organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1186

(Rp)-2-Iso­propyl-5-methyl­cyclo­hexyl isoprop­yl(phen­yl)phosphinate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: literabc@hotmail.com

(Received 13 March 2011; accepted 10 April 2011; online 22 April 2011)

The title compound, C19H31O2P, features a distorted tetra­hedral P atom that bonds to the phenyl ring, isopropyl and 2-isopropyl-5-methyl­cyclo­hexyl groups, and is determined as having an Rp configuration. A chair conformation is observed for the cyclo­hexyl ring. In the crystal, mol­ecules are linked into chains running along the a axis by weak inter­molecular C—H⋯O hodrogen bonds.

Related literature

For general background to P-chiral compounds and for related structures, see: Chaloner et al. (1991[Chaloner, P. A., Harrison, R. M. & Hitchcock, P. B. (1991). Acta Cryst. C47, 2241-2242.]); Fu & Zhao et al. (2010[Fu, B. & Zhao, C.-Q. (2010). Acta Cryst. E66, o859.]).

[Scheme 1]

Experimental

Crystal data
  • C19H31O2P

  • Mr = 322.41

  • Monoclinic, P 21

  • a = 5.8847 (4) Å

  • b = 17.196 (3) Å

  • c = 9.7075 (9) Å

  • β = 95.184 (1)°

  • V = 978.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 298 K

  • 0.35 × 0.16 × 0.14 mm

Data collection
  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.951, Tmax = 0.980

  • 4964 measured reflections

  • 3175 independent reflections

  • 1991 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.073

  • S = 1.00

  • 3175 reflections

  • 205 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1775 Friedel pairs

  • Flack parameter: 0.02 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O2i 0.98 2.44 3.180 (4) 132
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The P-chiral compound has been reported previously (Chaloner et al., 1991). We recently reported the crystal stucture of (Rp)-α-hydroxy-cyclohexyl-menthyl phenylphosphinate, a compound readily synthesized by addition of (Rp)-phenylphosphinate to cyclohexanone (Fu & Zhao, 2010). Herein we report a similar compound which is obtained by reaction of O-menthyl phenylphosphoryl chloride and isopropyl magnesium chloride.

A stable chair conformation is observed for the cyclohexane ring of the 2-isopropyl-5-methylcyclohexyloxy, in which the isopropyl, methyl and oxygen atom locate at equatorial bond. The absolute configuration of C1, C3, and C4 are R, R, and S, respectively (Fig.1). In this P-chiral title compound, the configuration of the central P atom is R and four groups around the P atom form an irregular tetrahedron. The bond angle of C11—P1—C17 is 107.61 (17)°, O1—P1—C11 is 105.66 (14)°, O1—P1—C17 is 101.39 (13)°, O2—P1—O1 is 115.03 (12)°, O2—P1—C17 is 114.76 (15)° and O2—P1—C11 is 111.50 (17)° (Chaloner et al. 1991). In the crystal structure, intermolecular C17—H17···O2 hodrogen bonds connect molecules into a one-dimensional chain (Fig.2).

Related literature top

For general background to P-chiral compounds and for related structures, see: Chaloner et al. (1991); Fu & Zhao et al. (2010).

Experimental top

O-Menthyl phenylphosphoryl chloride (0.3 mmol) was added to a stirred ether solution of isopropyl magnesium chloride (0.6 mmol) in a Schlenk tube under nitrogen, and the mixture was stirred for 24 h at room temperature. After washing with water, the resulting solution was purified by silica gel plate to afford the title compound. The crystal suit for X-ray diffraction was obtained from recrystallization with ethyl ether/hexane.

Refinement top

H atoms were placed geometrically and treated as riding with C—H = 0.93 - 0.98 Å, with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the one-dimensional chain structure formed by C—H···O hodrogen bonds in the title compound. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) x + 1, y, z]
(Rp)-2-Isopropyl-5-methylcyclohexyl isopropyl(phenyl)phosphinate top
Crystal data top
C19H31O2PF(000) = 352
Mr = 322.41Dx = 1.094 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1152 reflections
a = 5.8847 (4) Åθ = 3.2–18.6°
b = 17.196 (3) ŵ = 0.15 mm1
c = 9.7075 (9) ÅT = 298 K
β = 95.184 (1)°Block, colorless
V = 978.3 (2) Å30.35 × 0.16 × 0.14 mm
Z = 2
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3175 independent reflections
Radiation source: fine-focus sealed tube1991 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 67
Tmin = 0.951, Tmax = 0.980k = 2020
4964 measured reflectionsl = 911
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0093P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3175 reflectionsΔρmax = 0.22 e Å3
205 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 1775 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (11)
Crystal data top
C19H31O2PV = 978.3 (2) Å3
Mr = 322.41Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.8847 (4) ŵ = 0.15 mm1
b = 17.196 (3) ÅT = 298 K
c = 9.7075 (9) Å0.35 × 0.16 × 0.14 mm
β = 95.184 (1)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3175 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1991 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.980Rint = 0.045
4964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.073Δρmax = 0.22 e Å3
S = 1.00Δρmin = 0.16 e Å3
3175 reflectionsAbsolute structure: Flack (1983), 1775 Friedel pairs
205 parametersAbsolute structure parameter: 0.02 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.58068 (16)0.52850 (6)0.70438 (9)0.0580 (2)
O10.6203 (3)0.51752 (13)0.86663 (18)0.0574 (6)
O20.3626 (4)0.56419 (13)0.6548 (2)0.0764 (8)
C10.1496 (7)0.5651 (2)1.0974 (3)0.0740 (11)
H10.01930.54391.03930.089*
C20.3498 (6)0.57668 (19)1.0062 (3)0.0657 (10)
H2A0.30250.61190.93100.079*
H2B0.47720.60031.06120.079*
C30.4266 (5)0.50056 (18)0.9469 (3)0.0565 (10)
H30.30150.47840.88570.068*
C40.5012 (6)0.4420 (2)1.0600 (3)0.0633 (10)
H40.62520.46621.11920.076*
C50.3002 (7)0.4311 (2)1.1490 (4)0.0801 (12)
H5A0.17370.40761.09270.096*
H5B0.34560.39541.22390.096*
C60.2205 (7)0.5062 (2)1.2093 (4)0.0858 (13)
H6A0.34270.52791.27140.103*
H6B0.09230.49571.26260.103*
C70.0780 (7)0.6421 (2)1.1575 (4)0.1057 (15)
H7A0.20410.66381.21450.159*
H7B0.04750.63361.21240.159*
H7C0.03230.67751.08370.159*
C80.5943 (7)0.3651 (2)1.0072 (4)0.0768 (12)
H80.71170.37870.94590.092*
C90.4161 (8)0.3168 (2)0.9222 (4)0.1041 (15)
H9A0.48850.27310.88310.156*
H9B0.34330.34820.84920.156*
H9C0.30390.29880.98060.156*
C100.7115 (7)0.3175 (2)1.1254 (4)0.1071 (15)
H10A0.59860.29631.18020.161*
H10B0.81370.35021.18200.161*
H10C0.79600.27581.08830.161*
C110.6101 (7)0.4337 (2)0.6323 (3)0.0630 (10)
C120.8067 (8)0.3905 (2)0.6580 (4)0.0767 (12)
H120.93020.41180.71160.092*
C130.8240 (9)0.3154 (3)0.6050 (4)0.0929 (13)
H130.95770.28700.62350.112*
C140.6443 (10)0.2842 (3)0.5264 (5)0.0956 (15)
H140.65570.23440.49000.115*
C150.4474 (9)0.3255 (3)0.5005 (4)0.0925 (14)
H150.32400.30350.44780.111*
C160.4299 (7)0.4003 (2)0.5524 (4)0.0777 (12)
H160.29550.42820.53310.093*
C170.8282 (6)0.58385 (19)0.6703 (3)0.0597 (9)
H170.96450.55500.70630.072*
C180.8349 (7)0.5941 (2)0.5134 (3)0.0848 (12)
H18A0.70750.62520.47760.127*
H18B0.82710.54410.46940.127*
H18C0.97440.61950.49520.127*
C190.8278 (7)0.66248 (18)0.7434 (4)0.0817 (13)
H19A0.96030.69160.72380.123*
H19B0.83000.65450.84140.123*
H19C0.69280.69080.71110.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0455 (6)0.0754 (6)0.0541 (5)0.0036 (6)0.0104 (4)0.0064 (5)
O10.0461 (14)0.0737 (16)0.0541 (13)0.0016 (13)0.0140 (10)0.0055 (12)
O20.0450 (16)0.113 (2)0.0721 (15)0.0172 (13)0.0087 (12)0.0088 (13)
C10.075 (3)0.090 (3)0.059 (2)0.007 (2)0.021 (2)0.001 (2)
C20.067 (3)0.073 (3)0.059 (2)0.001 (2)0.0167 (19)0.0001 (19)
C30.052 (2)0.071 (3)0.049 (2)0.0088 (19)0.0133 (18)0.0024 (18)
C40.067 (3)0.069 (3)0.056 (2)0.004 (2)0.015 (2)0.005 (2)
C50.084 (3)0.087 (3)0.073 (3)0.000 (2)0.027 (2)0.018 (2)
C60.090 (3)0.106 (4)0.066 (3)0.000 (3)0.033 (2)0.002 (2)
C70.123 (4)0.109 (4)0.091 (3)0.030 (3)0.044 (3)0.012 (2)
C80.081 (3)0.075 (3)0.079 (3)0.006 (2)0.029 (2)0.021 (2)
C90.126 (4)0.084 (3)0.104 (4)0.005 (3)0.019 (3)0.006 (3)
C100.111 (4)0.101 (4)0.112 (4)0.014 (3)0.029 (3)0.030 (3)
C110.057 (3)0.081 (3)0.052 (2)0.004 (2)0.012 (2)0.004 (2)
C120.064 (3)0.082 (3)0.085 (3)0.001 (2)0.013 (2)0.007 (2)
C130.094 (4)0.090 (4)0.097 (4)0.010 (3)0.025 (3)0.001 (3)
C140.116 (5)0.087 (4)0.087 (4)0.004 (4)0.026 (3)0.015 (3)
C150.104 (5)0.106 (4)0.069 (3)0.029 (3)0.009 (3)0.014 (3)
C160.073 (3)0.098 (4)0.062 (3)0.007 (3)0.008 (2)0.003 (2)
C170.049 (2)0.072 (3)0.060 (2)0.0058 (19)0.0132 (17)0.0110 (19)
C180.087 (3)0.099 (3)0.072 (3)0.009 (3)0.028 (2)0.020 (2)
C190.090 (3)0.068 (3)0.088 (3)0.008 (2)0.012 (2)0.009 (2)
Geometric parameters (Å, º) top
P1—O21.464 (2)C8—H80.9800
P1—O11.5826 (19)C9—H9A0.9600
P1—C111.789 (4)C9—H9B0.9600
P1—C171.795 (3)C9—H9C0.9600
O1—C31.467 (3)C10—H10A0.9600
C1—C61.515 (4)C10—H10B0.9600
C1—C71.522 (4)C10—H10C0.9600
C1—C21.549 (4)C11—C121.378 (5)
C1—H10.9800C11—C161.381 (4)
C2—C31.515 (4)C12—C131.398 (5)
C2—H2A0.9700C12—H120.9300
C2—H2B0.9700C13—C141.358 (6)
C3—C41.525 (4)C13—H130.9300
C3—H30.9800C14—C151.363 (6)
C4—C81.537 (5)C14—H140.9300
C4—C51.538 (4)C15—C161.388 (5)
C4—H40.9800C15—H150.9300
C5—C61.511 (4)C16—H160.9300
C5—H5A0.9700C17—C191.527 (4)
C5—H5B0.9700C17—C181.537 (4)
C6—H6A0.9700C17—H170.9800
C6—H6B0.9700C18—H18A0.9600
C7—H7A0.9600C18—H18B0.9600
C7—H7B0.9600C18—H18C0.9600
C7—H7C0.9600C19—H19A0.9600
C8—C91.521 (5)C19—H19B0.9600
C8—C101.523 (5)C19—H19C0.9600
O2—P1—O1115.03 (12)C9—C8—H8106.8
O2—P1—C11111.50 (17)C10—C8—H8106.8
O1—P1—C11105.66 (14)C4—C8—H8106.8
O2—P1—C17114.76 (15)C8—C9—H9A109.5
O1—P1—C17101.39 (13)C8—C9—H9B109.5
C11—P1—C17107.61 (17)H9A—C9—H9B109.5
C3—O1—P1120.03 (18)C8—C9—H9C109.5
C6—C1—C7112.0 (3)H9A—C9—H9C109.5
C6—C1—C2108.7 (3)H9B—C9—H9C109.5
C7—C1—C2111.0 (3)C8—C10—H10A109.5
C6—C1—H1108.3C8—C10—H10B109.5
C7—C1—H1108.3H10A—C10—H10B109.5
C2—C1—H1108.3C8—C10—H10C109.5
C3—C2—C1112.0 (3)H10A—C10—H10C109.5
C3—C2—H2A109.2H10B—C10—H10C109.5
C1—C2—H2A109.2C12—C11—C16117.9 (4)
C3—C2—H2B109.2C12—C11—P1121.9 (3)
C1—C2—H2B109.2C16—C11—P1120.2 (3)
H2A—C2—H2B107.9C11—C12—C13121.3 (4)
O1—C3—C2107.6 (2)C11—C12—H12119.4
O1—C3—C4109.1 (3)C13—C12—H12119.4
C2—C3—C4111.9 (3)C14—C13—C12119.6 (4)
O1—C3—H3109.4C14—C13—H13120.2
C2—C3—H3109.4C12—C13—H13120.2
C4—C3—H3109.4C13—C14—C15120.2 (5)
C3—C4—C8114.6 (3)C13—C14—H14119.9
C3—C4—C5107.4 (3)C15—C14—H14119.9
C8—C4—C5113.4 (3)C14—C15—C16120.4 (5)
C3—C4—H4107.0C14—C15—H15119.8
C8—C4—H4107.0C16—C15—H15119.8
C5—C4—H4107.0C11—C16—C15120.7 (4)
C6—C5—C4113.2 (3)C11—C16—H16119.6
C6—C5—H5A108.9C15—C16—H16119.6
C4—C5—H5A108.9C19—C17—C18111.1 (3)
C6—C5—H5B108.9C19—C17—P1110.4 (2)
C4—C5—H5B108.9C18—C17—P1109.7 (2)
H5A—C5—H5B107.7C19—C17—H17108.5
C5—C6—C1111.6 (3)C18—C17—H17108.5
C5—C6—H6A109.3P1—C17—H17108.5
C1—C6—H6A109.3C17—C18—H18A109.5
C5—C6—H6B109.3C17—C18—H18B109.5
C1—C6—H6B109.3H18A—C18—H18B109.5
H6A—C6—H6B108.0C17—C18—H18C109.5
C1—C7—H7A109.5H18A—C18—H18C109.5
C1—C7—H7B109.5H18B—C18—H18C109.5
H7A—C7—H7B109.5C17—C19—H19A109.5
C1—C7—H7C109.5C17—C19—H19B109.5
H7A—C7—H7C109.5H19A—C19—H19B109.5
H7B—C7—H7C109.5C17—C19—H19C109.5
C9—C8—C10111.0 (3)H19A—C19—H19C109.5
C9—C8—C4113.7 (3)H19B—C19—H19C109.5
C10—C8—C4111.3 (3)
O2—P1—O1—C333.5 (3)C5—C4—C8—C1068.5 (4)
C11—P1—O1—C389.9 (3)O2—P1—C11—C12176.4 (3)
C17—P1—O1—C3157.9 (2)O1—P1—C11—C1258.0 (3)
C6—C1—C2—C355.5 (4)C17—P1—C11—C1249.7 (3)
C7—C1—C2—C3179.1 (3)O2—P1—C11—C166.1 (3)
P1—O1—C3—C297.1 (3)O1—P1—C11—C16119.6 (3)
P1—O1—C3—C4141.3 (2)C17—P1—C11—C16132.7 (3)
C1—C2—C3—O1178.1 (3)C16—C11—C12—C130.0 (5)
C1—C2—C3—C458.3 (4)P1—C11—C12—C13177.6 (3)
O1—C3—C4—C857.7 (4)C11—C12—C13—C140.2 (6)
C2—C3—C4—C8176.6 (3)C12—C13—C14—C150.7 (7)
O1—C3—C4—C5175.3 (3)C13—C14—C15—C161.1 (7)
C2—C3—C4—C556.4 (4)C12—C11—C16—C150.3 (6)
C3—C4—C5—C656.6 (4)P1—C11—C16—C15177.4 (3)
C8—C4—C5—C6175.8 (3)C14—C15—C16—C110.8 (6)
C4—C5—C6—C157.9 (5)O2—P1—C17—C1961.8 (3)
C7—C1—C6—C5177.8 (4)O1—P1—C17—C1962.8 (3)
C2—C1—C6—C554.7 (4)C11—P1—C17—C19173.5 (2)
C3—C4—C8—C966.2 (4)O2—P1—C17—C1861.0 (3)
C5—C4—C8—C957.7 (4)O1—P1—C17—C18174.4 (2)
C3—C4—C8—C10167.7 (3)C11—P1—C17—C1863.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O2i0.982.443.180 (4)132
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H31O2P
Mr322.41
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)5.8847 (4), 17.196 (3), 9.7075 (9)
β (°) 95.184 (1)
V3)978.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.35 × 0.16 × 0.14
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.951, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
4964, 3175, 1991
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.073, 1.00
No. of reflections3175
No. of parameters205
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.16
Absolute structureFlack (1983), 1775 Friedel pairs
Absolute structure parameter0.02 (11)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O2i0.982.443.180 (4)132
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We acknowledge financial support by the Natural Science Foundation of China (No. 20772055).

References

First citationChaloner, P. A., Harrison, R. M. & Hitchcock, P. B. (1991). Acta Cryst. C47, 2241–2242.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, B. & Zhao, C.-Q. (2010). Acta Cryst. E66, o859.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1186
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds