series that were well distributed in reciprocal space. Four ω-scan data frame series were collected [Mo Kα] with 0.3° wide scans, 30 s per frame and 606, 435, 606, 435 frames collected per series at varying ϕ angles (ϕ = 0°, 90°, 180°, 270°), respectively.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The crystal to detector distance was 4.123 cm, thus providing a complete sphere of data to 2θmax = 55.06°. A total of 23465 reflections were collected and corrected for Lorentz and polarization effects and absorption using Blessing's method (Blessing, 1995) as incorporated into the program SADABS with 4390 unique. All crystallographic calculations were performed on a personal computer (PC) with a Pentium 3.20 GHz processor and 1 GB of extended memory. The SHELXTL program package was implemented to determine the probable space group and set up the initial files. System symmetry, systematic absences and intensity statistics indicated the centrosymmetric monoclinic non-standard space group P21/n (No. 14). The structure was determined by direct methods with the successful location of a majority of the molecule within the asymmetric unit using the program XS. The structure was refined with XL. The 23465 data collected were merged based upon identical indices yielding 16536 data [R(int) = 0.0245] that were truncated to 2θmax = 55.0° resulting in 16147 data that were further merged during least-squares refinement to 4194 unique data [R(int) = 0.0373]. A single least-squares difference Fourier cycle was required to locate the remaining non-H atoms. All non-H atoms were refined anisotropically.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11370 (13)0.83406 (9)0.93388 (9)0.0171 (3)
H10.1841 (15)0.8014 (10)0.8905 (10)0.016 (3)*
N10.03076 (11)0.79245 (7)0.92753 (7)0.0167 (2)
C2A0.02373 (14)0.70281 (9)0.98214 (9)0.0168 (3)
H2A0.1230 (16)0.6828 (10)0.9972 (10)0.021 (4)*
C2B0.05845 (13)0.61970 (9)0.93939 (9)0.0164 (3)
N20.04725 (11)0.56851 (8)0.86159 (7)0.0188 (2)
C3A0.15526 (14)0.49885 (9)0.87233 (9)0.0178 (3)
C40.19276 (15)0.42310 (10)0.81285 (9)0.0215 (3)
H40.1418 (16)0.4118 (10)0.7547 (11)0.024 (4)*
C50.30288 (15)0.36208 (10)0.84115 (10)0.0239 (3)
H50.3296 (16)0.3071 (11)0.8029 (11)0.024 (4)*
C60.37646 (15)0.37548 (10)0.92687 (10)0.0231 (3)
H60.4508 (16)0.3301 (11)0.9460 (10)0.025 (4)*
C70.34082 (14)0.44980 (10)0.98730 (10)0.0205 (3)
H70.3892 (16)0.4588 (10)1.0466 (11)0.023 (4)*
C8A0.22957 (14)0.51062 (9)0.95859 (9)0.0176 (3)
N80.16544 (11)0.58997 (8)0.99883 (7)0.0173 (2)
C90.16669 (15)0.63878 (10)1.08991 (9)0.0191 (3)
H9A0.2688 (16)0.6555 (10)1.1086 (10)0.021 (4)*
H9B0.1242 (15)0.5967 (10)1.1379 (10)0.022 (4)*
C10A0.07245 (14)0.72792 (9)1.06910 (9)0.0180 (3)
H10A0.0137 (14)0.7435 (9)1.1239 (10)0.013 (3)*
C110.15928 (15)0.81681 (10)1.03687 (9)0.0193 (3)
H11A0.2653 (18)0.8059 (11)1.0440 (11)0.029 (4)*
H11B0.1335 (16)0.8755 (11)1.0745 (11)0.025 (4)*
C120.11502 (14)0.93996 (9)0.90881 (9)0.0182 (3)
O120.01249 (10)0.98789 (7)0.88602 (7)0.0248 (2)
C130.27147 (16)1.07485 (10)0.89143 (10)0.0225 (3)
H13A0.2190 (16)1.1145 (11)0.9382 (11)0.023 (4)*
H13B0.2268 (16)1.0867 (10)0.8302 (11)0.022 (4)*
O130.25101 (10)0.97384 (6)0.91573 (6)0.0201 (2)
C140.43191 (16)1.09273 (11)0.89238 (11)0.0251 (3)
H14A0.4769 (18)1.0798 (12)0.9539 (13)0.037 (5)*
H14B0.4516 (18)1.1615 (13)0.8784 (11)0.038 (5)*
H14C0.4819 (17)1.0527 (12)0.8441 (12)0.035 (4)*
C150.08571 (14)0.78122 (10)0.83087 (9)0.0179 (3)
H15A0.0297 (15)0.7327 (10)0.7948 (10)0.018 (4)*
H15B0.0739 (15)0.8460 (11)0.8007 (10)0.018 (4)*
C160.24288 (14)0.75165 (9)0.82970 (9)0.0178 (3)
C170.28700 (15)0.66465 (10)0.79108 (9)0.0205 (3)
H170.2161 (17)0.6209 (11)0.7651 (11)0.030 (4)*
C180.43276 (15)0.63824 (10)0.79093 (9)0.0228 (3)
H180.4629 (16)0.5773 (11)0.7644 (11)0.027 (4)*
C190.53434 (15)0.69891 (11)0.83067 (9)0.0232 (3)
H190.6361 (17)0.6801 (11)0.8303 (10)0.024 (4)*
C200.49157 (15)0.78651 (10)0.86906 (9)0.0224 (3)
H200.5630 (16)0.8300 (11)0.8959 (10)0.022 (4)*
C210.34683 (14)0.81280 (10)0.86831 (9)0.0205 (3)
H210.3146 (16)0.8746 (11)0.8952 (10)0.022 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0135 (6)0.0187 (6)0.0189 (6)0.0002 (5)0.0018 (5)0.0014 (5)
N10.0149 (5)0.0182 (6)0.0170 (5)0.0009 (4)0.0002 (4)0.0011 (4)
C2A0.0146 (6)0.0196 (7)0.0161 (6)0.0012 (5)0.0012 (5)0.0005 (5)
C2B0.0145 (6)0.0186 (6)0.0162 (6)0.0027 (5)0.0009 (5)0.0025 (5)
N20.0194 (6)0.0191 (6)0.0180 (5)0.0006 (4)0.0011 (4)0.0000 (4)
C3A0.0165 (6)0.0193 (6)0.0177 (6)0.0013 (5)0.0030 (5)0.0042 (5)
C40.0244 (7)0.0236 (7)0.0164 (7)0.0002 (6)0.0044 (5)0.0006 (5)
C50.0251 (7)0.0226 (7)0.0242 (7)0.0017 (6)0.0096 (6)0.0001 (6)
C60.0172 (7)0.0221 (7)0.0300 (8)0.0013 (6)0.0049 (6)0.0053 (6)
C70.0159 (7)0.0225 (7)0.0230 (7)0.0026 (5)0.0004 (5)0.0050 (5)
C8A0.0173 (6)0.0179 (6)0.0177 (6)0.0027 (5)0.0028 (5)0.0026 (5)
N80.0170 (6)0.0184 (5)0.0165 (5)0.0004 (4)0.0005 (4)0.0013 (4)
C90.0207 (7)0.0208 (7)0.0157 (6)0.0023 (5)0.0014 (5)0.0002 (5)
C10A0.0179 (6)0.0216 (7)0.0146 (6)0.0013 (5)0.0022 (5)0.0014 (5)
C110.0194 (7)0.0182 (7)0.0204 (7)0.0005 (5)0.0029 (5)0.0004 (5)
C120.0187 (7)0.0213 (7)0.0146 (6)0.0013 (5)0.0022 (5)0.0021 (5)
O120.0232 (5)0.0226 (5)0.0284 (5)0.0044 (4)0.0022 (4)0.0015 (4)
C130.0289 (8)0.0154 (7)0.0233 (7)0.0024 (6)0.0026 (6)0.0023 (5)
O130.0207 (5)0.0161 (5)0.0235 (5)0.0020 (4)0.0003 (4)0.0015 (4)
C140.0297 (8)0.0199 (7)0.0257 (8)0.0066 (6)0.0002 (6)0.0008 (6)
C150.0159 (6)0.0221 (7)0.0156 (6)0.0008 (5)0.0010 (5)0.0000 (5)
C160.0173 (7)0.0229 (7)0.0130 (6)0.0012 (5)0.0013 (5)0.0031 (5)
C170.0201 (7)0.0248 (7)0.0164 (6)0.0032 (6)0.0009 (5)0.0009 (5)
C180.0242 (7)0.0247 (7)0.0193 (7)0.0027 (6)0.0052 (5)0.0014 (6)
C190.0165 (7)0.0322 (8)0.0209 (7)0.0019 (6)0.0033 (5)0.0043 (6)
C200.0171 (7)0.0305 (8)0.0195 (7)0.0047 (6)0.0005 (5)0.0010 (6)
C210.0206 (7)0.0232 (7)0.0177 (6)0.0010 (6)0.0011 (5)0.0008 (5)
Geometric parameters (Å, º) top
C1—N11.4582 (16)C10A—C111.5448 (18)
C1—C121.5147 (18)C10A—H10A0.977 (14)
C1—C111.5409 (18)C11—H11A0.997 (16)
C1—H11.008 (14)C11—H11B1.005 (15)
N1—C2A1.4696 (16)C12—O121.2019 (16)
N1—C151.4714 (16)C12—O131.3462 (15)
C2A—C2B1.5126 (18)C13—O131.4584 (16)
C2A—C10A1.5590 (17)C13—C141.505 (2)
C2A—H2A0.984 (15)C13—H13A0.993 (15)
C2B—N21.3193 (16)C13—H13B0.976 (15)
C2B—N81.3620 (16)C14—H14A0.983 (18)
N2—C3A1.3990 (17)C14—H14B0.994 (18)
C3A—C41.3959 (18)C14—H14C0.999 (17)
C3A—C8A1.4125 (18)C15—C161.5108 (18)
C4—C51.383 (2)C15—H15A0.994 (14)
C4—H40.963 (16)C15—H15B1.004 (15)
C5—C61.405 (2)C16—C171.3885 (19)
C5—H50.971 (15)C16—C211.3982 (18)
C6—C71.385 (2)C17—C181.3973 (19)
C6—H60.971 (16)C17—H170.969 (16)
C7—C8A1.3912 (18)C18—C191.386 (2)
C7—H70.961 (15)C18—H180.967 (16)
C8A—N81.3785 (16)C19—C201.391 (2)
N8—C91.4625 (16)C19—H190.977 (15)
C9—C10A1.5425 (18)C20—C211.3879 (19)
C9—H9A1.006 (15)C20—H200.975 (15)
C9—H9B0.983 (15)C21—H210.986 (15)
N1—C1—C12112.30 (10)C9—C10A—H10A110.0 (8)
N1—C1—C11104.04 (10)C11—C10A—H10A110.6 (8)
C12—C1—C11111.87 (11)C2A—C10A—H10A111.4 (8)
N1—C1—H1112.2 (8)C1—C11—C10A105.48 (10)
C12—C1—H1106.7 (8)C1—C11—H11A112.6 (9)
C11—C1—H1109.7 (8)C10A—C11—H11A111.2 (9)
C1—N1—C2A105.42 (10)C1—C11—H11B108.4 (9)
C1—N1—C15114.29 (10)C10A—C11—H11B111.5 (9)
C2A—N1—C15114.70 (10)H11A—C11—H11B107.8 (12)
N1—C2A—C2B117.12 (10)O12—C12—O13124.14 (12)
N1—C2A—C10A104.65 (10)O12—C12—C1126.49 (12)
C2B—C2A—C10A101.79 (10)O13—C12—C1109.37 (11)
N1—C2A—H2A108.5 (8)O13—C13—C14106.64 (11)
C2B—C2A—H2A110.1 (9)O13—C13—H13A108.1 (9)
C10A—C2A—H2A114.8 (8)C14—C13—H13A112.9 (9)
N2—C2B—N8114.23 (11)O13—C13—H13B108.6 (9)
N2—C2B—C2A135.40 (12)C14—C13—H13B113.1 (9)
N8—C2B—C2A110.31 (11)H13A—C13—H13B107.4 (12)
C2B—N2—C3A103.25 (11)C12—O13—C13116.23 (10)
C4—C3A—N2129.48 (12)C13—C14—H14A112.9 (10)
C4—C3A—C8A119.52 (12)C13—C14—H14B109.8 (10)
N2—C3A—C8A110.99 (11)H14A—C14—H14B106.1 (14)
C5—C4—C3A118.11 (13)C13—C14—H14C111.3 (10)
C5—C4—H4120.4 (9)H14A—C14—H14C108.3 (14)
C3A—C4—H4121.5 (9)H14B—C14—H14C108.2 (13)
C4—C5—C6121.55 (13)N1—C15—C16111.48 (10)
C4—C5—H5120.6 (9)N1—C15—H15A112.1 (8)
C6—C5—H5117.8 (9)C16—C15—H15A108.3 (8)
C7—C6—C5121.44 (13)N1—C15—H15B105.5 (8)
C7—C6—H6118.8 (9)C16—C15—H15B110.3 (8)
C5—C6—H6119.7 (9)H15A—C15—H15B109.2 (11)
C6—C7—C8A116.70 (13)C17—C16—C21118.93 (12)
C6—C7—H7122.1 (9)C17—C16—C15121.45 (12)
C8A—C7—H7121.2 (9)C21—C16—C15119.62 (12)
N8—C8A—C7133.13 (12)C16—C17—C18120.71 (13)
N8—C8A—C3A104.19 (11)C16—C17—H17119.9 (9)
C7—C8A—C3A122.68 (12)C18—C17—H17119.3 (9)
C2B—N8—C8A107.32 (10)C19—C18—C17119.74 (13)
C2B—N8—C9114.28 (11)C19—C18—H18119.8 (9)
C8A—N8—C9137.56 (11)C17—C18—H18120.4 (9)
N8—C9—C10A101.61 (10)C18—C19—C20120.07 (13)
N8—C9—H9A110.0 (8)C18—C19—H19119.4 (9)
C10A—C9—H9A113.2 (8)C20—C19—H19120.6 (9)
N8—C9—H9B109.8 (9)C21—C20—C19119.96 (13)
C10A—C9—H9B112.6 (9)C21—C20—H20119.7 (9)
H9A—C9—H9B109.4 (12)C19—C20—H20120.3 (9)
C9—C10A—C11113.90 (11)C20—C21—C16120.58 (13)
C9—C10A—C2A106.95 (10)C20—C21—H21121.1 (9)
C11—C10A—C2A103.81 (10)C16—C21—H21118.4 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O12i1.005 (15)2.399 (15)3.3344 (17)154.5 (12)
C18—H18···O12ii0.968 (15)2.514 (16)3.3505 (17)144.6 (12)
Symmetry codes: (i) x, y+2, z+2; (ii) x1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC22H23N3O2
Mr361.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)9.2498 (5), 13.8999 (7), 14.2258 (7)
β (°) 90.345 (1)
V3)1829.00 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.39 × 0.16 × 0.13
Data collection
DiffractometerBruker SMART1000 CCD area-detector
diffractometer
Absorption correctionNumerical
(SADABS; Blessing, 1995; Sheldrick, 2007)
Tmin, Tmax0.962, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
16147, 4194, 3080
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.09
No. of reflections4194
No. of parameters336
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.37, 0.27

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O12i1.005 (15)2.399 (15)3.3344 (17)154.5 (12)
C18—H18···O12ii0.968 (15)2.514 (16)3.3505 (17)144.6 (12)
Symmetry codes: (i) x, y+2, z+2; (ii) x1/2, y1/2, z+3/2.
 

Acknowledgements

The authors thank the National Science Foundation (grant No. CHE-0910870) and the National Institutes of Health (grant No. GM0891583) for financial support of this work.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, Q., Zhang, W., Tagamia, Y. & Oritani, T. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 452–456.  CrossRef Google Scholar
First citationGudmundsson, K. S., Tidwell, J., Lippa, N., Koszalka, G. W., van Draanen, N., Ptak, R. G., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2464–2472.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHamilton, G. S. & Steiner, J. P. (1997). Curr. Pharm. Des. 3, 405–428.  CAS Google Scholar
First citationMeng, L., Fettinger, C. J. & Kurth, J. M. (2007). Org. Lett. 9, 5055–5058.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPedrosa, R., Andres, C., Nieto, J., Perez-Cuadrado, C. & Francisco, I. S. (2006). Eur. J. Org. Chem. pp. 3259–3265.  CrossRef Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouthon, I. W. & Buckingham, J. (1989). Editors. Dictionary of Alkaloids. New York: Chapman & Hall.  Google Scholar
First citationYang, X., Luo, S., Fang, F., Liu, P., Lu, Y., He, M. & Zhai, H. (2006). Tetrahedron, 62, 2240–2246.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1214
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds