organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1197

Bis(4-amino-2-chloro­phen­yl) di­sulfide

aDepartment of Biological and Chemical Engineering, Chien-shiung Institute of Technology, Taicang 215411, Suzhou, People's Republic of China, and bSchool of Materials Engineering, Jinling Institute of Technology, Nanjing 211169, People's Republic of China
*Correspondence e-mail: Tangjm_83@126.com

(Received 10 March 2011; accepted 17 April 2011; online 22 April 2011)

The title compound, C12H10Cl2N2S2, features an S—S bond [2.0671 (16) Å] that bridges two 4-amino-2-chloro­phenyl rings with a C—S—S—C torsion angle of −84.2 (2)°. The two benzene rings are twisted with respect to each other at a dihedral angle of 39.9 (2)°. Inter­molecular N—H⋯S hydrogen bonding is present in the crystal structure.

Related literature

For the application of the title compound, see: Crowley (1964[Crowley, D. J. (1964). US Patent No. 3 150 186.]). For S—S bond distances, see: Allen et al. (1991[Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M. & Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 187-204.]). For similar C—S—S—C torsion angles in disulfide compounds, see: Korp & Bernal (1984[Korp, J. D. & Bernal, I. (1984). J. Mol. Struct. 118, 157-164.]); Poveteva & Zvonkova (1975[Poveteva, Z. P. & Zvonkova, Z. V. (1975). Kristallografiya, 20, 69-73.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10Cl2N2S2

  • Mr = 317.24

  • Monoclinic, C c

  • a = 6.6360 (13) Å

  • b = 14.907 (3) Å

  • c = 13.588 (3) Å

  • β = 95.09 (3)°

  • V = 1338.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.800, Tmax = 0.940

  • 2606 measured reflections

  • 1331 independent reflections

  • 1221 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.088

  • S = 1.00

  • 1331 reflections

  • 163 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 110 Friedel parirs

  • Flack parameter: 0.09 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.86 2.80 3.611 (5) 158
N2—H2A⋯S2ii 0.86 2.86 3.684 (5) 162
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound has been used as fungicide and mildew-proofing agent (Crowley, 1964). We herein report its crystal structure. The S-S distance, 2.0670 (13)Å, is normal and falls within the range of 2.018-2.099Å found for the acyclic disulfides in the Cambridge Structural Database (Allen et al., 1991). The torsion angle C-S-S-C of 84.2 (2)° is close to the 85.0° found in diphenyldisulfide (Korp & Bernal, 1984) and lower than the 101.7° found in 4-amino-4'-nitrodiphenyl disulfide (Poveteva & Zvonkova, 1975). The intermolecular N–H···S hydrogen bonds may be effective in the stabilization of the crystal structure.

Related literature top

For the application of the title compound, see: Crowley (1964). For S—S bond distances, see: Allen et al. (1991). For similar C—S—S—C torsion angles in disulfide compounds, see: Korp & Bernal (1984); Poveteva & Zvonkova (1975).

Experimental top

The aqueous solution (20 ml) of 3,4-dichloronitrobenzene (19.2 g, 0.1 mol) and sodium sulfhydrate (28.5 g, 0.22 mol) was refluxed for 16 h, and then filtered. The title compound was obtained from the filtrate. The single crystals were obtained by recrystallization from an ethanol solution after 5 d.

Refinement top

H atoms were positioned geometrically with N—H = 0.86 and C—H = 0.93 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N). As a half of reciprocal space diffraction data were collected only using a four-circle diffractometer, Friedel pair coverage is low in this determination.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the molecule of (I). Displacement ellipsoids are drawn at the 50% probability level.
4-[(4-amino-2-chlorophenyl)disulfanyl]-3-chloroaniline top
Crystal data top
C12H10Cl2N2S2F(000) = 648
Mr = 317.24Dx = 1.574 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 25 reflections
a = 6.6360 (13) Åθ = 10–14°
b = 14.907 (3) ŵ = 0.78 mm1
c = 13.588 (3) ÅT = 296 K
β = 95.09 (3)°Block, yellow
V = 1338.9 (5) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1221 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.4°, θmin = 2.7°
ω/2θ scansh = 07
Absorption correction: ψ scan
(North et al., 1968)
k = 1717
Tmin = 0.800, Tmax = 0.940l = 1616
2606 measured reflections3 standard reflections every 200 reflections
1331 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.066P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1331 reflectionsΔρmax = 0.19 e Å3
163 parametersΔρmin = 0.22 e Å3
2 restraintsAbsolute structure: Flack (1983), 110 Friedel parirs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (11)
Crystal data top
C12H10Cl2N2S2V = 1338.9 (5) Å3
Mr = 317.24Z = 4
Monoclinic, CcMo Kα radiation
a = 6.6360 (13) ŵ = 0.78 mm1
b = 14.907 (3) ÅT = 296 K
c = 13.588 (3) Å0.30 × 0.20 × 0.10 mm
β = 95.09 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1221 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.800, Tmax = 0.9403 standard reflections every 200 reflections
2606 measured reflections intensity decay: 1%
1331 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.19 e Å3
S = 1.00Δρmin = 0.22 e Å3
1331 reflectionsAbsolute structure: Flack (1983), 110 Friedel parirs
163 parametersAbsolute structure parameter: 0.09 (11)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28662 (15)0.23231 (7)0.80302 (8)0.0442 (3)
Cl10.1503 (2)0.18083 (8)0.87818 (12)0.0609 (4)
N10.3017 (9)0.5116 (3)0.9000 (3)0.0681 (14)
H1A0.27100.56740.89500.082*
H1B0.41350.49650.92290.082*
C10.0811 (7)0.2917 (3)0.8603 (3)0.0380 (9)
Cl20.2000 (2)0.26890 (7)0.57856 (11)0.0586 (4)
S20.26156 (17)0.21357 (8)0.65170 (9)0.0441 (3)
N20.3804 (7)0.0596 (3)0.5629 (3)0.0525 (10)
H2A0.35140.11570.56840.063*
H2B0.50120.04310.54260.063*
C20.2194 (8)0.3561 (3)0.8835 (3)0.0431 (10)
H2C0.34150.33970.90700.052*
C30.1716 (8)0.4459 (3)0.8708 (3)0.0453 (11)
C40.0098 (8)0.4693 (3)0.8332 (3)0.0455 (11)
H4A0.04010.52920.82260.055*
C50.1417 (8)0.4043 (3)0.8121 (3)0.0425 (10)
H5A0.26340.42080.78810.051*
C60.1012 (6)0.3126 (3)0.8252 (3)0.0358 (9)
C70.0675 (7)0.1343 (3)0.6287 (3)0.0364 (9)
C80.1075 (7)0.0430 (3)0.6402 (3)0.0418 (10)
H8A0.23760.02500.66270.050*
C90.0379 (8)0.0212 (3)0.6193 (3)0.0464 (11)
H9A0.00470.08150.62770.056*
C100.2349 (7)0.0029 (3)0.5857 (3)0.0379 (10)
C110.2776 (7)0.0940 (3)0.5730 (3)0.0371 (9)
H11A0.40680.11220.54900.044*
C120.1295 (7)0.1569 (3)0.5957 (3)0.0377 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0341 (6)0.0425 (6)0.0543 (6)0.0054 (5)0.0052 (5)0.0064 (5)
Cl10.0460 (6)0.0332 (5)0.1040 (10)0.0052 (5)0.0090 (6)0.0041 (6)
N10.088 (4)0.049 (2)0.071 (3)0.026 (3)0.027 (3)0.007 (2)
C10.036 (2)0.031 (2)0.046 (2)0.0004 (18)0.0038 (19)0.0030 (17)
Cl20.0485 (7)0.0276 (5)0.0974 (10)0.0017 (5)0.0065 (6)0.0012 (6)
S20.0369 (6)0.0427 (6)0.0538 (6)0.0042 (5)0.0115 (5)0.0047 (5)
N20.057 (2)0.0300 (19)0.069 (3)0.0092 (18)0.001 (2)0.0023 (18)
C20.038 (2)0.044 (2)0.048 (2)0.003 (2)0.0039 (19)0.003 (2)
C30.060 (3)0.039 (2)0.036 (2)0.011 (2)0.000 (2)0.0018 (19)
C40.065 (3)0.030 (2)0.042 (2)0.002 (2)0.003 (2)0.0003 (18)
C50.046 (3)0.041 (2)0.040 (2)0.007 (2)0.003 (2)0.0019 (18)
C60.030 (2)0.033 (2)0.043 (2)0.0057 (17)0.0024 (17)0.0062 (16)
C70.037 (2)0.035 (2)0.038 (2)0.0007 (18)0.0072 (17)0.0044 (17)
C80.036 (2)0.044 (2)0.047 (2)0.012 (2)0.0091 (19)0.0015 (19)
C90.060 (3)0.028 (2)0.051 (3)0.005 (2)0.006 (2)0.0003 (17)
C100.043 (3)0.036 (2)0.034 (2)0.0029 (18)0.005 (2)0.0024 (17)
C110.035 (2)0.034 (2)0.042 (2)0.0049 (17)0.0024 (18)0.0014 (17)
C120.048 (3)0.0219 (19)0.043 (2)0.0055 (19)0.0043 (19)0.0025 (16)
Geometric parameters (Å, º) top
S1—C61.762 (4)C3—C41.393 (7)
S1—S22.0671 (16)C4—C51.354 (7)
Cl1—C11.738 (4)C4—H4A0.9300
N1—C31.387 (6)C5—C61.407 (6)
N1—H1A0.8601C5—H5A0.9300
N1—H1B0.8599C7—C121.385 (7)
C1—C61.375 (7)C7—C81.393 (6)
C1—C21.384 (6)C8—C91.371 (7)
Cl2—C121.744 (4)C8—H8A0.9300
S2—C71.755 (4)C9—C101.393 (7)
N2—C101.357 (6)C9—H9A0.9300
N2—H2A0.8599C10—C111.396 (6)
N2—H2B0.8600C11—C121.374 (7)
C2—C31.390 (6)C11—H11A0.9300
C2—H2C0.9300
C6—S1—S2105.43 (14)C6—C5—H5A118.9
C3—N1—H1A120.2C1—C6—C5116.6 (4)
C3—N1—H1B119.8C1—C6—S1123.7 (3)
H1A—N1—H1B120.0C5—C6—S1119.6 (4)
C6—C1—C2122.9 (4)C12—C7—C8116.0 (4)
C6—C1—Cl1121.0 (3)C12—C7—S2123.4 (3)
C2—C1—Cl1116.1 (4)C8—C7—S2120.5 (4)
C7—S2—S1105.13 (15)C9—C8—C7122.4 (4)
C10—N2—H2A119.9C9—C8—H8A118.8
C10—N2—H2B120.1C7—C8—H8A118.8
H2A—N2—H2B120.0C8—C9—C10120.7 (4)
C1—C2—C3118.5 (5)C8—C9—H9A119.7
C1—C2—H2C120.8C10—C9—H9A119.7
C3—C2—H2C120.8N2—C10—C9121.7 (4)
N1—C3—C2119.4 (5)N2—C10—C11120.5 (4)
N1—C3—C4120.6 (4)C9—C10—C11117.8 (4)
C2—C3—C4120.0 (4)C12—C11—C10120.2 (4)
C5—C4—C3119.7 (4)C12—C11—H11A119.9
C5—C4—H4A120.2C10—C11—H11A119.9
C3—C4—H4A120.2C11—C12—C7122.9 (4)
C4—C5—C6122.3 (5)C11—C12—Cl2116.4 (4)
C4—C5—H5A118.9C7—C12—Cl2120.7 (3)
C6—S1—S2—C784.2 (2)S1—S2—C7—C1299.7 (4)
C6—C1—C2—C30.1 (7)S1—S2—C7—C882.5 (3)
Cl1—C1—C2—C3179.9 (4)C12—C7—C8—C90.6 (6)
C1—C2—C3—N1175.6 (4)S2—C7—C8—C9177.4 (3)
C1—C2—C3—C41.6 (7)C7—C8—C9—C100.2 (6)
N1—C3—C4—C5175.0 (4)C8—C9—C10—N2178.8 (4)
C2—C3—C4—C52.1 (7)C8—C9—C10—C110.8 (6)
C3—C4—C5—C61.1 (6)N2—C10—C11—C12179.7 (4)
C2—C1—C6—C50.8 (6)C9—C10—C11—C121.7 (6)
Cl1—C1—C6—C5179.2 (3)C10—C11—C12—C72.1 (6)
C2—C1—C6—S1175.6 (3)C10—C11—C12—Cl2179.2 (3)
Cl1—C1—C6—S14.4 (5)C8—C7—C12—C111.5 (6)
C4—C5—C6—C10.3 (6)S2—C7—C12—C11176.4 (3)
C4—C5—C6—S1176.3 (3)C8—C7—C12—Cl2179.8 (3)
S2—S1—C6—C1102.4 (3)S2—C7—C12—Cl22.2 (5)
S2—S1—C6—C581.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.803.611 (5)158
N2—H2A···S2ii0.862.863.684 (5)162
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC12H10Cl2N2S2
Mr317.24
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)6.6360 (13), 14.907 (3), 13.588 (3)
β (°) 95.09 (3)
V3)1338.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.800, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
2606, 1331, 1221
Rint0.026
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.00
No. of reflections1331
No. of parameters163
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.22
Absolute structureFlack (1983), 110 Friedel parirs
Absolute structure parameter0.09 (11)

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.803.611 (5)158
N2—H2A···S2ii0.862.863.684 (5)162
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1/2, y1/2, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for data collection.

References

First citationAllen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M. & Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 187–204.  CrossRef CAS Web of Science Google Scholar
First citationCrowley, D. J. (1964). US Patent No. 3 150 186.  Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKorp, J. D. & Bernal, I. (1984). J. Mol. Struct. 118, 157–164.  CSD CrossRef CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPoveteva, Z. P. & Zvonkova, Z. V. (1975). Kristallografiya, 20, 69–73.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1197
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds