metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Hy­dr­oxy­acetato-κO1)bis­­(1,10-phenan­throline-κ2N,N′)copper(II) nitrate

aDepartment of Chemistry and Chemical Engineering, Jining University, Qufu 273155, Shandong, People's Republic of China
*Correspondence e-mail: kongyaj@jnxy.edu.cn

(Received 13 March 2011; accepted 7 April 2011; online 13 April 2011)

In the title compound, [Cu(C2H3O3)(C12H8N2)2]NO3, the CuII atom is coordinated by two phenanthroline (phen) ligands and one carboxyl-O atom of a hy­droxy­acetate anion in a distorted square-pyramidal geometry. The hy­droxy group of the hy­droxy­acetate ligand links with the counter NO3 anion via a pair of bifurcated O—H⋯O hydrogen bonds. The centroid–centroid distance of 3.5676 (14) Å between benzene rings of parallel phen ligands of adjacent mol­ecules suggests the existence of ππ stacking. Weak inter­molecular C—H⋯O hydrogen bonding is also present in the crystal structure.

Related literature

For related structures, see: Carballo et al. (2001[Carballo, R., Covelo, B., Balboa, S., Castiñeiras, A. & Niclós, J. (2001). Z. Anorg. Allg. Chem. 627, 948-954.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H3O3)(C12H8N2)2]NO3

  • Mr = 561.00

  • Monoclinic, C 2/c

  • a = 21.718 (4) Å

  • b = 14.347 (3) Å

  • c = 16.311 (3) Å

  • β = 117.045 (3)°

  • V = 4526.5 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 293 K

  • 0.50 × 0.40 × 0.40 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.599, Tmax = 0.664

  • 17009 measured reflections

  • 4425 independent reflections

  • 4047 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.101

  • S = 1.06

  • 4425 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O4 1.9511 (15)
Cu1—N1 2.0109 (16)
Cu1—N2 2.2298 (16)
Cu1—N3 2.0037 (16)
Cu1—N4 2.0449 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O1 0.82 2.15 2.963 (3) 168
O6—H6A⋯O3 0.82 2.49 3.135 (4) 137
C7—H7A⋯O3i 0.93 2.42 3.351 (3) 176
C16—H16A⋯O1ii 0.93 2.53 3.383 (4) 152
C18—H18A⋯O3iii 0.93 2.53 3.456 (4) 172
C26—H26A⋯O6iv 0.97 2.44 3.297 (3) 147
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+2, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (iv) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: SMART (Bruker, 2001[Bruker. (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker. (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecules [Cu(C12H8N2)2(C2H3O3)] in three different solvents or anions(2-hydroxyacetate anion, 2-hydroxyacetic acid and acetonitrile solvent) have been reported (Carballo et al., 2001).

Crystals [Cu(C12H8N2)2(C2H3O3)]NO3 (I) were obtained by crystallized from ethanol-water solution. The molecular structure of (I) is shown in Fig. 1. In the title compound the CuII atom is coordinated by two phenanthroline (phen) ligands and one carboxyl-O atom of a hydroxyacetate anion in a distorted square-pyramidal geometry (Table 1). The hydroxy group of the hydroxyacetate ligand links with the counter NO3- anion via a pair of bifurcated O—H···O hydrogen bonds (Table 2). The centroid-to-centroid distance of 3.5676 (14) Å between benzene rings of parallel phen ligands of adjacent molecules suggests the existence of π-π stacking. Weak intermolecular C—H···O hydrogen bonding is also present in the crystal structure.

Related literature top

For related structures, see: Carballo et al. (2001).

Experimental top

Copper nitrate (0.093 g, 0.5 mmol) was added to a mixed solution of hydroxyacetic acid (0.076 g, 1 mmol) in distilled water (10 ml) and 1,10-phenanthroline (0.090 g, 0.5 mmol) in ethanol (5 ml). The pH value of the mixture was adjusted to 7 with ammonia. The resulting solution was stirred for 1 h, and then filtered off. The filtrate was left to evaporate showly at room temperature. After a long time, blue block crystals were obtained.

Refinement top

H atoms were positioned geometrically with C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound drawn with displacement ellipsoids at the 30% probability level. All hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. Part of an one-dimensional linear chains of the title compound.
(2-Hydroxyacetato-κO1)bis(1,10-phenanthroline- κ2N,N')copper(II) nitrate top
Crystal data top
[Cu(C2H3O3)(C12H8N2)2]NO3F(000) = 2296
Mr = 561.00Dx = 1.646 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5502 reflections
a = 21.718 (4) Åθ = 2.5–28.2°
b = 14.347 (3) ŵ = 1.02 mm1
c = 16.311 (3) ÅT = 293 K
β = 117.045 (3)°Block, blue
V = 4526.5 (16) Å30.50 × 0.40 × 0.40 mm
Z = 8
Data collection top
Bruker SMART 1000
diffractometer
4425 independent reflections
Radiation source: fine-focus sealed tube4047 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω–scanθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2626
Tmin = 0.599, Tmax = 0.664k = 1717
17009 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0711P)2 + 1.7595P]
where P = (Fo2 + 2Fc2)/3
4425 reflections(Δ/σ)max = 0.002
343 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Cu(C2H3O3)(C12H8N2)2]NO3V = 4526.5 (16) Å3
Mr = 561.00Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.718 (4) ŵ = 1.02 mm1
b = 14.347 (3) ÅT = 293 K
c = 16.311 (3) Å0.50 × 0.40 × 0.40 mm
β = 117.045 (3)°
Data collection top
Bruker SMART 1000
diffractometer
4425 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4047 reflections with I > 2σ(I)
Tmin = 0.599, Tmax = 0.664Rint = 0.024
17009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.06Δρmax = 0.53 e Å3
4425 reflectionsΔρmin = 0.23 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.352559 (11)0.810948 (15)0.864386 (15)0.03488 (11)
C20.51483 (12)0.63868 (16)0.86753 (16)0.0520 (5)
H2A0.52330.57520.86730.062*
C120.51725 (10)0.98715 (15)0.87161 (13)0.0431 (4)
C230.33565 (9)0.80523 (11)1.02687 (13)0.0328 (4)
C110.47143 (9)0.91941 (13)0.87363 (12)0.0352 (4)
C240.34342 (10)0.78875 (14)1.11575 (13)0.0374 (4)
C130.23293 (10)0.93864 (14)0.82592 (14)0.0442 (4)
H13A0.22830.94560.76670.053*
C250.27347 (10)0.74094 (14)0.69714 (13)0.0403 (4)
C90.48683 (10)0.82262 (13)0.87109 (12)0.0356 (4)
C210.28533 (9)0.86956 (12)0.96824 (12)0.0338 (4)
C170.30025 (11)0.83895 (17)1.14532 (14)0.0458 (5)
H17A0.30490.82861.20410.055*
C140.19071 (11)0.99126 (15)0.85214 (16)0.0508 (5)
H14A0.15901.03310.81100.061*
C220.24435 (9)0.91847 (13)0.99943 (14)0.0396 (4)
C200.42130 (10)0.70152 (13)1.04555 (14)0.0406 (4)
H20A0.44850.67171.02290.049*
C190.43112 (11)0.67978 (14)1.13422 (15)0.0454 (5)
H19A0.46380.63541.16900.055*
C10.45271 (12)0.66987 (14)0.86349 (15)0.0444 (5)
H1A0.41970.62620.85890.053*
C80.39708 (12)1.02971 (15)0.87769 (16)0.0486 (5)
H8A0.35661.04500.88070.058*
C180.39312 (11)0.72315 (15)1.16947 (13)0.0442 (4)
H18A0.40000.70951.22880.053*
C100.54928 (11)0.79679 (15)0.87236 (14)0.0428 (4)
C60.49801 (12)1.07989 (15)0.87063 (15)0.0524 (5)
H6B0.52621.12720.86760.063*
C160.25344 (10)0.90029 (15)1.09058 (14)0.0464 (5)
H16A0.22620.93181.11200.056*
C150.19623 (11)0.98105 (14)0.93763 (16)0.0478 (5)
H15A0.16801.01560.95530.057*
C260.22641 (12)0.73763 (16)0.59474 (14)0.0500 (5)
H26A0.24700.69670.56660.060*
H26B0.18280.71010.58480.060*
C40.59588 (11)0.86792 (17)0.87278 (15)0.0525 (5)
H4A0.63780.85120.87440.063*
C50.57971 (11)0.95780 (17)0.87093 (16)0.0541 (5)
H5A0.61001.00260.86910.065*
C70.43853 (12)1.10155 (15)0.87403 (16)0.0548 (5)
H7A0.42571.16340.87390.066*
C30.56297 (12)0.70205 (16)0.87188 (17)0.0512 (5)
H3A0.60460.68220.87450.061*
O40.30007 (8)0.81909 (10)0.73072 (10)0.0469 (4)
O50.28331 (10)0.66929 (11)0.74203 (12)0.0583 (4)
O60.21298 (10)0.82300 (12)0.54982 (11)0.0608 (4)
H6A0.18920.85490.56620.091*
O10.12811 (12)0.95952 (15)0.59033 (16)0.0832 (6)
O30.10001 (14)0.82669 (13)0.61923 (19)0.0869 (7)
O20.05765 (12)0.94510 (15)0.6477 (2)0.0971 (8)
N40.37498 (8)0.76262 (10)0.99287 (10)0.0341 (3)
N10.43912 (8)0.75916 (11)0.86593 (10)0.0372 (3)
N20.41221 (8)0.94125 (11)0.87707 (11)0.0391 (3)
N30.27921 (8)0.87939 (11)0.88243 (10)0.0366 (3)
N50.09405 (10)0.91099 (13)0.61673 (14)0.0516 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03761 (16)0.03582 (16)0.03405 (16)0.00062 (8)0.01877 (12)0.00072 (8)
C20.0573 (12)0.0443 (11)0.0552 (13)0.0108 (10)0.0263 (10)0.0026 (9)
C120.0409 (10)0.0465 (11)0.0359 (10)0.0102 (8)0.0122 (8)0.0016 (8)
C230.0316 (8)0.0329 (9)0.0347 (9)0.0083 (6)0.0159 (7)0.0041 (6)
C110.0379 (9)0.0373 (9)0.0278 (8)0.0050 (7)0.0127 (7)0.0013 (7)
C240.0376 (9)0.0391 (9)0.0365 (9)0.0110 (8)0.0178 (8)0.0041 (7)
C130.0436 (10)0.0413 (10)0.0450 (10)0.0025 (8)0.0178 (9)0.0084 (8)
C250.0436 (10)0.0472 (11)0.0406 (10)0.0035 (8)0.0284 (8)0.0006 (8)
C90.0373 (9)0.0403 (10)0.0286 (9)0.0014 (7)0.0145 (7)0.0008 (7)
C210.0317 (8)0.0327 (9)0.0373 (9)0.0066 (7)0.0158 (7)0.0043 (7)
C170.0458 (11)0.0577 (12)0.0412 (11)0.0122 (10)0.0263 (9)0.0100 (9)
C140.0448 (11)0.0360 (10)0.0650 (14)0.0057 (8)0.0191 (10)0.0062 (9)
C220.0349 (9)0.0360 (9)0.0489 (10)0.0049 (7)0.0199 (8)0.0097 (8)
C200.0391 (10)0.0395 (10)0.0410 (10)0.0030 (8)0.0165 (8)0.0013 (8)
C190.0464 (11)0.0420 (11)0.0402 (11)0.0017 (8)0.0129 (9)0.0069 (8)
C10.0518 (12)0.0350 (10)0.0487 (12)0.0000 (8)0.0247 (10)0.0013 (8)
C80.0491 (11)0.0383 (11)0.0569 (12)0.0001 (9)0.0228 (10)0.0034 (9)
C180.0478 (11)0.0484 (11)0.0338 (9)0.0102 (9)0.0162 (8)0.0029 (8)
C100.0390 (10)0.0529 (11)0.0356 (10)0.0004 (8)0.0162 (8)0.0034 (8)
C60.0542 (12)0.0420 (11)0.0502 (12)0.0171 (9)0.0145 (10)0.0017 (9)
C160.0432 (10)0.0530 (12)0.0498 (11)0.0073 (9)0.0271 (9)0.0155 (9)
C150.0431 (10)0.0380 (10)0.0617 (13)0.0004 (8)0.0234 (10)0.0086 (9)
C260.0539 (12)0.0556 (13)0.0425 (11)0.0028 (10)0.0237 (9)0.0058 (9)
C40.0373 (10)0.0688 (15)0.0522 (12)0.0069 (10)0.0210 (9)0.0061 (10)
C50.0443 (11)0.0633 (14)0.0541 (13)0.0191 (10)0.0218 (10)0.0041 (10)
C70.0629 (13)0.0337 (10)0.0582 (13)0.0044 (9)0.0190 (11)0.0027 (9)
C30.0441 (11)0.0582 (13)0.0515 (13)0.0086 (9)0.0218 (10)0.0042 (10)
O40.0547 (9)0.0491 (9)0.0351 (7)0.0018 (6)0.0188 (7)0.0006 (6)
O50.0761 (11)0.0511 (9)0.0560 (10)0.0039 (8)0.0374 (9)0.0108 (7)
O60.0698 (11)0.0724 (11)0.0412 (8)0.0117 (8)0.0261 (8)0.0105 (7)
O10.0908 (14)0.0763 (13)0.0973 (15)0.0311 (11)0.0556 (13)0.0017 (11)
O30.127 (2)0.0480 (11)0.1166 (19)0.0048 (11)0.0819 (17)0.0051 (10)
O20.0933 (15)0.0659 (13)0.164 (3)0.0014 (11)0.0865 (18)0.0056 (13)
N40.0343 (7)0.0347 (8)0.0336 (7)0.0011 (6)0.0156 (6)0.0004 (6)
N10.0416 (8)0.0360 (8)0.0384 (8)0.0003 (6)0.0222 (7)0.0027 (6)
N20.0425 (8)0.0340 (8)0.0408 (8)0.0026 (6)0.0189 (7)0.0018 (6)
N30.0356 (7)0.0359 (8)0.0383 (8)0.0005 (6)0.0168 (6)0.0021 (6)
N50.0493 (10)0.0467 (10)0.0585 (11)0.0076 (8)0.0243 (9)0.0015 (8)
Geometric parameters (Å, º) top
Cu1—O41.9511 (15)C22—C151.399 (3)
Cu1—N12.0109 (16)C22—C161.432 (3)
Cu1—N22.2298 (16)C20—N41.316 (2)
Cu1—N32.0037 (16)C20—C191.398 (3)
Cu1—N42.0449 (15)C20—H20A0.9300
C2—C31.363 (4)C19—C181.353 (3)
C2—C11.394 (3)C19—H19A0.9300
C2—H2A0.9300C1—N11.319 (3)
C12—C61.393 (3)C1—H1A0.9300
C12—C111.402 (3)C8—N21.312 (3)
C12—C51.425 (3)C8—C71.387 (3)
C23—N41.357 (2)C8—H8A0.9300
C23—C241.401 (3)C18—H18A0.9300
C23—C211.418 (3)C10—C31.392 (3)
C11—N21.350 (2)C10—C41.435 (3)
C11—C91.433 (3)C6—C71.354 (3)
C24—C181.400 (3)C6—H6B0.9300
C24—C171.429 (3)C16—H16A0.9300
C13—N31.319 (3)C15—H15A0.9300
C13—C141.397 (3)C26—O61.388 (3)
C13—H13A0.9300C26—H26A0.9700
C25—O51.223 (3)C26—H26B0.9700
C25—O41.266 (2)C4—C51.333 (3)
C25—C261.511 (3)C4—H4A0.9300
C9—N11.353 (2)C5—H5A0.9300
C9—C101.397 (3)C7—H7A0.9300
C21—N31.352 (2)C3—H3A0.9300
C21—C221.398 (2)O6—H6A0.8200
C17—C161.334 (3)O1—N51.228 (3)
C17—H17A0.9300O3—N51.215 (3)
C14—C151.352 (3)O2—N51.217 (3)
C14—H14A0.9300
O4—Cu1—N392.02 (6)C2—C1—H1A118.8
O4—Cu1—N195.97 (6)N2—C8—C7123.3 (2)
N3—Cu1—N1168.63 (6)N2—C8—H8A118.4
O4—Cu1—N4155.70 (6)C7—C8—H8A118.4
N3—Cu1—N481.39 (6)C19—C18—C24119.28 (18)
N1—Cu1—N494.38 (6)C19—C18—H18A120.4
O4—Cu1—N294.19 (6)C24—C18—H18A120.4
N3—Cu1—N292.45 (6)C3—C10—C9117.9 (2)
N1—Cu1—N278.94 (6)C3—C10—C4122.8 (2)
N4—Cu1—N2109.36 (6)C9—C10—C4119.3 (2)
C3—C2—C1119.4 (2)C7—C6—C12120.4 (2)
C3—C2—H2A120.3C7—C6—H6B119.8
C1—C2—H2A120.3C12—C6—H6B119.8
C6—C12—C11116.7 (2)C17—C16—C22121.22 (18)
C6—C12—C5124.3 (2)C17—C16—H16A119.4
C11—C12—C5118.9 (2)C22—C16—H16A119.4
N4—C23—C24123.01 (17)C14—C15—C22119.98 (19)
N4—C23—C21116.93 (16)C14—C15—H15A120.0
C24—C23—C21120.06 (17)C22—C15—H15A120.0
N2—C11—C12122.69 (18)O6—C26—C25115.45 (19)
N2—C11—C9117.74 (16)O6—C26—H26A108.4
C12—C11—C9119.57 (18)C25—C26—H26A108.4
C18—C24—C23117.19 (18)O6—C26—H26B108.4
C18—C24—C17124.43 (18)C25—C26—H26B108.4
C23—C24—C17118.38 (19)H26A—C26—H26B107.5
N3—C13—C14122.1 (2)C5—C4—C10120.6 (2)
N3—C13—H13A118.9C5—C4—H4A119.7
C14—C13—H13A118.9C10—C4—H4A119.7
O5—C25—O4124.3 (2)C4—C5—C12121.8 (2)
O5—C25—C26118.8 (2)C4—C5—H5A119.1
O4—C25—C26116.88 (18)C12—C5—H5A119.1
N1—C9—C10122.23 (18)C6—C7—C8118.7 (2)
N1—C9—C11118.14 (17)C6—C7—H7A120.6
C10—C9—C11119.62 (17)C8—C7—H7A120.6
N3—C21—C22123.04 (17)C2—C3—C10119.4 (2)
N3—C21—C23116.68 (16)C2—C3—H3A120.3
C22—C21—C23120.28 (17)C10—C3—H3A120.3
C16—C17—C24121.60 (19)C25—O4—Cu1110.50 (12)
C16—C17—H17A119.2C26—O6—H6A109.5
C24—C17—H17A119.2C20—N4—C23118.00 (16)
C15—C14—C13119.6 (2)C20—N4—Cu1130.53 (13)
C15—C14—H14A120.2C23—N4—Cu1111.43 (12)
C13—C14—H14A120.2C1—N1—C9118.67 (17)
C21—C22—C15116.77 (19)C1—N1—Cu1125.39 (14)
C21—C22—C16118.44 (18)C9—N1—Cu1115.93 (12)
C15—C22—C16124.77 (18)C8—N2—C11118.14 (17)
N4—C20—C19122.40 (19)C8—N2—Cu1132.42 (15)
N4—C20—H20A118.8C11—N2—Cu1109.03 (12)
C19—C20—H20A118.8C13—N3—C21118.41 (17)
C18—C19—C20120.10 (19)C13—N3—Cu1128.11 (14)
C18—C19—H19A120.0C21—N3—Cu1112.99 (12)
C20—C19—H19A120.0O3—N5—O2117.7 (2)
N1—C1—C2122.4 (2)O3—N5—O1120.3 (2)
N1—C1—H1A118.8O2—N5—O1121.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O10.822.152.963 (3)168
O6—H6A···O30.822.493.135 (4)137
C7—H7A···O3i0.932.423.351 (3)176
C16—H16A···O1ii0.932.533.383 (4)152
C18—H18A···O3iii0.932.533.456 (4)172
C26—H26A···O6iv0.972.443.297 (3)147
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+2, z+1/2; (iii) x+1/2, y+3/2, z+2; (iv) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C2H3O3)(C12H8N2)2]NO3
Mr561.00
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)21.718 (4), 14.347 (3), 16.311 (3)
β (°) 117.045 (3)
V3)4526.5 (16)
Z8
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.50 × 0.40 × 0.40
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.599, 0.664
No. of measured, independent and
observed [I > 2σ(I)] reflections
17009, 4425, 4047
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.101, 1.06
No. of reflections4425
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O41.9511 (15)Cu1—N32.0037 (16)
Cu1—N12.0109 (16)Cu1—N42.0449 (15)
Cu1—N22.2298 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O10.822.152.963 (3)168
O6—H6A···O30.822.493.135 (4)137
C7—H7A···O3i0.932.423.351 (3)176
C16—H16A···O1ii0.932.533.383 (4)152
C18—H18A···O3iii0.932.533.456 (4)172
C26—H26A···O6iv0.972.443.297 (3)147
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+2, z+1/2; (iii) x+1/2, y+3/2, z+2; (iv) x+1/2, y+3/2, z+1.
 

Acknowledgements

This work was supported by the Science Foundation of Jining University, China.

References

First citationBruker. (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarballo, R., Covelo, B., Balboa, S., Castiñeiras, A. & Niclós, J. (2001). Z. Anorg. Allg. Chem. 627, 948–954.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds