organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1072-o1073

(E)-3-(2-{2-[1-(3-Hy­dr­oxy­phen­yl)ethyl­­idene]hydrazin­yl}-1,3-thia­zol-4-yl)-2H-chromen-2-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 30 March 2011; accepted 1 April 2011; online 7 April 2011)

In the title compound, C20H15N3O3S, the thia­zole ring is approximately planar, with a maximum deviation of 0.003 (1) Å, and makes dihedral angles of 7.44 (6) and 1.88 (6)° with the hy­droxy-substituted phenyl ring and the pyran ring, respectively. The hydroxyl group is disordered over two sets of sites, with an occupancy ratio of 0.567 (3):0.433 (3). In the crystal, the major disorder component mol­ecules are connected via bifurcated (three-centre) O—H⋯O and C—H⋯O hydrogen bonds, generating R12(6) motifs and resulting in supra­molecular chains along the a axis. In the minor occupancy component, however, mol­ecules are connected via C—H⋯O hydrogen bonds, forming supra­molecular chains along the b axis. Furthermore, the crystal structure is stabilized by ππ inter­actions between the thia­zole rings [centroid–centroid distance = 3.5476 (7) Å].

Related literature

For details of coumarin derivatives, see: Raghu et al. (2009[Raghu, M., Nagaraj, A. & Sanjeeva, R. C. (2009). J. Heterocycl. Chem. 46, 261-267.]); Gursoy & Karali (2003[Gursoy, A. & Karali, N. (2003). Turk. J. Chem. 27, 545-552.]); Chimenti et al. (2010[Chimenti, F., Bizzarri, B., Bolasco, A., Secci, D., Chimenti, P., Granese, A., Carradori, S., D'Ascenzio, M., Scaltrito, M. M. & Sisto, F. (2010). J. Heterocycl. Chem. 47, 1269-1274.]); Kamal et al. (2009[Kamal, A., Adil, S., Tamboli, J., Siddardha, B. & Murthy, U. (2009). Lett. Drug Des. Discov. 6, 201-209.]); Kalkhambkar et al. (2007[Kalkhambkar, R., Kulkarni, G., Shivkumar, H. & Rao, R. (2007). Eur. J. Med. Chem. 42, 1272-1276.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For the synthesis of (E)-2-(1-(3-hy­droxy­phen­yl)ethyl­idene)hydrazinecarbothio­amide, see: Greenbaum et al. (2004[Greenbaum, D. C., Mackey, Z., Hansell, E., Doyle, P., Gut, J., Caffrey, C. R., Lehrman, J., Rosenthal, P. J., McKerrow, J. H. & Chibale, K. (2004). J. Med. Chem. 47, 3212-3219.]) and for that of 3-[ω-bromo­acetyl coumarin, see: Nadeem et al. (2009[Nadeem, S., Faiz, M. A. & Khan, S. A. (2009). Acta Pol. Pharm. Drug Res. 66, 161-167.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15N3O3S

  • Mr = 377.41

  • Monoclinic, P 21 /c

  • a = 9.1569 (1) Å

  • b = 9.9070 (2) Å

  • c = 18.7478 (3) Å

  • β = 92.040 (1)°

  • V = 1699.67 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.34 × 0.32 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.929, Tmax = 0.979

  • 29914 measured reflections

  • 5400 independent reflections

  • 4641 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.105

  • S = 1.07

  • 5400 reflections

  • 271 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1OA⋯O2i 0.89 (4) 1.89 (4) 2.7693 (19) 171 (4)
C19—H19A⋯O2i 0.93 2.59 3.3020 (17) 133
Symmetry code: (i) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarin derivatives containing the thiazolyl unit exhibit promising antimicrobial activities against different microbial strains (Raghu et al., 2009), including Mycobacterium tuberculosis (Gursoy et al., 2003) and Helicobacter pylori (Chimenti et al., 2010). These types of compounds are also reported to be good anticancer (Kamal et al., 2009), analgesic and anti-inflammatory agents (Kalkhambkar et al., 2007). The title compound is a new derivative of coumarin with the thiazole ring. We present here its crystal structure.

In the molecular structure of the compound, (Fig.1), the thiazole (S1/N1/C10–C12) ring is approximately planar, with a maximum deviation of 0.003 (1) Å for atom C11. The central thiazole (S1/N1/C10–C12) ring makes dihedral angles of 7.44 (6)° and 1.88 (6)° with the hydroxyl- substituted phenyl (C14–C19) ring and the pyran (O1/C1,C2/C7–C9) ring, respectively. The hydroxyl group is disordered over two sites, with an occupancy ratio 0.567 (3):0.433 (3).

In the crystal packing (Fig. 2), the major component molecules are connected via bifurcated O3—H1OA···O2 and C19—H19A···O2 hydrogen bonds, generating R12(6) motifs, (Bernstein et al., 1995), resulting in supramolecular chains along the a-axis. In the minor component, however, molecules are connected via C19—H19A···O2 hydrogen bonds, forming one-dimensional supramolecular chains along the b-axis (Fig. 3). Furthermore, the crystal structure is stabilized by π···π interactions between the thiazole (S1/N1/C10–C12) rings [centroid-centroid distance = 3.5476 (7) Å; -x, -y, 1-z].

Related literature top

For details of coumarin derivatives, see: Raghu et al. (2009); Gursoy & Karali (2003); Chimenti et al. (2010); Kamal et al. (2009); Kalkhambkar et al. (2007). For graph-set notation, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For the synthesis of (E)-2-(1-(3-hydroxyphenyl)ethylidene)hydrazinecarbothioamide, see: Greenbaum et al. (2004) and for that of 3-[ω-bromoacetyl coumarin, see: Nadeem et al. (2009).

Experimental top

(E)-2-(1-(3-Hydroxyphenyl)ethylidene)hydrazinecarbothioamide (Greenbaum et al., 2004) and 3-[ω-bromoacetyl coumarin] (Nadeem et al., 2009) were synthesized as reported in the literature. The title compound was prepared by treating (E)-2-(1-(3-hydroxyphenyl)ethylidene)hydrazinecarbothioamide (2.5 mmol) with 3-ω-bromoacetylcoumarin (2.5 mmol) in a chloroform-ethanol (2:1) mixture. The reaction mixture was refluxed for 2–3 hours at 60°C to yield dense yellow precipitates. The precipitates were filtered and boiled with water containing sodium acetate. The title compound was recrystallized as golden crystals from ethanol:chloroform (3:1).

Refinement top

Atoms H1N2, H1OA, H1OB and H11 were located in a difference Fourier map and refined freely [N—H = 0.85 (2) Å; O—H = 0.80 (5) and 0.89 (4) Å; C—H = 0.965 (17) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93 Å for aromatic C and C—H = 0.96 Å for methyl C] and were refined using a riding model, with Uiso(H) = kUeq(C), where k = 1.2 for aromatic C and 1.5 for methyl C. A rotating group model was applied to the methyl groups. The hydroxyl group is disordered over two sites, with an occupancy ratio 0.567 (3):0.433 (3).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. The open bonds represents the minor disordered components.
[Figure 2] Fig. 2. The crystal packing of the title compound, involving the major disorder components of the molecules. Dashed lines indicate hydrogen bonds.
[Figure 3] Fig. 3. The crystal packing of the title compound, involving the minor disorder components of the molecules. Dashed lines indicate hydrogen bonds.
(E)-3-(2-{2-[1-(3-Hydroxyphenyl)ethylidene]hydrazinyl}-1,3- thiazol-4-yl)-2H-chromen-2-one top
Crystal data top
C20H15N3O3SF(000) = 784
Mr = 377.41Dx = 1.475 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9987 reflections
a = 9.1569 (1) Åθ = 3.0–30.8°
b = 9.9070 (2) ŵ = 0.22 mm1
c = 18.7478 (3) ÅT = 100 K
β = 92.040 (1)°Plate, yellow
V = 1699.67 (5) Å30.34 × 0.32 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5400 independent reflections
Radiation source: fine-focus sealed tube4641 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 31.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1213
Tmin = 0.929, Tmax = 0.979k = 1314
29914 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.8634P]
where P = (Fo2 + 2Fc2)/3
5400 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C20H15N3O3SV = 1699.67 (5) Å3
Mr = 377.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1569 (1) ŵ = 0.22 mm1
b = 9.9070 (2) ÅT = 100 K
c = 18.7478 (3) Å0.34 × 0.32 × 0.10 mm
β = 92.040 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5400 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4641 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.979Rint = 0.030
29914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.39 e Å3
5400 reflectionsΔρmin = 0.30 e Å3
271 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.17023 (3)0.06980 (3)0.402397 (16)0.02037 (8)
O10.19100 (10)0.47170 (9)0.56457 (5)0.01965 (18)
O20.14551 (11)0.40120 (11)0.45684 (5)0.0273 (2)
O30.75724 (18)0.54395 (18)0.31831 (9)0.0234 (5)0.567 (3)
H1OA0.797 (4)0.556 (4)0.362 (2)0.040 (10)*0.567 (3)
O3A0.4193 (3)0.2752 (3)0.18640 (12)0.0273 (7)0.433 (3)
H1OB0.363 (5)0.216 (5)0.196 (2)0.028 (11)*0.433 (3)
N10.15618 (11)0.10211 (11)0.53942 (6)0.0183 (2)
N20.31472 (13)0.07177 (12)0.50380 (6)0.0227 (2)
N30.36764 (12)0.13166 (12)0.44404 (6)0.0202 (2)
C10.00034 (13)0.28351 (13)0.62488 (7)0.0184 (2)
H1A0.06260.21980.64560.022*
C20.07700 (13)0.37365 (13)0.67004 (7)0.0184 (2)
C30.06263 (14)0.37246 (14)0.74487 (7)0.0228 (3)
H3A0.00110.31010.76770.027*
C40.13980 (14)0.46385 (14)0.78482 (7)0.0231 (3)
H4A0.13040.46250.83440.028*
C50.23196 (14)0.55839 (14)0.75060 (7)0.0214 (2)
H5A0.28310.61980.77780.026*
C60.24800 (14)0.56170 (13)0.67707 (7)0.0203 (2)
H6A0.30890.62480.65440.024*
C70.17091 (13)0.46850 (13)0.63785 (6)0.0175 (2)
C80.11845 (13)0.38669 (13)0.52030 (7)0.0187 (2)
C90.01694 (13)0.28851 (12)0.55271 (6)0.0167 (2)
C100.06365 (13)0.19757 (12)0.50645 (6)0.0169 (2)
C110.05871 (14)0.19493 (13)0.43358 (7)0.0194 (2)
C120.21703 (13)0.03050 (13)0.49064 (7)0.0183 (2)
C130.45893 (13)0.23030 (13)0.45086 (7)0.0186 (2)
C140.50587 (13)0.28993 (12)0.38266 (7)0.0179 (2)
C150.43761 (13)0.25098 (13)0.31754 (7)0.0189 (2)
H15A0.36320.18710.31710.023*
C160.48063 (14)0.30725 (13)0.25395 (7)0.0210 (2)
H16A0.43590.27960.21110.025*0.567 (3)
C170.58993 (15)0.40455 (14)0.25351 (7)0.0232 (3)
H17A0.61790.44260.21080.028*
C180.65664 (14)0.44400 (14)0.31770 (8)0.0232 (3)
H18A0.72920.50970.31780.028*0.433 (3)
C190.61671 (14)0.38669 (13)0.38209 (7)0.0210 (2)
H19A0.66390.41290.42460.025*
C200.51371 (16)0.28472 (15)0.52150 (7)0.0262 (3)
H20A0.53740.21110.55310.039*
H20B0.59950.33830.51480.039*
H20C0.43940.33960.54180.039*
H1N20.338 (2)0.090 (2)0.5468 (11)0.038 (5)*
H110.0039 (18)0.2534 (18)0.4013 (9)0.029 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02210 (15)0.02380 (16)0.01531 (14)0.00190 (11)0.00199 (11)0.00074 (11)
O10.0222 (4)0.0196 (4)0.0170 (4)0.0039 (3)0.0006 (3)0.0017 (3)
O20.0337 (5)0.0307 (5)0.0174 (4)0.0105 (4)0.0017 (4)0.0032 (4)
O30.0226 (8)0.0261 (9)0.0213 (9)0.0086 (6)0.0010 (6)0.0031 (7)
O3A0.0396 (14)0.0249 (13)0.0179 (11)0.0025 (10)0.0077 (9)0.0001 (9)
N10.0189 (5)0.0191 (5)0.0171 (5)0.0013 (4)0.0016 (4)0.0008 (4)
N20.0244 (5)0.0262 (6)0.0176 (5)0.0070 (4)0.0024 (4)0.0001 (4)
N30.0191 (5)0.0224 (5)0.0192 (5)0.0025 (4)0.0032 (4)0.0006 (4)
C10.0187 (5)0.0186 (6)0.0178 (5)0.0025 (4)0.0005 (4)0.0002 (4)
C20.0178 (5)0.0197 (6)0.0176 (5)0.0012 (4)0.0006 (4)0.0014 (4)
C30.0225 (6)0.0271 (7)0.0186 (6)0.0057 (5)0.0026 (5)0.0014 (5)
C40.0223 (6)0.0289 (7)0.0179 (6)0.0029 (5)0.0013 (5)0.0045 (5)
C50.0193 (6)0.0213 (6)0.0236 (6)0.0009 (5)0.0018 (5)0.0048 (5)
C60.0186 (5)0.0182 (6)0.0240 (6)0.0015 (4)0.0000 (5)0.0001 (5)
C70.0178 (5)0.0179 (5)0.0167 (5)0.0012 (4)0.0004 (4)0.0001 (4)
C80.0195 (5)0.0176 (5)0.0190 (6)0.0007 (4)0.0010 (4)0.0011 (4)
C90.0167 (5)0.0159 (5)0.0174 (5)0.0003 (4)0.0000 (4)0.0005 (4)
C100.0172 (5)0.0166 (5)0.0169 (5)0.0009 (4)0.0011 (4)0.0010 (4)
C110.0219 (6)0.0200 (6)0.0164 (5)0.0011 (4)0.0003 (4)0.0002 (4)
C120.0177 (5)0.0199 (6)0.0174 (5)0.0007 (4)0.0014 (4)0.0009 (4)
C130.0169 (5)0.0194 (6)0.0197 (6)0.0001 (4)0.0015 (4)0.0021 (4)
C140.0162 (5)0.0175 (5)0.0202 (6)0.0017 (4)0.0019 (4)0.0018 (4)
C150.0188 (5)0.0167 (5)0.0213 (6)0.0005 (4)0.0021 (4)0.0028 (4)
C160.0240 (6)0.0191 (6)0.0201 (6)0.0022 (5)0.0024 (5)0.0026 (5)
C170.0266 (6)0.0200 (6)0.0234 (6)0.0014 (5)0.0071 (5)0.0015 (5)
C180.0208 (6)0.0192 (6)0.0297 (7)0.0026 (5)0.0037 (5)0.0004 (5)
C190.0183 (5)0.0204 (6)0.0244 (6)0.0011 (4)0.0002 (5)0.0016 (5)
C200.0286 (7)0.0286 (7)0.0213 (6)0.0041 (5)0.0002 (5)0.0043 (5)
Geometric parameters (Å, º) top
S1—C111.7216 (13)C5—C61.3815 (18)
S1—C121.7382 (13)C5—H5A0.9300
O1—C81.3706 (15)C6—C71.3887 (17)
O1—C71.3799 (15)C6—H6A0.9300
O2—C81.2151 (15)C8—C91.4626 (17)
O3—C181.352 (2)C9—C101.4678 (17)
O3—H1OA0.89 (4)C10—C111.3655 (17)
O3A—C161.403 (3)C11—H110.965 (17)
O3A—H1OB0.80 (5)C13—C141.4858 (17)
N1—C121.2987 (16)C13—C201.4996 (18)
N1—C101.3990 (16)C14—C191.3964 (17)
N2—C121.3682 (16)C14—C151.4057 (17)
N2—N31.3713 (15)C15—C161.3858 (18)
N2—H1N20.85 (2)C15—H15A0.9300
N3—C131.2894 (16)C16—C171.3898 (18)
C1—C91.3570 (17)C16—H16A0.9300
C1—C21.4316 (17)C17—C181.386 (2)
C1—H1A0.9300C17—H17A0.9300
C2—C71.3964 (17)C18—C191.3946 (19)
C2—C31.4044 (17)C18—H18A0.9300
C3—C41.3849 (18)C19—H19A0.9300
C3—H3A0.9300C20—H20A0.9600
C4—C51.4009 (19)C20—H20B0.9600
C4—H4A0.9300C20—H20C0.9600
C11—S1—C1288.13 (6)C10—C11—S1110.77 (10)
C8—O1—C7122.58 (10)C10—C11—H11127.8 (10)
C18—O3—H1OA111 (2)S1—C11—H11121.4 (10)
C16—O3A—H1OB102 (3)N1—C12—N2124.87 (12)
C12—N1—C10109.05 (10)N1—C12—S1116.77 (10)
C12—N2—N3114.89 (11)N2—C12—S1118.36 (9)
C12—N2—H1N2118.2 (13)N3—C13—C14114.99 (11)
N3—N2—H1N2126.9 (13)N3—C13—C20123.73 (12)
C13—N3—N2119.58 (11)C14—C13—C20121.27 (11)
C9—C1—C2121.80 (11)C19—C14—C15118.86 (12)
C9—C1—H1A119.1C19—C14—C13120.81 (11)
C2—C1—H1A119.1C15—C14—C13120.33 (11)
C7—C2—C3118.15 (11)C16—C15—C14120.36 (12)
C7—C2—C1118.13 (11)C16—C15—H15A119.8
C3—C2—C1123.71 (12)C14—C15—H15A119.8
C4—C3—C2120.22 (12)C15—C16—C17120.73 (12)
C4—C3—H3A119.9C15—C16—O3A124.63 (15)
C2—C3—H3A119.9C17—C16—O3A114.63 (15)
C3—C4—C5120.00 (12)C15—C16—H16A119.6
C3—C4—H4A120.0C17—C16—H16A119.6
C5—C4—H4A120.0O3A—C16—H16A5.1
C6—C5—C4120.91 (12)C18—C17—C16119.04 (12)
C6—C5—H5A119.5C18—C17—H17A120.5
C4—C5—H5A119.5C16—C17—H17A120.5
C5—C6—C7118.34 (12)O3—C18—C17119.52 (14)
C5—C6—H6A120.8O3—C18—C19119.37 (14)
C7—C6—H6A120.8C17—C18—C19121.04 (12)
O1—C7—C6117.37 (11)O3—C18—H18A2.7
O1—C7—C2120.27 (11)C17—C18—H18A119.5
C6—C7—C2122.37 (12)C19—C18—H18A119.5
O2—C8—O1115.71 (11)C18—C19—C14119.94 (12)
O2—C8—C9126.15 (12)C18—C19—H19A120.0
O1—C8—C9118.14 (11)C14—C19—H19A120.0
C1—C9—C8119.05 (11)C13—C20—H20A109.5
C1—C9—C10121.73 (11)C13—C20—H20B109.5
C8—C9—C10119.22 (11)H20A—C20—H20B109.5
C11—C10—N1115.28 (11)C13—C20—H20C109.5
C11—C10—C9127.12 (11)H20A—C20—H20C109.5
N1—C10—C9117.59 (10)H20B—C20—H20C109.5
C12—N2—N3—C13179.10 (12)C8—C9—C10—N1177.98 (11)
C9—C1—C2—C70.02 (19)N1—C10—C11—S10.55 (14)
C9—C1—C2—C3179.70 (13)C9—C10—C11—S1179.34 (10)
C7—C2—C3—C40.2 (2)C12—S1—C11—C100.43 (10)
C1—C2—C3—C4179.48 (13)C10—N1—C12—N2179.60 (12)
C2—C3—C4—C50.4 (2)C10—N1—C12—S10.00 (14)
C3—C4—C5—C60.3 (2)N3—N2—C12—N1178.57 (12)
C4—C5—C6—C70.28 (19)N3—N2—C12—S11.03 (15)
C8—O1—C7—C6178.55 (11)C11—S1—C12—N10.26 (11)
C8—O1—C7—C21.91 (17)C11—S1—C12—N2179.37 (11)
C5—C6—C7—O1178.62 (11)N2—N3—C13—C14178.40 (11)
C5—C6—C7—C20.91 (19)N2—N3—C13—C200.57 (19)
C3—C2—C7—O1178.63 (11)N3—C13—C14—C19172.60 (12)
C1—C2—C7—O11.64 (18)C20—C13—C14—C198.40 (18)
C3—C2—C7—C60.89 (19)N3—C13—C14—C158.30 (17)
C1—C2—C7—C6178.84 (12)C20—C13—C14—C15170.69 (12)
C7—O1—C8—O2179.37 (11)C19—C14—C15—C160.43 (18)
C7—O1—C8—C90.49 (17)C13—C14—C15—C16179.54 (11)
C2—C1—C9—C81.41 (18)C14—C15—C16—C171.10 (19)
C2—C1—C9—C10178.93 (11)C14—C15—C16—O3A179.92 (16)
O2—C8—C9—C1178.99 (13)C15—C16—C17—C180.56 (19)
O1—C8—C9—C11.17 (17)O3A—C16—C17—C18179.49 (15)
O2—C8—C9—C100.7 (2)C16—C17—C18—O3176.29 (14)
O1—C8—C9—C10179.16 (11)C16—C17—C18—C190.7 (2)
C12—N1—C10—C110.35 (15)O3—C18—C19—C14175.63 (14)
C12—N1—C10—C9179.55 (11)C17—C18—C19—C141.3 (2)
C1—C9—C10—C11178.43 (13)C15—C14—C19—C180.76 (18)
C8—C9—C10—C111.90 (19)C13—C14—C19—C18178.35 (12)
C1—C9—C10—N11.68 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1OA···O2i0.89 (4)1.89 (4)2.7693 (19)171 (4)
C19—H19A···O2i0.932.593.3020 (17)133
Symmetry code: (i) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC20H15N3O3S
Mr377.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.1569 (1), 9.9070 (2), 18.7478 (3)
β (°) 92.040 (1)
V3)1699.67 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.34 × 0.32 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.929, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
29914, 5400, 4641
Rint0.030
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.105, 1.07
No. of reflections5400
No. of parameters271
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1OA···O2i0.89 (4)1.89 (4)2.7693 (19)171 (4)
C19—H19A···O2i0.932.593.3020 (17)133
Symmetry code: (i) x+1, y1, z.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

AA, HO, CKL thank the Malaysian Government and Universiti Sains Malaysia (USM) for a grant [1001/PKimia/811133] to conduct this work. AA also thanks USM for a fellowship. HKF and MH thank the Malaysian Government and USM for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks USM for a post-doctoral research fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChimenti, F., Bizzarri, B., Bolasco, A., Secci, D., Chimenti, P., Granese, A., Carradori, S., D'Ascenzio, M., Scaltrito, M. M. & Sisto, F. (2010). J. Heterocycl. Chem. 47, 1269–1274.  CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGreenbaum, D. C., Mackey, Z., Hansell, E., Doyle, P., Gut, J., Caffrey, C. R., Lehrman, J., Rosenthal, P. J., McKerrow, J. H. & Chibale, K. (2004). J. Med. Chem. 47, 3212–3219.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGursoy, A. & Karali, N. (2003). Turk. J. Chem. 27, 545–552.  Google Scholar
First citationKalkhambkar, R., Kulkarni, G., Shivkumar, H. & Rao, R. (2007). Eur. J. Med. Chem. 42, 1272–1276.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKamal, A., Adil, S., Tamboli, J., Siddardha, B. & Murthy, U. (2009). Lett. Drug Des. Discov. 6, 201–209.  CrossRef CAS Google Scholar
First citationNadeem, S., Faiz, M. A. & Khan, S. A. (2009). Acta Pol. Pharm. Drug Res. 66, 161–167.  Google Scholar
First citationRaghu, M., Nagaraj, A. & Sanjeeva, R. C. (2009). J. Heterocycl. Chem. 46, 261–267.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1072-o1073
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds