organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1119-o1120

4,4′-Oxybis{N-[(E)-quinolin-2-yl­methyl­­idene]aniline}

aLaboratoire d'Électrochimie des Matériaux Moléculaires et Complexes (LEMMC), Département de Génie des Procèdes, Faculté de Technologie, Université FERHAT ABBAS – SETIF, 19000, Algeria
*Correspondence e-mail: daoudkamal88@yahoo.fr

(Received 24 March 2011; accepted 6 April 2011; online 13 April 2011)

The title Schiff base compound, C32H22N4O, was prepared by a reaction of 4,4′-diamino­diphenyl ether and 2-quinoline­carboxaldehyde. The mol­ecule consists of two 4-{N-[(E)-quinolin-2-yl­methyl­idene]amino}­phenyl units linked by an oxygen bridge. The dihedral angles between two benzene rings and between the two quinoline ring systems are 53.81 (7) and 42.56 (4)°, respectively. Inter­molecular C—H⋯N hydrogen bonding is present in the crystal structure.

Related literature

For the biological and pharmacological activity of quinolines and their derivatives, see: Kidwai et al. (2000[Kidwai, M., Bhushan, K., Sapra, P., Saxena, R. & Gupta, R. (2000). Bioorg. Med. Chem. 8, 69-72.]); Souza (2005[Souza, M. V. N. (2005). Mini Rev. Med. Chem. 5, 1009-1017.]); Musiol et al. (2006[Musiol, R., Jampilek, J., Buchta, V., Silva, L., Niebala, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592-3598.]); Gómez-Barrio et al. (2006[Gómez-Barrio, A., Montero-Pereira, D., Nogal-Ruiz, J. J., Escario, J. A., uelas-Serrano, S., Kouznetsov, V. V., Vargas Mendez, L. Y., Urbina González, J. M. & Ochoa, C. (2006). Acta Parasitol. 51, 73-78.]); Vinsova et al. (2008[Vinsova, J., Imramovsky, A., Jampilek, J., Monreal-Ferriz, J. & Dolezal, M. (2008). Anti-Infec. Agents Med. Chem. 7, 12-31.]); Jain et al. (2005[Jain, M., Khan, S., Tekwani, B., Jacob, M., Singh, S., Singh, B. & Jain, R. (2005). Bioorg. Med. Chem. 13, 4458-4466.]); Chen et al. (2006[Chen, Y., Zhao, Y., Lu, C., Tzeng, C. & Wang, J. (2006). Bioorg. Med. Chem. 14, 4373-4378.]). For applications of Schiff base compounds formed by aromatic diamine and a quinoline­aldehyde, see: Izatt et al. (1995[Izatt, R. M., Pawlak, M. K. & Bardshaw, I. S. (1995). Chem. Rev. 95, 2529-2586.]); Kalcher et al. (1995[Kalcher, K., Kauffman, J. M., Wank, J., Vaneare, I. S., Vitras, K., Neuhal, C. & Yang, Z. (1995). Electroanalysis, 7, 5-22.]); Gilmartin & Hart (1995[Gilmartin, M. A. T. & Hart, J. P. (1995). Analyst, 120, 1029-1045.]); Ahamad et al. (2010[Ahamad, I., Prasad, R. & Quraishi, M. A. (2010). Corros. Sci. 52, 933-942.]); Negm et al. (2010[Negm, N. A., Elkholy, Y. M., Zahran, M. K. & Tawfik, S. M. (2010). Corros. Sci. 52, 3523-3536.]). For related structures, see: Girija et al. (2004[Girija, C. R., Begum, N. S., Sridhar, M. A., Lokanath, N. K. & Prasad, J. S. (2004). Acta Cryst. E60, o586-o588.]); Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3087.]). For the synthesis, see: Issaadi et al. (2005[Issaadi, S., Haffar, D., Douadi, T., Chafaa, S., Séraphin, D., Khan, M. A. & Boue, G. M. (2005). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 35, 875-882.]); Ghames et al. (2006[Ghames, A., Douadi, T., Haffar, D., Chafaa, S., Allain, M., Khan, M. A. & Bouet, G. M. (2006). Polyhedron, 25, 3201-3208.]); Kaabi et al. (2007[Kaabi, I., Haffar, D., Douadi, T., Chafaa, S., Allain, M., Khan, M. A. & Bouet, G. M. (2007). Transition Met. Chem. 32, 666-673.]).

[Scheme 1]

Experimental

Crystal data
  • C32H22N4O

  • Mr = 478.54

  • Monoclinic, P 21 /n

  • a = 17.4533 (7) Å

  • b = 5.0836 (2) Å

  • c = 26.817 (1) Å

  • β = 92.839 (1)°

  • V = 2376.43 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.05 × 0.05 mm

Data collection
  • Bruker APEXII diffractometer

  • 20425 measured reflections

  • 5473 independent reflections

  • 4143 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.150

  • S = 1.1

  • 5473 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28⋯N3i 0.93 2.57 3.434 (2) 156
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2002[Bruker. (2002). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker. (2002). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Quinolines and their derivatives are often used for designing of many synthetic compounds with diverse pharmacological and medicinal proprieties. Literature survey reveled that substituted quinolines possess diverse chemotherapeutic activities such as antibacterial (Kidwai et al., 2000), antimalarial (Souza et al., 2005), antifungal (Musiol et al., 2006), antiparasitical (Gómez-Barrio et al., 2006), antimycobacterial (Vinsova et al., 2008), antileishmanial (Jain et al., 2005), and anti-inflammatory behavior (Chen et al., 2006). Schiff base compounds are typically formed by condensation of an aromatic diamine and a quinolinealdehyde. These kinds of compounds have a wide variety of applications in many fields. For example in water treatment, they have a great capacity for complexation of transition metals (Izatt et al., 1995; Kalcher et al., 1995; Gilmartin et al., 1995). They also serve as intermediates in certain enzymatic reactions and their use as corrosion inhibitors, (Ahamad et al., 2010; Negm et al., 2010) reveal their importance.

The compound, C32H22N4O prepared is a condensation product of quinolinealdehyde with bifunctional aromatic diamine as shown in Fig (1). All the molecule is found in a single asymmetric unit although, the two 4-{N-[(E) -quinolin-2-ylmethylidene] amino}phenyl moieties are related by a pseudo mirror plane. A dihedral angle of 53.15° is found between the planes defined as (O(1)—C(17)—C(18)—C(19)—C(20)—C(21)—C(22) and O(1)—C(11)—C(12)—C(13)—C(14)—C(15)—C(16). Whereas the dihedral angle between each imine phenyl plane and the attached quinolinecarboxy plane are 8.33° for C(10)—N(2)—C(11) and 17.74° for C(25)—N(1)—C(20). The bond lengths N(2)—C(10), N(2)—C(11), O(1)—C(14).. and bond angles C(10)—N(2)—C(11), C(16)—C(11)—N(2), C(9)—N(3)—C(1), N(3)—C(1)—C(2) of one 4-{N-[(E) -quinolin-2-ylmethylidene] amino}phenyl moiety are similar the corresponding ones N(1)—C(25), N(1)—C20), O(1)—C(17).. and C(25)—N(1)—C(20), C(19)—C(20)—N(1), C(26)—N(4)—C(30, N(4)—C(30)—C(31)..of the second 4-{N-[(E) -quinolin-2-ylmethylidene] amino}phenyl. The bond distances shown in table 3 indicate that the N(1)—C(25) imine (C=N) bond length of 1.268 (17) A agree with similar double bond usually observed in related compounds (Girija et al., 2004) but much shorter than single C—N 1.4175 (16) A of N(1)—C(20) (Gowda et al., 2007).

Related literature top

For the biological and pharmacological activity of quinolines and their derivatives, see: Kidwai et al. (2000); Souza (2005); Musiol et al. (2006); Gómez-Barrio et al. (2006); Vinsova et al. (2008); Jain et al. (2005); Chen et al. (2006). For applications of Schiff base compounds formed by aromatic diamine and a quinolinealdehyde, see: Izatt et al. (1995); Kalcher et al. (1995); Gilmartin & Hart (1995); Ahamad et al. (2010); Negm et al. (2010). For related structures, see: Girija et al. (2004); Gowda et al. (2007). For the synthesis, see: Issaadi et al. (2005); Ghames et al. (2006); Kaabi et al. (2007).

Experimental top

The studied Schiff base compound was synthesized in proper literature (Issaadi et al., 2005; Ghames et al., 2006; Kaabi et al., 2007). by reacting the mixture of 4,4'-diaminodiphenyl ether (0.4 mg, 0.002 mol) and 2-quinolinecarboxaldehyde (0.64 mg, 0.004 mol) in 20 ml of boiling ethanol for 5 h, after completion of the reaction the separated solid was filtered, washed with alcohol, and finally recrystallized from ethanol and dried under vacuum. The single crystals suitable for X-ray analysis were obtained by slow evaporation from ethanol-dichloromethane (1:1).

Refinement top

H atoms were included in geometric positions C—H = 0.93 Å and refined by using a riding model [Uiso (H) = 1.2 Ueq (C)].

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids for non–H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the molecules along the b–axis.
4,4'-Oxybis{N-[(E)-quinolin-2-ylmethylidene]aniline} top
Crystal data top
C32H22N4ODx = 1.338 Mg m3
Mr = 478.54Melting point: 491 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 17.4533 (7) ÅCell parameters from 5947 reflections
b = 5.0836 (2) Åθ = 2.3–27.4°
c = 26.817 (1) ŵ = 0.08 mm1
β = 92.839 (1)°T = 293 K
V = 2376.43 (16) Å3Needle, colourless
Z = 40.25 × 0.05 × 0.05 mm
F(000) = 1000
Data collection top
Bruker APEXII
diffractometer
4143 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590Rint = 0.035
Graphite monochromatorθmax = 27.5°, θmin = 1.4°
CCD rotation images, thick slices scansh = 2222
20425 measured reflectionsk = 66
5473 independent reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.1 w = 1/[σ2(Fo2) + (0.0834P)2 + 0.4121P]
where P = (Fo2 + 2Fc2)/3
5473 reflections(Δ/σ)max < 0.001
334 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C32H22N4OV = 2376.43 (16) Å3
Mr = 478.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.4533 (7) ŵ = 0.08 mm1
b = 5.0836 (2) ÅT = 293 K
c = 26.817 (1) Å0.25 × 0.05 × 0.05 mm
β = 92.839 (1)°
Data collection top
Bruker APEXII
diffractometer
4143 reflections with I > 2σ(I)
20425 measured reflectionsRint = 0.035
5473 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.1Δρmax = 0.31 e Å3
5473 reflectionsΔρmin = 0.30 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.44063 (7)0.2230 (2)0.11249 (4)0.0237 (3)
N40.57723 (7)0.2658 (2)0.14573 (4)0.0227 (3)
O10.32016 (6)0.7878 (2)0.05150 (4)0.0302 (3)
C250.49844 (8)0.0726 (3)0.11071 (5)0.0239 (3)
H250.52570.06620.08180.029*
N30.04347 (7)1.8407 (3)0.14217 (5)0.0282 (3)
C260.52279 (8)0.0916 (3)0.15378 (5)0.0221 (3)
N20.04205 (8)1.3301 (3)0.06988 (5)0.0294 (3)
C300.60189 (8)0.4232 (3)0.18480 (5)0.0220 (3)
C140.25109 (8)0.9214 (3)0.05263 (5)0.0242 (3)
C220.39182 (8)0.4332 (3)0.01897 (5)0.0250 (3)
H220.39940.3820.05170.03*
C210.42483 (8)0.2911 (3)0.02053 (5)0.0250 (3)
H210.45450.1440.01430.03*
C180.33675 (9)0.7328 (3)0.03893 (6)0.0259 (3)
H180.30790.88230.0450.031*
C110.11440 (9)1.2017 (3)0.06541 (5)0.0258 (3)
C90.04232 (9)1.6533 (3)0.10785 (5)0.0263 (3)
C130.24528 (9)1.1256 (3)0.08705 (6)0.0271 (3)
H130.28691.16860.10580.033*
C60.18146 (9)1.8825 (3)0.13310 (6)0.0269 (3)
C120.17775 (9)1.2639 (3)0.09323 (6)0.0304 (4)
H120.17411.40080.11620.036*
C200.41394 (8)0.3668 (3)0.06980 (5)0.0216 (3)
C160.12138 (9)0.9950 (3)0.03153 (6)0.0281 (3)
H160.07980.95080.01280.034*
C170.34752 (8)0.6517 (3)0.00961 (5)0.0234 (3)
C290.57228 (8)0.4008 (3)0.23301 (5)0.0235 (3)
C100.03217 (9)1.5231 (3)0.09934 (6)0.0298 (3)
H100.07381.58470.11630.036*
C310.65914 (9)0.6133 (3)0.17642 (6)0.0264 (3)
H310.67860.63030.14490.032*
C190.36957 (8)0.5879 (3)0.07820 (5)0.0247 (3)
H190.36180.63960.11080.03*
C340.60200 (9)0.5671 (3)0.27190 (6)0.0278 (3)
H340.58360.55310.30380.033*
C280.51373 (9)0.2130 (3)0.23956 (6)0.0269 (3)
H280.49250.19390.27050.032*
C10.11244 (9)1.9575 (3)0.15479 (5)0.0260 (3)
C330.65745 (9)0.7475 (3)0.26262 (6)0.0311 (4)
H330.67670.85540.28830.037*
C270.48872 (9)0.0606 (3)0.20035 (5)0.0258 (3)
H270.44990.0620.2040.031*
C150.18910 (9)0.8532 (3)0.02517 (6)0.0290 (3)
H150.19280.71390.00270.035*
C50.25113 (9)2.0034 (3)0.15027 (6)0.0315 (4)
H50.29711.95190.13710.038*
C320.68574 (9)0.7717 (3)0.21458 (6)0.0300 (4)
H320.7230.89720.20880.036*
C70.17651 (9)1.6876 (3)0.09530 (6)0.0345 (4)
H70.22011.63750.07920.041*
C80.10793 (10)1.5743 (3)0.08275 (6)0.0337 (4)
H80.10411.44640.0580.04*
C40.25106 (10)2.1942 (4)0.18585 (6)0.0369 (4)
H40.2972.27370.19660.044*
C20.11438 (10)2.1559 (3)0.19178 (6)0.0364 (4)
H20.06922.2070.20610.044*
C30.18194 (11)2.2725 (4)0.20663 (6)0.0400 (4)
H30.18252.40470.23060.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0243 (6)0.0236 (6)0.0232 (6)0.0024 (5)0.0005 (5)0.0004 (5)
N40.0221 (6)0.0231 (6)0.0229 (6)0.0018 (5)0.0005 (5)0.0003 (5)
O10.0309 (6)0.0349 (6)0.0252 (5)0.0122 (5)0.0048 (4)0.0085 (5)
C250.0242 (7)0.0250 (7)0.0226 (7)0.0017 (6)0.0025 (6)0.0008 (6)
N30.0258 (7)0.0310 (7)0.0280 (7)0.0043 (5)0.0030 (5)0.0047 (5)
C260.0203 (7)0.0224 (7)0.0234 (7)0.0010 (6)0.0000 (5)0.0003 (6)
N20.0285 (7)0.0292 (7)0.0304 (7)0.0052 (6)0.0017 (5)0.0042 (6)
C300.0205 (7)0.0206 (7)0.0247 (7)0.0018 (6)0.0021 (5)0.0005 (5)
C140.0255 (7)0.0241 (7)0.0228 (7)0.0043 (6)0.0008 (6)0.0010 (6)
C220.0237 (7)0.0290 (8)0.0224 (7)0.0025 (6)0.0027 (6)0.0012 (6)
C210.0235 (7)0.0236 (7)0.0279 (7)0.0065 (6)0.0022 (6)0.0018 (6)
C180.0273 (8)0.0205 (7)0.0299 (8)0.0053 (6)0.0031 (6)0.0003 (6)
C110.0259 (8)0.0257 (7)0.0255 (7)0.0023 (6)0.0012 (6)0.0002 (6)
C90.0282 (8)0.0269 (8)0.0239 (7)0.0035 (6)0.0017 (6)0.0011 (6)
C130.0269 (8)0.0304 (8)0.0243 (7)0.0027 (6)0.0038 (6)0.0042 (6)
C60.0275 (8)0.0260 (7)0.0273 (7)0.0022 (6)0.0017 (6)0.0055 (6)
C120.0334 (9)0.0290 (8)0.0288 (8)0.0052 (7)0.0020 (6)0.0085 (6)
C200.0195 (7)0.0211 (7)0.0242 (7)0.0004 (6)0.0009 (5)0.0016 (5)
C160.0270 (8)0.0285 (8)0.0289 (8)0.0007 (6)0.0032 (6)0.0040 (6)
C170.0216 (7)0.0238 (7)0.0248 (7)0.0011 (6)0.0007 (5)0.0051 (6)
C290.0234 (7)0.0222 (7)0.0246 (7)0.0041 (6)0.0015 (6)0.0002 (6)
C100.0263 (8)0.0336 (8)0.0297 (8)0.0025 (7)0.0027 (6)0.0050 (7)
C310.0260 (7)0.0262 (7)0.0271 (7)0.0012 (6)0.0014 (6)0.0007 (6)
C190.0262 (7)0.0245 (7)0.0235 (7)0.0018 (6)0.0024 (6)0.0025 (6)
C340.0302 (8)0.0290 (8)0.0237 (7)0.0046 (6)0.0030 (6)0.0028 (6)
C280.0291 (8)0.0295 (8)0.0223 (7)0.0003 (6)0.0043 (6)0.0020 (6)
C10.0280 (8)0.0276 (7)0.0226 (7)0.0038 (6)0.0015 (6)0.0011 (6)
C330.0318 (8)0.0283 (8)0.0322 (8)0.0019 (7)0.0090 (6)0.0072 (6)
C270.0246 (7)0.0260 (7)0.0269 (7)0.0036 (6)0.0025 (6)0.0019 (6)
C150.0299 (8)0.0271 (8)0.0301 (8)0.0029 (7)0.0019 (6)0.0092 (6)
C50.0255 (8)0.0334 (8)0.0359 (8)0.0066 (7)0.0033 (6)0.0085 (7)
C320.0261 (8)0.0252 (8)0.0380 (9)0.0036 (6)0.0047 (7)0.0002 (6)
C70.0284 (8)0.0351 (9)0.0410 (9)0.0015 (7)0.0128 (7)0.0036 (7)
C80.0348 (9)0.0325 (8)0.0345 (8)0.0055 (7)0.0088 (7)0.0111 (7)
C40.0349 (9)0.0431 (10)0.0317 (8)0.0172 (8)0.0071 (7)0.0092 (7)
C20.0368 (9)0.0402 (9)0.0328 (8)0.0088 (8)0.0081 (7)0.0092 (7)
C30.0486 (11)0.0412 (10)0.0302 (8)0.0152 (8)0.0012 (7)0.0089 (7)
Geometric parameters (Å, º) top
N1—C251.2686 (18)C6—C71.417 (2)
N1—C201.4177 (18)C6—C51.419 (2)
N4—C261.3241 (18)C12—H120.93
N4—C301.3706 (18)C20—C191.389 (2)
O1—C141.3828 (18)C16—C151.388 (2)
O1—C171.3841 (17)C16—H160.93
C25—C261.471 (2)C29—C281.416 (2)
C25—H250.93C29—C341.421 (2)
N3—C91.3240 (19)C10—H100.93
N3—C11.3697 (19)C31—C321.365 (2)
C26—C271.418 (2)C31—H310.93
N2—C101.266 (2)C19—H190.93
N2—C111.4213 (19)C34—C331.365 (2)
C30—C311.416 (2)C34—H340.93
C30—C291.420 (2)C28—C271.361 (2)
C14—C151.383 (2)C28—H280.93
C14—C131.389 (2)C1—C21.414 (2)
C22—C171.384 (2)C33—C321.408 (2)
C22—C211.384 (2)C33—H330.93
C22—H220.93C27—H270.93
C21—C201.398 (2)C15—H150.93
C21—H210.93C5—C41.361 (2)
C18—C191.386 (2)C5—H50.93
C18—C171.387 (2)C32—H320.93
C18—H180.93C7—C81.355 (2)
C11—C161.391 (2)C7—H70.93
C11—C121.400 (2)C8—H80.93
C9—C81.415 (2)C4—C31.411 (3)
C9—C101.467 (2)C4—H40.93
C13—C121.375 (2)C2—C31.362 (2)
C13—H130.93C2—H20.93
C6—C11.416 (2)C3—H30.93
C25—N1—C20120.70 (13)C28—C29—C34123.35 (14)
C26—N4—C30117.80 (12)C30—C29—C34118.97 (14)
C14—O1—C17121.91 (11)N2—C10—C9122.63 (15)
N1—C25—C26120.80 (13)N2—C10—H10118.7
N1—C25—H25119.6C9—C10—H10118.7
C26—C25—H25119.6C32—C31—C30120.01 (14)
C9—N3—C1117.82 (13)C32—C31—H31120
N4—C26—C27123.60 (13)C30—C31—H31120
N4—C26—C25115.68 (13)C18—C19—C20121.29 (13)
C27—C26—C25120.72 (13)C18—C19—H19119.4
C10—N2—C11120.10 (14)C20—C19—H19119.4
N4—C30—C31118.33 (13)C33—C34—C29120.17 (14)
N4—C30—C29122.30 (13)C33—C34—H34119.9
C31—C30—C29119.37 (13)C29—C34—H34119.9
C15—C14—O1124.71 (13)C27—C28—C29119.59 (14)
C15—C14—C13120.53 (14)C27—C28—H28120.2
O1—C14—C13114.60 (13)C29—C28—H28120.2
C17—C22—C21119.69 (13)N3—C1—C2118.23 (14)
C17—C22—H22120.2N3—C1—C6122.47 (14)
C21—C22—H22120.2C2—C1—C6119.28 (14)
C22—C21—C20120.59 (13)C34—C33—C32120.64 (14)
C22—C21—H21119.7C34—C33—H33119.7
C20—C21—H21119.7C32—C33—H33119.7
C19—C18—C17119.01 (13)C28—C27—C26119.00 (14)
C19—C18—H18120.5C28—C27—H27120.5
C17—C18—H18120.5C26—C27—H27120.5
C16—C11—C12118.21 (14)C14—C15—C16119.23 (14)
C16—C11—N2116.80 (14)C14—C15—H15120.4
C12—C11—N2124.97 (14)C16—C15—H15120.4
N3—C9—C8123.37 (14)C4—C5—C6120.38 (16)
N3—C9—C10114.56 (14)C4—C5—H5119.8
C8—C9—C10122.00 (14)C6—C5—H5119.8
C12—C13—C14119.72 (14)C31—C32—C33120.83 (15)
C12—C13—H13120.1C31—C32—H32119.6
C14—C13—H13120.1C33—C32—H32119.6
C1—C6—C7117.34 (14)C8—C7—C6119.76 (15)
C1—C6—C5118.88 (14)C8—C7—H7120.1
C7—C6—C5123.78 (15)C6—C7—H7120.1
C13—C12—C11121.00 (14)C7—C8—C9119.14 (15)
C13—C12—H12119.5C7—C8—H8120.4
C11—C12—H12119.5C9—C8—H8120.4
C19—C20—C21118.61 (13)C5—C4—C3120.57 (15)
C19—C20—N1116.72 (13)C5—C4—H4119.7
C21—C20—N1124.52 (13)C3—C4—H4119.7
C15—C16—C11121.29 (14)C3—C2—C1120.41 (16)
C15—C16—H16119.4C3—C2—H2119.8
C11—C16—H16119.4C1—C2—H2119.8
C22—C17—O1115.31 (13)C2—C3—C4120.44 (16)
C22—C17—C18120.79 (13)C2—C3—H3119.8
O1—C17—C18123.77 (13)C4—C3—H3119.8
C28—C29—C30117.68 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28···N3i0.932.573.434 (2)156
Symmetry code: (i) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC32H22N4O
Mr478.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)17.4533 (7), 5.0836 (2), 26.817 (1)
β (°) 92.839 (1)
V3)2376.43 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.05 × 0.05
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20425, 5473, 4143
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.150, 1.1
No. of reflections5473
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.30

Computer programs: APEX2 (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28···N3i0.932.573.434 (2)156
Symmetry code: (i) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors thank Dr Lahcène Ouahab for the data collection at the Centre de Diffractomtétrie de l'Université de Rennes 1 CDiFX.

References

First citationAhamad, I., Prasad, R. & Quraishi, M. A. (2010). Corros. Sci. 52, 933–942.  Web of Science CrossRef CAS Google Scholar
First citationBruker. (2002). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., Zhao, Y., Lu, C., Tzeng, C. & Wang, J. (2006). Bioorg. Med. Chem. 14, 4373–4378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGhames, A., Douadi, T., Haffar, D., Chafaa, S., Allain, M., Khan, M. A. & Bouet, G. M. (2006). Polyhedron, 25, 3201–3208.  Web of Science CSD CrossRef CAS Google Scholar
First citationGilmartin, M. A. T. & Hart, J. P. (1995). Analyst, 120, 1029–1045.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGirija, C. R., Begum, N. S., Sridhar, M. A., Lokanath, N. K. & Prasad, J. S. (2004). Acta Cryst. E60, o586–o588.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGómez-Barrio, A., Montero-Pereira, D., Nogal-Ruiz, J. J., Escario, J. A., uelas-Serrano, S., Kouznetsov, V. V., Vargas Mendez, L. Y., Urbina González, J. M. & Ochoa, C. (2006). Acta Parasitol. 51, 73–78.  Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3087.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIssaadi, S., Haffar, D., Douadi, T., Chafaa, S., Séraphin, D., Khan, M. A. & Boue, G. M. (2005). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 35, 875–882.  CrossRef CAS Google Scholar
First citationIzatt, R. M., Pawlak, M. K. & Bardshaw, I. S. (1995). Chem. Rev. 95, 2529–2586.  CrossRef CAS Web of Science Google Scholar
First citationJain, M., Khan, S., Tekwani, B., Jacob, M., Singh, S., Singh, B. & Jain, R. (2005). Bioorg. Med. Chem. 13, 4458–4466.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaabi, I., Haffar, D., Douadi, T., Chafaa, S., Allain, M., Khan, M. A. & Bouet, G. M. (2007). Transition Met. Chem. 32, 666–673.  CSD CrossRef CAS Google Scholar
First citationKalcher, K., Kauffman, J. M., Wank, J., Vaneare, I. S., Vitras, K., Neuhal, C. & Yang, Z. (1995). Electroanalysis, 7, 5–22.  CrossRef CAS Web of Science Google Scholar
First citationKidwai, M., Bhushan, K., Sapra, P., Saxena, R. & Gupta, R. (2000). Bioorg. Med. Chem. 8, 69–72.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMusiol, R., Jampilek, J., Buchta, V., Silva, L., Niebala, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNegm, N. A., Elkholy, Y. M., Zahran, M. K. & Tawfik, S. M. (2010). Corros. Sci. 52, 3523–3536.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. (2005). Mini Rev. Med. Chem. 5, 1009–1017.  Web of Science PubMed Google Scholar
First citationVinsova, J., Imramovsky, A., Jampilek, J., Monreal-Ferriz, J. & Dolezal, M. (2008). Anti-Infec. Agents Med. Chem. 7, 12–31.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1119-o1120
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds