organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1114

Ethyl 2-[3-(3,5-Di­nitrobenzo­yl)thio­ureido]benzoate

aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, and bDepartment of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR, People's Republic of China
*Correspondence e-mail: Sohail262001@yahoo.com

(Received 14 March 2011; accepted 6 April 2011; online 13 April 2011)

In the title compound, C17H14N4O7S, the dihedral angle between the two benzene rings is 9.04 (15)°. The centroid–centroid distance of 3.9825 (19) Å between nearly parallel benzene rings of adjacent mol­ecules suggests the existence of π-π stacking. Inter­molecular and intra-mol­ecular N—H⋯O hydrogen bonding is present in the structure. The eth­oxy group is disordered over two sets of sites with an occupancy ratio of 0.580 (15):0.420 (15). The crystal studied was an inversion twin.

Related literature

For background to the chemistry of thiourea derivatives and their bioloical activity, and a related structure, see: Saeed et al. (2010[Saeed, S., Rashid, N. & Wong, W.-T. (2010). Acta Cryst. E66, o980.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14N4O7S

  • Mr = 418.38

  • Monoclinic, C c

  • a = 11.7264 (19) Å

  • b = 16.617 (3) Å

  • c = 9.9630 (16) Å

  • β = 101.522 (2)°

  • V = 1902.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 299 K

  • 0.27 × 0.16 × 0.08 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS, University of Göttingen, Germany.]) Tmin = 0.943, Tmax = 0.983

  • 4944 measured reflections

  • 3011 independent reflections

  • 2727 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.095

  • S = 1.10

  • 3011 reflections

  • 301 parameters

  • 42 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1340 Friedel pairs

  • Flack parameter: 0.39 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.91 (3) 1.95 (3) 2.672 (3) 134 (2)
N1—H1⋯O3 0.91 (3) 2.01 (3) 2.700 (3) 131 (2)
N2—H2⋯O3i 0.77 (3) 2.32 (3) 3.086 (3) 172 (2)
Symmetry code: (i) [x, -y, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker. (2006). SAINT, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The background to this study has been set in our previous work on the structural chemistry of N,N'-disubstituted thiourea (Saeed et al., 2010). Herein, as a continuation of these studies, the structure of the title compound, (I), C17H14N4O7S, is described.

The compound is slightly twisted. The nitro groups are 3.9 (5)° and 17 (1)° from the phenyl ring plane of C10—C15. The thiourea plane is making a dihedral angle of 5.3 (2)° with the amido group and makes a dihedral angle of 31.35 (17)° with the phenyl ring plane of C2—C7.

There are inter-molecular N—H···O H-bond interactions which link the molecules to form 1-D chain in the crystal lattice. There are also weak π···π between neighbouring rings in the crystal lattice.

Related literature top

For background to this study and a related structure, see: Saeed et al. (2010).

Experimental top

A solution of 3,5-dinitrobenzoyl chloride (0.01 mol) in anhydrous acetone (75 ml) and 3% tetrabutylammonium bromide (TBAB) as a phase-transfer catalyst (PTC) in anhydrous acetone was added dropwise to a suspension of dry potassium thiocyanate (0.01 mol) in acetone (50 ml) and the reaction mixture was refluxed for 50 min. After cooling to room temperature, a solution of ethyl-orthoamino benzoate (0.01 mol) in anhydrous acetone (25 ml) was added dropwise and the resulting mixture refluxed for 3 h. Hydrochloric acid (0.1 N, 300 ml) was added, and the solution was filtered. The solid product was washed with water and purified by re-crystallization from ethyl acetate.

Refinement top

N-bound H-atoms were located in a difference Fourier map and refined isotropically. Other H atoms were placed at geometrical positions with C—H = 0.93–0.97 Å and refined using riding model with Uiso(H) =1.2Ueq(C). The ethoxy group is disordered over two sites, the occupancy ratio was refined to 0.580 (15):0.420 (15). Distance and displacement restraints were used for the disordered components.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of the compound was shown at 50% probability thermal ellipsoids with the atom numbering scheme (only the major component was shown).
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis.
Ethyl 2-[3-(3,5-Dinitrobenzoyl)thioureido]benzoate top
Crystal data top
C17H14N4O7SF(000) = 864
Mr = 418.38Dx = 1.461 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 6458 reflections
a = 11.7264 (19) Åθ = 2.1–25.0°
b = 16.617 (3) ŵ = 0.22 mm1
c = 9.9630 (16) ÅT = 299 K
β = 101.522 (2)°Block, yellow
V = 1902.3 (5) Å30.27 × 0.16 × 0.08 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3011 independent reflections
Radiation source: fine-focus sealed tube2727 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω and ϕ scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1313
Tmin = 0.943, Tmax = 0.983k = 1915
4944 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.3273P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3011 reflectionsΔρmax = 0.22 e Å3
301 parametersΔρmin = 0.24 e Å3
42 restraintsAbsolute structure: Flack (1983), 1340 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.39 (8)
Crystal data top
C17H14N4O7SV = 1902.3 (5) Å3
Mr = 418.38Z = 4
Monoclinic, CcMo Kα radiation
a = 11.7264 (19) ŵ = 0.22 mm1
b = 16.617 (3) ÅT = 299 K
c = 9.9630 (16) Å0.27 × 0.16 × 0.08 mm
β = 101.522 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3011 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2727 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.983Rint = 0.014
4944 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095Δρmax = 0.22 e Å3
S = 1.10Δρmin = 0.24 e Å3
3011 reflectionsAbsolute structure: Flack (1983), 1340 Friedel pairs
301 parametersAbsolute structure parameter: 0.39 (8)
42 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.94150 (8)0.19793 (4)0.68183 (8)0.0759 (3)
O20.8103 (2)0.05570 (13)1.0967 (3)0.0866 (7)
O30.99391 (19)0.01499 (10)0.97679 (18)0.0663 (5)
O41.0187 (3)0.31100 (14)0.9255 (4)0.1022 (8)
O51.1263 (3)0.35915 (14)0.7937 (3)0.1095 (10)
O61.2496 (4)0.1832 (2)0.4646 (3)0.1355 (14)
O71.2710 (4)0.0571 (3)0.5114 (4)0.1459 (15)
N10.9176 (2)0.13747 (12)0.9269 (2)0.0543 (5)
H10.911 (2)0.0912 (17)0.974 (3)0.064 (8)*
H20.997 (2)0.0472 (15)0.704 (3)0.045 (7)*
N20.9902 (2)0.05353 (12)0.7789 (2)0.0555 (5)
N31.0798 (3)0.30348 (14)0.8423 (3)0.0773 (8)
N41.2402 (3)0.1244 (3)0.5338 (3)0.0976 (10)
C10.7736 (3)0.11786 (17)1.1281 (3)0.0647 (7)
C20.8103 (2)0.19844 (15)1.0865 (3)0.0563 (6)
C30.7770 (3)0.26756 (18)1.1485 (3)0.0713 (8)
H30.72960.26261.21250.086*
C40.8124 (4)0.3418 (2)1.1176 (4)0.0842 (10)
H40.78850.38701.15960.101*
C50.8830 (3)0.35007 (17)1.0248 (3)0.0782 (9)
H50.90800.40101.00510.094*
C60.9179 (3)0.28322 (16)0.9596 (3)0.0657 (7)
H60.96620.28960.89680.079*
C70.8809 (2)0.20717 (14)0.9882 (2)0.0531 (6)
C80.9476 (2)0.13033 (14)0.8043 (3)0.0525 (6)
C91.0156 (2)0.01157 (13)0.8622 (2)0.0518 (6)
C101.0713 (2)0.08065 (14)0.8043 (3)0.0539 (6)
C111.0528 (2)0.15737 (14)0.8509 (3)0.0555 (6)
H111.01030.16500.91930.067*
C121.0991 (2)0.22190 (15)0.7933 (3)0.0595 (7)
C131.1609 (3)0.21360 (18)0.6905 (3)0.0695 (8)
H131.18900.25820.65080.083*
C141.1797 (3)0.1366 (2)0.6489 (3)0.0677 (8)
C151.1379 (3)0.07002 (16)0.7053 (3)0.0618 (7)
H151.15420.01860.67750.074*
O10.7136 (10)0.1247 (5)1.2262 (9)0.083 (2)0.580 (15)
C160.6730 (10)0.0532 (7)1.2838 (13)0.113 (4)0.580 (15)
H16A0.69310.05481.38300.135*0.580 (15)
H16B0.70770.00561.25230.135*0.580 (15)
C170.5404 (10)0.0522 (6)1.2345 (19)0.161 (6)0.580 (15)
H17A0.50700.01251.28510.193*0.580 (15)
H17B0.52190.03921.13870.193*0.580 (15)
H17C0.50930.10421.24890.193*0.580 (15)
O1'0.6758 (12)0.1178 (7)1.1805 (14)0.085 (3)0.420 (15)
C16'0.6436 (15)0.0411 (7)1.2287 (14)0.084 (4)0.420 (15)
H16C0.71190.00731.25490.101*0.420 (15)
H16D0.58890.01391.15710.101*0.420 (15)
C17'0.5883 (19)0.0568 (8)1.3511 (18)0.134 (6)0.420 (15)
H17D0.57380.00651.39200.161*0.420 (15)
H17E0.51620.08501.32190.161*0.420 (15)
H17F0.63990.08881.41690.161*0.420 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1117 (6)0.0590 (4)0.0655 (4)0.0263 (4)0.0381 (4)0.0158 (3)
O20.1105 (17)0.0589 (12)0.1056 (17)0.0112 (11)0.0580 (14)0.0120 (11)
O30.1054 (16)0.0478 (10)0.0498 (10)0.0112 (9)0.0252 (10)0.0004 (7)
O40.131 (2)0.0570 (13)0.122 (2)0.0046 (13)0.031 (2)0.0083 (13)
O50.118 (2)0.0524 (12)0.153 (3)0.0257 (13)0.0147 (19)0.0192 (14)
O60.172 (3)0.163 (3)0.0823 (18)0.073 (3)0.052 (2)0.0065 (18)
O70.179 (4)0.131 (3)0.163 (3)0.028 (3)0.119 (3)0.026 (2)
N10.0734 (15)0.0413 (10)0.0509 (12)0.0056 (9)0.0185 (10)0.0003 (8)
N20.0776 (15)0.0480 (11)0.0434 (12)0.0094 (10)0.0178 (11)0.0029 (9)
N30.0820 (18)0.0479 (13)0.092 (2)0.0105 (12)0.0056 (16)0.0079 (13)
N40.099 (2)0.123 (3)0.0795 (19)0.049 (2)0.0396 (17)0.0068 (19)
C10.076 (2)0.0658 (17)0.0559 (15)0.0108 (14)0.0209 (14)0.0059 (12)
C20.0635 (17)0.0569 (14)0.0459 (13)0.0114 (11)0.0046 (12)0.0053 (10)
C30.081 (2)0.0679 (18)0.0663 (18)0.0144 (14)0.0178 (16)0.0096 (14)
C40.103 (3)0.0639 (19)0.086 (2)0.0187 (17)0.0186 (19)0.0250 (16)
C50.103 (2)0.0453 (14)0.084 (2)0.0031 (14)0.0121 (18)0.0134 (13)
C60.080 (2)0.0526 (14)0.0644 (17)0.0012 (12)0.0144 (15)0.0065 (12)
C70.0631 (16)0.0459 (12)0.0478 (13)0.0070 (10)0.0049 (12)0.0029 (10)
C80.0577 (15)0.0476 (13)0.0520 (13)0.0034 (10)0.0100 (11)0.0010 (10)
C90.0643 (17)0.0453 (13)0.0462 (14)0.0029 (10)0.0119 (12)0.0023 (10)
C100.0649 (17)0.0507 (13)0.0445 (12)0.0062 (11)0.0069 (12)0.0030 (10)
C110.0637 (17)0.0486 (13)0.0516 (13)0.0047 (11)0.0056 (12)0.0062 (10)
C120.0622 (17)0.0462 (13)0.0641 (17)0.0098 (11)0.0015 (14)0.0033 (11)
C130.0718 (19)0.0740 (18)0.0574 (16)0.0290 (14)0.0001 (14)0.0162 (14)
C140.0655 (18)0.082 (2)0.0568 (16)0.0240 (14)0.0151 (14)0.0023 (14)
C150.0686 (18)0.0592 (14)0.0581 (15)0.0113 (13)0.0138 (13)0.0029 (12)
O10.103 (6)0.083 (3)0.075 (4)0.006 (3)0.043 (4)0.008 (3)
C160.130 (8)0.116 (7)0.104 (7)0.012 (5)0.053 (6)0.018 (5)
C170.191 (12)0.086 (5)0.212 (14)0.002 (6)0.056 (10)0.002 (7)
O1'0.087 (6)0.081 (4)0.093 (7)0.005 (4)0.035 (5)0.008 (4)
C16'0.090 (7)0.070 (5)0.108 (8)0.013 (4)0.055 (6)0.007 (5)
C17'0.209 (14)0.092 (7)0.135 (10)0.039 (8)0.116 (10)0.024 (7)
Geometric parameters (Å, º) top
S1—C81.649 (2)C6—C71.385 (4)
O2—C11.185 (3)C6—H60.9300
O3—C91.219 (3)C9—C101.493 (3)
O4—N31.205 (4)C10—C151.386 (4)
O5—N31.222 (4)C10—C111.388 (3)
O6—N41.213 (4)C11—C121.377 (4)
O7—N41.210 (5)C11—H110.9300
N1—C81.342 (3)C12—C131.375 (4)
N1—C71.416 (3)C13—C141.376 (5)
N1—H10.91 (3)C13—H130.9300
N2—C91.360 (3)C14—C151.375 (4)
N2—C81.412 (3)C15—H150.9300
N2—H20.77 (3)O1—C161.442 (8)
N3—C121.474 (4)C16—C171.535 (9)
N4—C141.478 (4)C16—H16A0.9700
C1—O11.318 (10)C16—H16B0.9700
C1—O1'1.351 (14)C17—H17A0.9600
C1—C21.490 (4)C17—H17B0.9600
C2—C31.396 (4)C17—H17C0.9600
C2—C71.410 (4)O1'—C16'1.440 (9)
C3—C41.356 (5)C16'—C17'1.514 (9)
C3—H30.9300C16'—H16C0.9700
C4—C51.365 (5)C16'—H16D0.9700
C4—H40.9300C17'—H17D0.9600
C5—C61.389 (4)C17'—H17E0.9600
C5—H50.9300C17'—H17F0.9600
C8—N1—C7128.5 (2)N2—C9—C10115.8 (2)
C8—N1—H1117.1 (18)C15—C10—C11120.2 (2)
C7—N1—H1114.0 (18)C15—C10—C9122.0 (2)
C9—N2—C8130.7 (2)C11—C10—C9117.9 (2)
C9—N2—H2115.4 (18)C12—C11—C10118.4 (3)
C8—N2—H2113.8 (19)C12—C11—H11120.8
O4—N3—O5124.6 (3)C10—C11—H11120.8
O4—N3—C12118.4 (2)C13—C12—C11122.8 (3)
O5—N3—C12117.1 (3)C13—C12—N3118.5 (2)
O7—N4—O6125.1 (4)C11—C12—N3118.6 (3)
O7—N4—C14118.6 (3)C12—C13—C14117.2 (2)
O6—N4—C14116.2 (4)C12—C13—H13121.4
O2—C1—O1123.2 (5)C14—C13—H13121.4
O2—C1—O1'118.9 (6)C15—C14—C13122.3 (3)
O2—C1—C2124.7 (3)C15—C14—N4118.1 (3)
O1—C1—C2110.8 (4)C13—C14—N4119.5 (3)
O1'—C1—C2115.0 (5)C14—C15—C10119.0 (3)
C3—C2—C7118.5 (2)C14—C15—H15120.5
C3—C2—C1119.6 (3)C10—C15—H15120.5
C7—C2—C1121.9 (2)C1—O1—C16119.4 (9)
C4—C3—C2121.5 (3)O1—C16—C17106.0 (9)
C4—C3—H3119.2O1—C16—H16A110.5
C2—C3—H3119.2C17—C16—H16A110.5
C3—C4—C5120.0 (3)O1—C16—H16B110.5
C3—C4—H4120.0C17—C16—H16B110.5
C5—C4—H4120.0H16A—C16—H16B108.7
C4—C5—C6120.7 (3)C1—O1'—C16'115.3 (10)
C4—C5—H5119.6O1'—C16'—C17'107.4 (10)
C6—C5—H5119.6O1'—C16'—H16C110.2
C7—C6—C5120.0 (3)C17'—C16'—H16C110.2
C7—C6—H6120.0O1'—C16'—H16D110.2
C5—C6—H6120.0C17'—C16'—H16D110.2
C6—C7—C2119.3 (2)H16C—C16'—H16D108.5
C6—C7—N1121.5 (2)C16'—C17'—H17D109.5
C2—C7—N1119.1 (2)C16'—C17'—H17E109.5
N1—C8—N2114.2 (2)H17D—C17'—H17E109.5
N1—C8—S1129.22 (19)C16'—C17'—H17F109.5
N2—C8—S1116.62 (19)H17D—C17'—H17F109.5
O3—C9—N2123.2 (2)H17E—C17'—H17F109.5
O3—C9—C10121.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.91 (3)1.95 (3)2.672 (3)134 (2)
N1—H1···O30.91 (3)2.01 (3)2.700 (3)131 (2)
N2—H2···O3i0.77 (3)2.32 (3)3.086 (3)172 (2)
Symmetry code: (i) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC17H14N4O7S
Mr418.38
Crystal system, space groupMonoclinic, Cc
Temperature (K)299
a, b, c (Å)11.7264 (19), 16.617 (3), 9.9630 (16)
β (°) 101.522 (2)
V3)1902.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.27 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.943, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
4944, 3011, 2727
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.10
No. of reflections3011
No. of parameters301
No. of restraints42
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.24
Absolute structureFlack (1983), 1340 Friedel pairs
Absolute structure parameter0.39 (8)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.91 (3)1.95 (3)2.672 (3)134 (2)
N1—H1···O30.91 (3)2.01 (3)2.700 (3)131 (2)
N2—H2···O3i0.77 (3)2.32 (3)3.086 (3)172 (2)
Symmetry code: (i) x, y, z1/2.
 

Acknowledgements

The authors are grateful to Allama Iqbal Open University, Islamabad, Pakistan, for the allocation of research and analytical laboratory facilities.

References

First citationBruker. (1998). SMART, Madison, Wisconsin, USA.  Google Scholar
First citationBruker. (2006). SAINT, Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaeed, S., Rashid, N. & Wong, W.-T. (2010). Acta Cryst. E66, o980.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1114
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds