metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m615-m616

Poly[[octa­aqua­tetra­kis­(μ3-pyridine-2,5-di­carboxyl­ato)copper(II)diytterbium(III)] monohydrate]

aDepartment of General Education Center, Yuanpei University, HsinChu 30015, Taiwan, and bDepartment of Biotechnology, Yuanpei University, No. 306 Yuanpei St., HsinChu 30015, Taiwan
*Correspondence e-mail: fmshen@mail.ypu.edu.tw

(Received 29 March 2011; accepted 14 April 2011; online 22 April 2011)

The asymmetric unit of the title heterometallic polymeric coordination compound, {[CuYb2(C7H3NO4)4(H2O)8]·H2O}n, contains one CuII cation located on an inversion center, a YbIII cation, two pyridine-2,5-dicarboxyl­ate (pda) anions, four coordination water mol­ecules a disordered lattice water molecule, which is half-occupied and is located close to an inversion center. The CuII cation is N,O-chelated by two pda anions in the coordination basal plane and further coordinated by two carboxyl O atoms at the apical positions, with an elongated octa­hedral geometry. The YbIII atom is eight-coordinated in a distorted square-anti­prismatic geometry formed by two carboxyl­ate O atoms from two pda anions, and is N,O-chelated by one pda anion and four coordinated water mol­ecules. The pda anions bridge adjacent Yb and Cu cations, forming a three-dimensional polymeric structure. The crystal structure features extensive O—H⋯O hydrogen bonds. ππ stacking is observed between parallel pyridine rings, the centroid–centroid distance being 3.843 (4) Å.

Related literature

For related structures, see: Bai et al. (2008[Bai, Y.-Y., Huang, Y., Yan, B., Song, Y.-S. & Weng, L.-H. (2008). Inorg. Chem. Commun. pp. 1030-1032.]); Chi et al. (2009[Chi, Y.-X., Niu, S.-Y. & Jin, J. (2009). Inorg. Chim. Acta, 362, 3821-3828.]); Wang et al. (2009[Wang, Z., Xing, Y.-H., Wang, C.-G., Zeng, X.-Q., Ge, M.-F. & Niu, S.-Y. (2009). Transition Met. Chem. 34, 655-661.]); Yue et al. (2007[Yue, Q., Yang, J., Yuan, H.-M. & Chen, J.-S. (2007). J. Mol. Struct. 827, 114-120.]); Zhang et al. (2006[Zhang, B.-F., Xie, C.-Z., Wang, X.-Q., Shen, G.-Q. & Shen, D.-Z. (2006). Acta Cryst. E62, m297-m299.]). For structures in which the Cu atom displays an elongated octa­hedral geometry with a longer Cu—O bond, see: Chuang et al. (2008[Chuang, S.-T., Kuo, T.-S. & Shiu, K.-B. (2008). J. Chin. Chem. Soc. 55., 255-263.]); Ghosh et al. (2004[Ghosh, S. K., Ribas, T. & Bharadwaj, P. K. (2004). CrystEngComm, 6, 250-256.]).

[Scheme 1]

Experimental

Crystal data
  • [CuYb2(C7H3NO4)4(H2O)8]·H2O

  • Mr = 1232.19

  • Triclinic, [P \overline 1]

  • a = 7.7120 (5) Å

  • b = 9.2713 (6) Å

  • c = 13.2452 (9) Å

  • α = 75.529 (1)°

  • β = 76.216 (1)°

  • γ = 78.117 (1)°

  • V = 879.73 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 5.98 mm−1

  • T = 294 K

  • 0.15 × 0.15 × 0.03 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.646, Tmax = 0.984

  • 7620 measured reflections

  • 3150 independent reflections

  • 3010 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.095

  • S = 1.18

  • 3150 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 2.78 e Å−3

  • Δρmin = −2.60 e Å−3

Table 1
Selected bond lengths (Å)

Yb1—N1 2.495 (7)
Yb1—O1 2.365 (6)
Yb1—O2 2.254 (7)
Yb1—O3 2.330 (8)
Yb1—O4 2.346 (7)
Yb1—O5 2.297 (5)
Yb1—O8i 2.297 (6)
Yb1—O9 2.334 (8)
Cu1—N2 1.985 (7)
Cu1—O7ii 2.641 (6)
Cu1—O11 1.944 (6)
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O12iii 0.81 1.96 2.757 (9) 165
O1—H1B⋯O11iv 0.82 2.02 2.782 (9) 153
O2—H2A⋯O10 0.88 1.88 2.670 (11) 149
O2—H2B⋯O5v 0.82 1.87 2.667 (9) 163
O3—H3A⋯O7i 0.84 1.82 2.607 (9) 155
O3—H3B⋯O13 0.82 1.95 2.73 (2) 159
O4—H4A⋯O10vi 0.82 1.95 2.760 (10) 167
O4—H4B⋯O6vii 0.82 1.98 2.802 (9) 179
O13—H13A⋯O10 0.87 2.20 3.03 (2) 161
O13—H13B⋯O12i 0.85 1.96 2.81 (2) 177
Symmetry codes: (i) x, y-1, z; (iii) x+1, y-1, z; (iv) -x, -y+2, -z+2; (v) -x+1, -y+1, -z+1; (vi) x+1, y, z; (vii) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

In recent year, many studies select pyridine-2,5-dicarboxylic acid as a bridging ligand, because it offers both N– and O-donors. Thus, the carboxylate group can bond to the lanthanide, while the nitrogen atom can bond to transition metal ions, allowing the possibility of 3 d-4f heterometallic coordination polymers (Zhang et al., 2006; Yue et al., 2007; Bai et al., 2008; Chi et al., 2009; Wang et al., 2009).

Herein, we successfully prepared a heterometallic coordination polymer, [CuYb2(C7H3NO4)4(H2O)8.H2O]n, from a hydrothermal reaction. Fig. 1 shows the structure unit of the title complex, which contains one CuII and two YbIII atoms, four pda ligands, eight coordinating and one non-coordinating water molecules. The YbIII center is eight-coordinated [YbNO3(H2O)4] in a slightly distorted square-antiprismatic geometry formed by two carboxylate O atoms from two pda anions, N,O-chelated by one pda anion and four coordinated water molecules. One CuII atom is N,O-chelated by two pda anions in the coordination basal plane and coordinated by two carboxyl O atoms at the apical position with an elongated octahedral geometry (selected bond lengths are given in Table 1) (Ghosh et al.,2004; Chuang et al., 2008). The molecular structure contains both Cu and Yb atoms, with pda ligands bridging the six coordinate CuII centers and eight coordinate YbIII centers to form a three-dimensional net structure.

The crystal structure contains the extensive O—H···O (shown as Fig. 2 and Table 2). π···π stackings are present in the crystal structure, the shortest centroid distance between parallel pyridine rings Cg5iv···Cg5((N2/C8—C12) is 3.843 (4) Å, respectively [symmetry code:(iv)=-X, 2-Y,2-Z].

Related literature top

For related structures, see: Bai et al. (2008); Chi et al. (2009); Wang et al. (2009); Yue et al. (2007); Zhang et al. (2006). For structures in which the Cu atom displays an elongated octahedral geometry with a longer Cu—O bond, see: Chuang et al. (2008); Ghosh et al. (2004).

Experimental top

A solution of Cu(OAc)2.H2O (0.0205 g, 0.10 mmol), Yb2O3 (0.0199 g, 0.050 mmol) and 2,5-pyridinedicarboxylic acid (0.0343 g, 0.20 mmol) were mixed in 10 ml deionized water. After stirring half an hour, the mixture was placed in 23 ml Teflon-lined reactor. After heating for four days at 418 K, the mixture was cooling to room-temperature. Green block-like crystals were isolated in 42% yield (based on Yb).

Refinement top

Water H atoms were fixed in chemical sensible positions, their thermal parameters were fixed as 0.08 Å2. Other H atoms were positioned geometrically with C—H = 0.93 Å and refined using a riding model, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.H atoms have been omitted for clarity.[symmetry code:(i)x, y - 1, z; (ii) x - 1, y, z; (iii) -x - 1, -y + 2, -z + 2; (iv) -x, -y + 2, -z + 2].
[Figure 2] Fig. 2. The molecular packing for the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
Poly[[octaaquatetrakis(µ3-pyridine-2,5- dicarboxylato)copper(II)diytterbium(III)] monohydrate] top
Crystal data top
[CuYb2(C7H3NO4)4(H2O)8]·H2OZ = 1
Mr = 1232.19F(000) = 595
Triclinic, P1Dx = 2.326 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7120 (5) ÅCell parameters from 5946 reflections
b = 9.2713 (6) Åθ = 2.5–25.0°
c = 13.2452 (9) ŵ = 5.98 mm1
α = 75.529 (1)°T = 294 K
β = 76.216 (1)°Tabular, green
γ = 78.117 (1)°0.15 × 0.15 × 0.03 mm
V = 879.73 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3150 independent reflections
Radiation source: fine-focus sealed tube3010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 9 pixels mm-1θmax = 25.2°, θmin = 1.6°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1110
Tmin = 0.646, Tmax = 0.984l = 1515
7620 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0263P)2 + 10.305P]
where P = (Fo2 + 2Fc2)/3
3150 reflections(Δ/σ)max = 0.005
271 parametersΔρmax = 2.78 e Å3
0 restraintsΔρmin = 2.60 e Å3
Crystal data top
[CuYb2(C7H3NO4)4(H2O)8]·H2Oγ = 78.117 (1)°
Mr = 1232.19V = 879.73 (10) Å3
Triclinic, P1Z = 1
a = 7.7120 (5) ÅMo Kα radiation
b = 9.2713 (6) ŵ = 5.98 mm1
c = 13.2452 (9) ÅT = 294 K
α = 75.529 (1)°0.15 × 0.15 × 0.03 mm
β = 76.216 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3150 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3010 reflections with I > 2σ(I)
Tmin = 0.646, Tmax = 0.984Rint = 0.036
7620 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0263P)2 + 10.305P]
where P = (Fo2 + 2Fc2)/3
3150 reflectionsΔρmax = 2.78 e Å3
271 parametersΔρmin = 2.60 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Yb10.54822 (5)0.55527 (4)0.70031 (3)0.0202 (1)
Cu10.500001.000001.000000.0294 (5)
O10.6110 (8)0.6005 (7)0.8550 (5)0.0303 (17)
O20.3316 (9)0.5549 (8)0.6123 (6)0.040 (2)
O30.3630 (10)0.4196 (7)0.8421 (6)0.045 (2)
O40.8540 (8)0.4781 (7)0.7109 (5)0.036 (2)
O50.6911 (8)0.6043 (6)0.5249 (4)0.0292 (19)
O60.8886 (10)0.7235 (7)0.3948 (5)0.044 (3)
O70.4698 (8)1.1486 (6)0.8054 (5)0.0300 (19)
O80.6197 (8)1.3112 (6)0.6768 (5)0.033 (2)
O90.3050 (9)0.7337 (9)0.7547 (7)0.0534 (19)
O100.0479 (9)0.6787 (9)0.7398 (7)0.0534 (19)
O110.4478 (8)1.1832 (6)1.0248 (5)0.0300 (17)
O120.2411 (9)1.3353 (7)0.9741 (5)0.034 (2)
N10.6426 (9)0.8097 (7)0.6374 (5)0.0213 (19)
N20.2416 (9)0.9775 (8)0.9285 (5)0.024 (2)
C10.7354 (11)0.8421 (9)0.5374 (7)0.026 (3)
C20.7878 (14)0.9813 (10)0.4904 (7)0.038 (3)
C30.7363 (14)1.0958 (10)0.5471 (8)0.037 (3)
C40.6381 (11)1.0647 (9)0.6510 (7)0.023 (2)
C50.5969 (11)0.9204 (8)0.6927 (6)0.021 (2)
C60.7773 (12)0.7156 (10)0.4794 (7)0.029 (3)
C70.5715 (11)1.1839 (9)0.7168 (7)0.025 (3)
C80.1440 (12)0.8674 (10)0.8796 (7)0.030 (3)
C90.0322 (11)0.8752 (9)0.8247 (7)0.026 (3)
C100.1051 (11)1.0033 (9)0.8160 (7)0.026 (2)
C110.0035 (11)1.1185 (9)0.8637 (7)0.027 (3)
C120.1703 (11)1.1007 (9)0.9198 (6)0.023 (2)
C130.1376 (12)0.7481 (11)0.7720 (8)0.035 (3)
C140.2915 (11)1.2177 (9)0.9759 (6)0.022 (2)
O130.035 (3)0.497 (2)0.9652 (15)0.073 (8)0.500
H1A0.663900.532100.893600.0800*
H1B0.534700.649500.893500.0800*
H2A0.218300.575600.644600.0800*
H2B0.335000.490700.578300.0800*
H2C0.856600.998100.421800.0450*
H3A0.363500.331200.835500.0800*
H3B0.280100.436400.891500.0800*
H3C0.766801.191300.516300.0450*
H4A0.912800.528700.728400.0800*
H4B0.929200.419800.679300.0800*
H5A0.534300.898700.762700.0250*
H8A0.196000.784000.882700.0350*
H10A0.222001.011800.778200.0300*
H11A0.050201.205500.858400.0320*
H13A0.016600.562500.907900.0800*0.500
H13B0.048500.449500.965300.0800*0.500
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.0224 (2)0.0149 (2)0.0232 (2)0.0037 (1)0.0008 (1)0.0086 (1)
Cu10.0187 (7)0.0260 (8)0.0449 (9)0.0005 (6)0.0028 (6)0.0211 (7)
O10.035 (3)0.026 (3)0.029 (3)0.007 (3)0.006 (3)0.014 (3)
O20.029 (3)0.049 (4)0.052 (4)0.003 (3)0.004 (3)0.036 (3)
O30.056 (5)0.021 (3)0.045 (4)0.006 (3)0.016 (3)0.009 (3)
O40.025 (3)0.039 (4)0.050 (4)0.000 (3)0.003 (3)0.028 (3)
O50.043 (4)0.024 (3)0.024 (3)0.013 (3)0.004 (3)0.015 (2)
O60.058 (5)0.030 (4)0.037 (4)0.016 (3)0.022 (3)0.016 (3)
O70.041 (4)0.019 (3)0.030 (3)0.007 (3)0.001 (3)0.009 (2)
O80.037 (4)0.017 (3)0.046 (4)0.011 (3)0.005 (3)0.014 (3)
O90.026 (3)0.061 (3)0.088 (4)0.008 (2)0.006 (3)0.058 (3)
O100.026 (3)0.061 (3)0.088 (4)0.008 (2)0.006 (3)0.058 (3)
O110.030 (3)0.025 (3)0.035 (3)0.000 (3)0.000 (3)0.016 (3)
O120.036 (4)0.020 (3)0.048 (4)0.002 (3)0.008 (3)0.013 (3)
N10.024 (4)0.017 (3)0.023 (3)0.004 (3)0.001 (3)0.009 (3)
N20.021 (4)0.023 (4)0.030 (4)0.000 (3)0.004 (3)0.014 (3)
C10.021 (4)0.024 (4)0.030 (5)0.000 (3)0.002 (3)0.005 (4)
C20.050 (6)0.031 (5)0.030 (5)0.014 (4)0.010 (4)0.012 (4)
C30.052 (6)0.020 (5)0.037 (5)0.011 (4)0.003 (4)0.007 (4)
C40.023 (4)0.018 (4)0.031 (4)0.005 (3)0.005 (3)0.011 (3)
C50.023 (4)0.016 (4)0.026 (4)0.003 (3)0.004 (3)0.008 (3)
C60.031 (5)0.027 (5)0.027 (5)0.011 (4)0.006 (4)0.001 (4)
C70.024 (4)0.019 (4)0.036 (5)0.000 (3)0.009 (4)0.012 (4)
C80.025 (4)0.028 (5)0.040 (5)0.005 (4)0.002 (4)0.019 (4)
C90.026 (5)0.024 (4)0.029 (4)0.001 (4)0.004 (4)0.012 (4)
C100.021 (4)0.025 (4)0.029 (4)0.001 (3)0.001 (3)0.008 (4)
C110.028 (5)0.019 (4)0.032 (5)0.001 (3)0.006 (4)0.004 (3)
C120.026 (4)0.018 (4)0.021 (4)0.001 (3)0.004 (3)0.004 (3)
C130.021 (5)0.032 (5)0.058 (6)0.001 (4)0.005 (4)0.028 (5)
C140.027 (4)0.020 (4)0.019 (4)0.002 (3)0.004 (3)0.007 (3)
O130.061 (12)0.087 (13)0.076 (14)0.033 (10)0.026 (9)0.047 (12)
Geometric parameters (Å, º) top
Yb1—N12.495 (7)O3—H3A0.8400
Yb1—O12.365 (6)O4—H4A0.8200
Yb1—O22.254 (7)O4—H4B0.8200
Yb1—O32.330 (8)O13—H13B0.8500
Yb1—O42.346 (7)O13—H13A0.8700
Yb1—O52.297 (5)N1—C11.340 (11)
Yb1—O8i2.297 (6)N1—C51.348 (10)
Yb1—O92.334 (8)N2—C121.335 (11)
Cu1—N21.985 (7)N2—C81.345 (12)
Cu1—N2ii1.985 (7)C1—C61.499 (12)
Cu1—O7iii2.641 (6)C1—C21.382 (13)
Cu1—O7iv2.641 (6)C2—C31.390 (13)
Cu1—O111.944 (6)C3—C41.395 (13)
Cu1—O11ii1.944 (6)C4—C71.510 (12)
O5—C61.285 (11)C4—C51.385 (11)
O6—C61.235 (11)C8—C91.387 (13)
O7—C71.255 (11)C9—C101.384 (12)
O8—C71.259 (10)C9—C131.511 (13)
O9—C131.241 (12)C10—C111.382 (12)
O10—C131.239 (13)C11—C121.390 (12)
O11—C141.288 (11)C12—C141.502 (12)
O12—C141.224 (11)C2—H2C0.9300
O1—H1A0.8100C3—H3C0.9300
O1—H1B0.8200C5—H5A0.9300
O2—H2A0.8800C8—H8A0.9300
O2—H2B0.8200C10—H10A0.9300
O3—H3B0.8200C11—H11A0.9300
O1—Yb1—O2145.9 (2)H3A—O3—H3B107.00
O1—Yb1—O374.7 (2)Yb1—O3—H3B138.00
O1—Yb1—O468.0 (2)H4A—O4—H4B105.00
O1—Yb1—O5132.0 (2)Yb1—O4—H4B128.00
O1—Yb1—O975.8 (3)Yb1—O4—H4A123.00
O1—Yb1—N177.2 (2)H13A—O13—H13B93.00
O1—Yb1—O8i116.9 (2)Yb1—N1—C5125.5 (5)
O2—Yb1—O382.9 (3)C1—N1—C5117.5 (7)
O2—Yb1—O4145.5 (2)Yb1—N1—C1116.9 (5)
O2—Yb1—O576.6 (2)Cu1—N2—C12111.4 (6)
O2—Yb1—O973.8 (3)C8—N2—C12119.2 (7)
O2—Yb1—N1106.8 (2)Cu1—N2—C8128.8 (6)
O2—Yb1—O8i80.5 (2)C2—C1—C6122.2 (8)
O3—Yb1—O4111.2 (2)N1—C1—C6114.8 (7)
O3—Yb1—O5151.4 (2)N1—C1—C2123.0 (8)
O3—Yb1—O974.9 (3)C1—C2—C3119.1 (9)
O3—Yb1—N1140.3 (2)C2—C3—C4118.7 (9)
O3—Yb1—O8i75.0 (2)C5—C4—C7119.7 (8)
O4—Yb1—O577.5 (2)C3—C4—C7122.1 (8)
O4—Yb1—O9139.4 (3)C3—C4—C5118.1 (8)
O4—Yb1—N182.8 (2)N1—C5—C4123.5 (7)
O4—Yb1—O8i73.7 (2)O6—C6—C1119.9 (8)
O5—Yb1—O9117.1 (3)O5—C6—C1115.0 (8)
O5—Yb1—N166.0 (2)O5—C6—O6125.2 (8)
O5—Yb1—O8i82.0 (2)O7—C7—C4117.2 (7)
O9—Yb1—N171.5 (3)O8—C7—C4117.0 (8)
O8i—Yb1—O9142.3 (3)O7—C7—O8125.7 (8)
O8i—Yb1—N1143.8 (2)N2—C8—C9121.7 (8)
O11—Cu1—N283.1 (3)C8—C9—C13119.9 (8)
O7iv—Cu1—O1187.9 (2)C10—C9—C13121.4 (8)
O11—Cu1—O11ii180.00C8—C9—C10118.7 (8)
O11—Cu1—N2ii96.9 (3)C9—C10—C11119.8 (8)
O7iii—Cu1—O1192.1 (2)C10—C11—C12118.2 (8)
O7iv—Cu1—N280.1 (2)N2—C12—C14115.0 (7)
O11ii—Cu1—N296.9 (3)N2—C12—C11122.4 (8)
N2—Cu1—N2ii180.00C11—C12—C14122.7 (8)
O7iii—Cu1—N299.9 (2)O10—C13—C9116.1 (9)
O7iv—Cu1—O11ii92.1 (2)O9—C13—O10126.0 (10)
O7iv—Cu1—N2ii99.9 (2)O9—C13—C9117.4 (9)
O7iv—Cu1—O7iii180.00O12—C14—C12121.1 (8)
O11ii—Cu1—N2ii83.1 (3)O11—C14—C12114.8 (7)
O7iii—Cu1—O11ii87.9 (2)O11—C14—O12124.1 (8)
O7iii—Cu1—N2ii80.1 (2)C1—C2—H2C120.00
Yb1—O5—C6125.3 (5)C3—C2—H2C120.00
Cu1v—O7—C7138.2 (6)C4—C3—H3C121.00
Yb1vi—O8—C7140.4 (6)C2—C3—H3C121.00
Yb1—O9—C13136.8 (7)N1—C5—H5A118.00
Cu1—O11—C14114.7 (5)C4—C5—H5A118.00
H1A—O1—H1B107.00C9—C8—H8A119.00
Yb1—O1—H1A119.00N2—C8—H8A119.00
Yb1—O1—H1B121.00C9—C10—H10A120.00
Yb1—O2—H2A117.00C11—C10—H10A120.00
Yb1—O2—H2B124.00C10—C11—H11A121.00
H2A—O2—H2B107.00C12—C11—H11A121.00
Yb1—O3—H3A113.00
O1—Yb1—O5—C631.3 (8)Cu1v—O7—C7—C480.0 (10)
O2—Yb1—O5—C6127.4 (7)Yb1vi—O8—C7—O713.3 (16)
O3—Yb1—O5—C6172.9 (7)Yb1vi—O8—C7—C4165.0 (6)
O4—Yb1—O5—C675.6 (7)Yb1—O9—C13—O1018.5 (18)
O9—Yb1—O5—C663.8 (7)Yb1—O9—C13—C9170.0 (7)
N1—Yb1—O5—C612.0 (7)Cu1—O11—C14—O12173.2 (7)
O8i—Yb1—O5—C6150.5 (7)Cu1—O11—C14—C127.1 (9)
O1—Yb1—O9—C13129.3 (11)Yb1—N1—C1—C2176.5 (7)
O2—Yb1—O9—C1335.3 (10)Yb1—N1—C1—C63.0 (10)
O3—Yb1—O9—C1351.6 (11)C5—N1—C1—C21.2 (13)
O4—Yb1—O9—C13156.7 (9)C5—N1—C1—C6178.3 (8)
O5—Yb1—O9—C13100.5 (11)Yb1—N1—C5—C4173.7 (6)
N1—Yb1—O9—C13149.8 (11)C1—N1—C5—C41.1 (13)
O8i—Yb1—O9—C1313.5 (13)Cu1—N2—C8—C9174.0 (6)
O1—Yb1—N1—C1145.0 (6)C12—N2—C8—C93.2 (13)
O1—Yb1—N1—C540.1 (7)Cu1—N2—C12—C11173.7 (7)
O2—Yb1—N1—C170.1 (6)Cu1—N2—C12—C146.8 (8)
O2—Yb1—N1—C5104.8 (7)C8—N2—C12—C111.4 (12)
O3—Yb1—N1—C1169.3 (6)C8—N2—C12—C14179.1 (7)
O3—Yb1—N1—C55.6 (9)N1—C1—C2—C32.8 (15)
O4—Yb1—N1—C176.0 (6)C6—C1—C2—C3176.7 (9)
O4—Yb1—N1—C5109.2 (7)N1—C1—C6—O512.5 (12)
O5—Yb1—N1—C13.5 (6)N1—C1—C6—O6167.0 (8)
O5—Yb1—N1—C5171.4 (7)C2—C1—C6—O5167.0 (9)
O9—Yb1—N1—C1135.9 (7)C2—C1—C6—O613.5 (14)
O9—Yb1—N1—C539.0 (7)C1—C2—C3—C42.0 (15)
O8i—Yb1—N1—C126.7 (8)C2—C3—C4—C50.1 (14)
O8i—Yb1—N1—C5158.4 (6)C2—C3—C4—C7177.9 (9)
O1—Yb1—O8i—C7i68.2 (9)C3—C4—C5—N11.8 (14)
O2—Yb1—O8i—C7i80.8 (9)C7—C4—C5—N1176.3 (8)
O3—Yb1—O8i—C7i4.4 (9)C3—C4—C7—O7173.3 (9)
O4—Yb1—O8i—C7i122.3 (9)C3—C4—C7—O85.1 (13)
O5—Yb1—O8i—C7i158.4 (9)C5—C4—C7—O74.7 (13)
O9—Yb1—O8i—C7i33.7 (11)C5—C4—C7—O8176.9 (8)
N1—Yb1—O8i—C7i173.9 (8)N2—C8—C9—C103.3 (13)
N2—Cu1—O11—C148.6 (6)N2—C8—C9—C13179.3 (8)
O7iv—Cu1—O11—C1471.7 (6)C8—C9—C10—C111.4 (13)
N2ii—Cu1—O11—C14171.4 (6)C13—C9—C10—C11178.8 (8)
O7iii—Cu1—O11—C14108.3 (6)C8—C9—C13—O9157.1 (9)
O11—Cu1—N2—C8179.6 (8)C8—C9—C13—O1030.5 (13)
O11—Cu1—N2—C128.3 (5)C10—C9—C13—O925.5 (14)
O7iv—Cu1—N2—C890.5 (7)C10—C9—C13—O10146.9 (10)
O7iv—Cu1—N2—C1280.8 (5)C9—C10—C11—C120.3 (13)
O11ii—Cu1—N2—C80.4 (8)C10—C11—C12—N20.3 (13)
O11ii—Cu1—N2—C12171.7 (5)C10—C11—C12—C14179.2 (8)
O7iii—Cu1—N2—C889.5 (7)N2—C12—C14—O110.0 (10)
O7iii—Cu1—N2—C1299.2 (5)N2—C12—C14—O12179.7 (8)
Yb1—O5—C6—O6161.7 (7)C11—C12—C14—O11179.5 (8)
Yb1—O5—C6—C117.8 (11)C11—C12—C14—O120.2 (12)
Cu1v—O7—C7—O8101.7 (10)
Symmetry codes: (i) x, y1, z; (ii) x1, y+2, z+2; (iii) x, y+2, z+2; (iv) x1, y, z; (v) x+1, y, z; (vi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O12vii0.811.962.757 (9)165
O1—H1B···O11iii0.822.022.782 (9)153
O2—H2A···O100.881.882.670 (11)149
O2—H2B···O5viii0.821.872.667 (9)163
O3—H3A···O7i0.841.822.607 (9)155
O3—H3B···O130.821.952.73 (2)159
O4—H4A···O10v0.821.952.760 (10)167
O4—H4B···O6ix0.821.982.802 (9)179
O13—H13A···O100.872.203.03 (2)161
O13—H13B···O12i0.851.962.81 (2)177
Symmetry codes: (i) x, y1, z; (iii) x, y+2, z+2; (v) x+1, y, z; (vii) x+1, y1, z; (viii) x+1, y+1, z+1; (ix) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[CuYb2(C7H3NO4)4(H2O)8]·H2O
Mr1232.19
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.7120 (5), 9.2713 (6), 13.2452 (9)
α, β, γ (°)75.529 (1), 76.216 (1), 78.117 (1)
V3)879.73 (10)
Z1
Radiation typeMo Kα
µ (mm1)5.98
Crystal size (mm)0.15 × 0.15 × 0.03
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.646, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
7620, 3150, 3010
Rint0.036
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.095, 1.18
No. of reflections3150
No. of parameters271
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0263P)2 + 10.305P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.78, 2.60

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Yb1—N12.495 (7)Yb1—O8i2.297 (6)
Yb1—O12.365 (6)Yb1—O92.334 (8)
Yb1—O22.254 (7)Cu1—N21.985 (7)
Yb1—O32.330 (8)Cu1—O7ii2.641 (6)
Yb1—O42.346 (7)Cu1—O111.944 (6)
Yb1—O52.297 (5)
Symmetry codes: (i) x, y1, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O12iii0.811.962.757 (9)165
O1—H1B···O11iv0.822.022.782 (9)153
O2—H2A···O100.881.882.670 (11)149
O2—H2B···O5v0.821.872.667 (9)163
O3—H3A···O7i0.841.822.607 (9)155
O3—H3B···O130.821.952.73 (2)159
O4—H4A···O10vi0.821.952.760 (10)167
O4—H4B···O6vii0.821.982.802 (9)179
O13—H13A···O100.872.203.03 (2)161
O13—H13B···O12i0.851.962.81 (2)177
Symmetry codes: (i) x, y1, z; (iii) x+1, y1, z; (iv) x, y+2, z+2; (v) x+1, y+1, z+1; (vi) x+1, y, z; (vii) x+2, y+1, z+1.
 

Acknowledgements

This work was supported financially by Yuanpei University, Taiwan.

References

First citationBai, Y.-Y., Huang, Y., Yan, B., Song, Y.-S. & Weng, L.-H. (2008). Inorg. Chem. Commun. pp. 1030–1032.  CrossRef Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChi, Y.-X., Niu, S.-Y. & Jin, J. (2009). Inorg. Chim. Acta, 362, 3821–3828.  CrossRef CAS Google Scholar
First citationChuang, S.-T., Kuo, T.-S. & Shiu, K.-B. (2008). J. Chin. Chem. Soc. 55., 255–263.  Google Scholar
First citationGhosh, S. K., Ribas, T. & Bharadwaj, P. K. (2004). CrystEngComm, 6, 250–256.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Xing, Y.-H., Wang, C.-G., Zeng, X.-Q., Ge, M.-F. & Niu, S.-Y. (2009). Transition Met. Chem. 34, 655–661.  CrossRef CAS Google Scholar
First citationYue, Q., Yang, J., Yuan, H.-M. & Chen, J.-S. (2007). J. Mol. Struct. 827, 114–120.  CrossRef CAS Google Scholar
First citationZhang, B.-F., Xie, C.-Z., Wang, X.-Q., Shen, G.-Q. & Shen, D.-Z. (2006). Acta Cryst. E62, m297–m299.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m615-m616
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds