metal-organic compounds
Poly[[octaaquatetrakis(μ3-pyridine-2,5-dicarboxylato)copper(II)diytterbium(III)] monohydrate]
aDepartment of General Education Center, Yuanpei University, HsinChu 30015, Taiwan, and bDepartment of Biotechnology, Yuanpei University, No. 306 Yuanpei St., HsinChu 30015, Taiwan
*Correspondence e-mail: fmshen@mail.ypu.edu.tw
The 2(C7H3NO4)4(H2O)8]·H2O}n, contains one CuII cation located on an inversion center, a YbIII cation, two pyridine-2,5-dicarboxylate (pda) anions, four coordination water molecules a disordered lattice water molecule, which is half-occupied and is located close to an inversion center. The CuII cation is N,O-chelated by two pda anions in the coordination basal plane and further coordinated by two carboxyl O atoms at the apical positions, with an elongated octahedral geometry. The YbIII atom is eight-coordinated in a distorted square-antiprismatic geometry formed by two carboxylate O atoms from two pda anions, and is N,O-chelated by one pda anion and four coordinated water molecules. The pda anions bridge adjacent Yb and Cu cations, forming a three-dimensional polymeric structure. The features extensive O—H⋯O hydrogen bonds. π–π stacking is observed between parallel pyridine rings, the centroid–centroid distance being 3.843 (4) Å.
of the title heterometallic polymeric coordination compound, {[CuYbRelated literature
For related structures, see: Bai et al. (2008); Chi et al. (2009); Wang et al. (2009); Yue et al. (2007); Zhang et al. (2006). For structures in which the Cu atom displays an elongated octahedral geometry with a longer Cu—O bond, see: Chuang et al. (2008); Ghosh et al. (2004).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536811014048/xu5183sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811014048/xu5183Isup2.hkl
A solution of Cu(OAc)2.H2O (0.0205 g, 0.10 mmol), Yb2O3 (0.0199 g, 0.050 mmol) and 2,5-pyridinedicarboxylic acid (0.0343 g, 0.20 mmol) were mixed in 10 ml deionized water. After stirring half an hour, the mixture was placed in 23 ml Teflon-lined reactor. After heating for four days at 418 K, the mixture was cooling to room-temperature. Green block-like crystals were isolated in 42% yield (based on Yb).
Water H atoms were fixed in chemical sensible positions, their thermal parameters were fixed as 0.08 Å2. Other H atoms were positioned geometrically with C—H = 0.93 Å and refined using a riding model, Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.H atoms have been omitted for clarity.[symmetry code:(i)x, y - 1, z; (ii) x - 1, y, z; (iii) -x - 1, -y + 2, -z + 2; (iv) -x, -y + 2, -z + 2]. | |
Fig. 2. The molecular packing for the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. |
[CuYb2(C7H3NO4)4(H2O)8]·H2O | Z = 1 |
Mr = 1232.19 | F(000) = 595 |
Triclinic, P1 | Dx = 2.326 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7120 (5) Å | Cell parameters from 5946 reflections |
b = 9.2713 (6) Å | θ = 2.5–25.0° |
c = 13.2452 (9) Å | µ = 5.98 mm−1 |
α = 75.529 (1)° | T = 294 K |
β = 76.216 (1)° | Tabular, green |
γ = 78.117 (1)° | 0.15 × 0.15 × 0.03 mm |
V = 879.73 (10) Å3 |
Bruker SMART CCD area-detector diffractometer | 3150 independent reflections |
Radiation source: fine-focus sealed tube | 3010 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 9 pixels mm-1 | θmax = 25.2°, θmin = 1.6° |
ϕ and ω scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | k = −11→10 |
Tmin = 0.646, Tmax = 0.984 | l = −15→15 |
7620 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.18 | w = 1/[σ2(Fo2) + (0.0263P)2 + 10.305P] where P = (Fo2 + 2Fc2)/3 |
3150 reflections | (Δ/σ)max = 0.005 |
271 parameters | Δρmax = 2.78 e Å−3 |
0 restraints | Δρmin = −2.60 e Å−3 |
[CuYb2(C7H3NO4)4(H2O)8]·H2O | γ = 78.117 (1)° |
Mr = 1232.19 | V = 879.73 (10) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.7120 (5) Å | Mo Kα radiation |
b = 9.2713 (6) Å | µ = 5.98 mm−1 |
c = 13.2452 (9) Å | T = 294 K |
α = 75.529 (1)° | 0.15 × 0.15 × 0.03 mm |
β = 76.216 (1)° |
Bruker SMART CCD area-detector diffractometer | 3150 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 3010 reflections with I > 2σ(I) |
Tmin = 0.646, Tmax = 0.984 | Rint = 0.036 |
7620 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.18 | w = 1/[σ2(Fo2) + (0.0263P)2 + 10.305P] where P = (Fo2 + 2Fc2)/3 |
3150 reflections | Δρmax = 2.78 e Å−3 |
271 parameters | Δρmin = −2.60 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Yb1 | 0.54822 (5) | 0.55527 (4) | 0.70031 (3) | 0.0202 (1) | |
Cu1 | −0.50000 | 1.00000 | 1.00000 | 0.0294 (5) | |
O1 | 0.6110 (8) | 0.6005 (7) | 0.8550 (5) | 0.0303 (17) | |
O2 | 0.3316 (9) | 0.5549 (8) | 0.6123 (6) | 0.040 (2) | |
O3 | 0.3630 (10) | 0.4196 (7) | 0.8421 (6) | 0.045 (2) | |
O4 | 0.8540 (8) | 0.4781 (7) | 0.7109 (5) | 0.036 (2) | |
O5 | 0.6911 (8) | 0.6043 (6) | 0.5249 (4) | 0.0292 (19) | |
O6 | 0.8886 (10) | 0.7235 (7) | 0.3948 (5) | 0.044 (3) | |
O7 | 0.4698 (8) | 1.1486 (6) | 0.8054 (5) | 0.0300 (19) | |
O8 | 0.6197 (8) | 1.3112 (6) | 0.6768 (5) | 0.033 (2) | |
O9 | 0.3050 (9) | 0.7337 (9) | 0.7547 (7) | 0.0534 (19) | |
O10 | 0.0479 (9) | 0.6787 (9) | 0.7398 (7) | 0.0534 (19) | |
O11 | −0.4478 (8) | 1.1832 (6) | 1.0248 (5) | 0.0300 (17) | |
O12 | −0.2411 (9) | 1.3353 (7) | 0.9741 (5) | 0.034 (2) | |
N1 | 0.6426 (9) | 0.8097 (7) | 0.6374 (5) | 0.0213 (19) | |
N2 | −0.2416 (9) | 0.9775 (8) | 0.9285 (5) | 0.024 (2) | |
C1 | 0.7354 (11) | 0.8421 (9) | 0.5374 (7) | 0.026 (3) | |
C2 | 0.7878 (14) | 0.9813 (10) | 0.4904 (7) | 0.038 (3) | |
C3 | 0.7363 (14) | 1.0958 (10) | 0.5471 (8) | 0.037 (3) | |
C4 | 0.6381 (11) | 1.0647 (9) | 0.6510 (7) | 0.023 (2) | |
C5 | 0.5969 (11) | 0.9204 (8) | 0.6927 (6) | 0.021 (2) | |
C6 | 0.7773 (12) | 0.7156 (10) | 0.4794 (7) | 0.029 (3) | |
C7 | 0.5715 (11) | 1.1839 (9) | 0.7168 (7) | 0.025 (3) | |
C8 | −0.1440 (12) | 0.8674 (10) | 0.8796 (7) | 0.030 (3) | |
C9 | 0.0322 (11) | 0.8752 (9) | 0.8247 (7) | 0.026 (3) | |
C10 | 0.1051 (11) | 1.0033 (9) | 0.8160 (7) | 0.026 (2) | |
C11 | 0.0035 (11) | 1.1185 (9) | 0.8637 (7) | 0.027 (3) | |
C12 | −0.1703 (11) | 1.1007 (9) | 0.9198 (6) | 0.023 (2) | |
C13 | 0.1376 (12) | 0.7481 (11) | 0.7720 (8) | 0.035 (3) | |
C14 | −0.2915 (11) | 1.2177 (9) | 0.9759 (6) | 0.022 (2) | |
O13 | 0.035 (3) | 0.497 (2) | 0.9652 (15) | 0.073 (8) | 0.500 |
H1A | 0.66390 | 0.53210 | 0.89360 | 0.0800* | |
H1B | 0.53470 | 0.64950 | 0.89350 | 0.0800* | |
H2A | 0.21830 | 0.57560 | 0.64460 | 0.0800* | |
H2B | 0.33500 | 0.49070 | 0.57830 | 0.0800* | |
H2C | 0.85660 | 0.99810 | 0.42180 | 0.0450* | |
H3A | 0.36350 | 0.33120 | 0.83550 | 0.0800* | |
H3B | 0.28010 | 0.43640 | 0.89150 | 0.0800* | |
H3C | 0.76680 | 1.19130 | 0.51630 | 0.0450* | |
H4A | 0.91280 | 0.52870 | 0.72840 | 0.0800* | |
H4B | 0.92920 | 0.41980 | 0.67930 | 0.0800* | |
H5A | 0.53430 | 0.89870 | 0.76270 | 0.0250* | |
H8A | −0.19600 | 0.78400 | 0.88270 | 0.0350* | |
H10A | 0.22200 | 1.01180 | 0.77820 | 0.0300* | |
H11A | 0.05020 | 1.20550 | 0.85840 | 0.0320* | |
H13A | 0.01660 | 0.56250 | 0.90790 | 0.0800* | 0.500 |
H13B | −0.04850 | 0.44950 | 0.96530 | 0.0800* | 0.500 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Yb1 | 0.0224 (2) | 0.0149 (2) | 0.0232 (2) | −0.0037 (1) | 0.0008 (1) | −0.0086 (1) |
Cu1 | 0.0187 (7) | 0.0260 (8) | 0.0449 (9) | −0.0005 (6) | 0.0028 (6) | −0.0211 (7) |
O1 | 0.035 (3) | 0.026 (3) | 0.029 (3) | 0.007 (3) | −0.006 (3) | −0.014 (3) |
O2 | 0.029 (3) | 0.049 (4) | 0.052 (4) | −0.003 (3) | −0.004 (3) | −0.036 (3) |
O3 | 0.056 (5) | 0.021 (3) | 0.045 (4) | −0.006 (3) | 0.016 (3) | −0.009 (3) |
O4 | 0.025 (3) | 0.039 (4) | 0.050 (4) | 0.000 (3) | −0.003 (3) | −0.028 (3) |
O5 | 0.043 (4) | 0.024 (3) | 0.024 (3) | −0.013 (3) | 0.004 (3) | −0.015 (2) |
O6 | 0.058 (5) | 0.030 (4) | 0.037 (4) | −0.016 (3) | 0.022 (3) | −0.016 (3) |
O7 | 0.041 (4) | 0.019 (3) | 0.030 (3) | −0.007 (3) | −0.001 (3) | −0.009 (2) |
O8 | 0.037 (4) | 0.017 (3) | 0.046 (4) | −0.011 (3) | 0.005 (3) | −0.014 (3) |
O9 | 0.026 (3) | 0.061 (3) | 0.088 (4) | −0.008 (2) | 0.006 (3) | −0.058 (3) |
O10 | 0.026 (3) | 0.061 (3) | 0.088 (4) | −0.008 (2) | 0.006 (3) | −0.058 (3) |
O11 | 0.030 (3) | 0.025 (3) | 0.035 (3) | 0.000 (3) | 0.000 (3) | −0.016 (3) |
O12 | 0.036 (4) | 0.020 (3) | 0.048 (4) | −0.002 (3) | −0.008 (3) | −0.013 (3) |
N1 | 0.024 (4) | 0.017 (3) | 0.023 (3) | −0.004 (3) | 0.001 (3) | −0.009 (3) |
N2 | 0.021 (4) | 0.023 (4) | 0.030 (4) | 0.000 (3) | −0.004 (3) | −0.014 (3) |
C1 | 0.021 (4) | 0.024 (4) | 0.030 (5) | 0.000 (3) | −0.002 (3) | −0.005 (4) |
C2 | 0.050 (6) | 0.031 (5) | 0.030 (5) | −0.014 (4) | 0.010 (4) | −0.012 (4) |
C3 | 0.052 (6) | 0.020 (5) | 0.037 (5) | −0.011 (4) | 0.003 (4) | −0.007 (4) |
C4 | 0.023 (4) | 0.018 (4) | 0.031 (4) | −0.005 (3) | −0.005 (3) | −0.011 (3) |
C5 | 0.023 (4) | 0.016 (4) | 0.026 (4) | −0.003 (3) | −0.004 (3) | −0.008 (3) |
C6 | 0.031 (5) | 0.027 (5) | 0.027 (5) | −0.011 (4) | −0.006 (4) | 0.001 (4) |
C7 | 0.024 (4) | 0.019 (4) | 0.036 (5) | 0.000 (3) | −0.009 (4) | −0.012 (4) |
C8 | 0.025 (4) | 0.028 (5) | 0.040 (5) | −0.005 (4) | −0.002 (4) | −0.019 (4) |
C9 | 0.026 (5) | 0.024 (4) | 0.029 (4) | −0.001 (4) | −0.004 (4) | −0.012 (4) |
C10 | 0.021 (4) | 0.025 (4) | 0.029 (4) | −0.001 (3) | −0.001 (3) | −0.008 (4) |
C11 | 0.028 (5) | 0.019 (4) | 0.032 (5) | −0.001 (3) | −0.006 (4) | −0.004 (3) |
C12 | 0.026 (4) | 0.018 (4) | 0.021 (4) | 0.001 (3) | −0.004 (3) | −0.004 (3) |
C13 | 0.021 (5) | 0.032 (5) | 0.058 (6) | 0.001 (4) | −0.005 (4) | −0.028 (5) |
C14 | 0.027 (4) | 0.020 (4) | 0.019 (4) | 0.002 (3) | −0.004 (3) | −0.007 (3) |
O13 | 0.061 (12) | 0.087 (13) | 0.076 (14) | −0.033 (10) | 0.026 (9) | −0.047 (12) |
Yb1—N1 | 2.495 (7) | O3—H3A | 0.8400 |
Yb1—O1 | 2.365 (6) | O4—H4A | 0.8200 |
Yb1—O2 | 2.254 (7) | O4—H4B | 0.8200 |
Yb1—O3 | 2.330 (8) | O13—H13B | 0.8500 |
Yb1—O4 | 2.346 (7) | O13—H13A | 0.8700 |
Yb1—O5 | 2.297 (5) | N1—C1 | 1.340 (11) |
Yb1—O8i | 2.297 (6) | N1—C5 | 1.348 (10) |
Yb1—O9 | 2.334 (8) | N2—C12 | 1.335 (11) |
Cu1—N2 | 1.985 (7) | N2—C8 | 1.345 (12) |
Cu1—N2ii | 1.985 (7) | C1—C6 | 1.499 (12) |
Cu1—O7iii | 2.641 (6) | C1—C2 | 1.382 (13) |
Cu1—O7iv | 2.641 (6) | C2—C3 | 1.390 (13) |
Cu1—O11 | 1.944 (6) | C3—C4 | 1.395 (13) |
Cu1—O11ii | 1.944 (6) | C4—C7 | 1.510 (12) |
O5—C6 | 1.285 (11) | C4—C5 | 1.385 (11) |
O6—C6 | 1.235 (11) | C8—C9 | 1.387 (13) |
O7—C7 | 1.255 (11) | C9—C10 | 1.384 (12) |
O8—C7 | 1.259 (10) | C9—C13 | 1.511 (13) |
O9—C13 | 1.241 (12) | C10—C11 | 1.382 (12) |
O10—C13 | 1.239 (13) | C11—C12 | 1.390 (12) |
O11—C14 | 1.288 (11) | C12—C14 | 1.502 (12) |
O12—C14 | 1.224 (11) | C2—H2C | 0.9300 |
O1—H1A | 0.8100 | C3—H3C | 0.9300 |
O1—H1B | 0.8200 | C5—H5A | 0.9300 |
O2—H2A | 0.8800 | C8—H8A | 0.9300 |
O2—H2B | 0.8200 | C10—H10A | 0.9300 |
O3—H3B | 0.8200 | C11—H11A | 0.9300 |
O1—Yb1—O2 | 145.9 (2) | H3A—O3—H3B | 107.00 |
O1—Yb1—O3 | 74.7 (2) | Yb1—O3—H3B | 138.00 |
O1—Yb1—O4 | 68.0 (2) | H4A—O4—H4B | 105.00 |
O1—Yb1—O5 | 132.0 (2) | Yb1—O4—H4B | 128.00 |
O1—Yb1—O9 | 75.8 (3) | Yb1—O4—H4A | 123.00 |
O1—Yb1—N1 | 77.2 (2) | H13A—O13—H13B | 93.00 |
O1—Yb1—O8i | 116.9 (2) | Yb1—N1—C5 | 125.5 (5) |
O2—Yb1—O3 | 82.9 (3) | C1—N1—C5 | 117.5 (7) |
O2—Yb1—O4 | 145.5 (2) | Yb1—N1—C1 | 116.9 (5) |
O2—Yb1—O5 | 76.6 (2) | Cu1—N2—C12 | 111.4 (6) |
O2—Yb1—O9 | 73.8 (3) | C8—N2—C12 | 119.2 (7) |
O2—Yb1—N1 | 106.8 (2) | Cu1—N2—C8 | 128.8 (6) |
O2—Yb1—O8i | 80.5 (2) | C2—C1—C6 | 122.2 (8) |
O3—Yb1—O4 | 111.2 (2) | N1—C1—C6 | 114.8 (7) |
O3—Yb1—O5 | 151.4 (2) | N1—C1—C2 | 123.0 (8) |
O3—Yb1—O9 | 74.9 (3) | C1—C2—C3 | 119.1 (9) |
O3—Yb1—N1 | 140.3 (2) | C2—C3—C4 | 118.7 (9) |
O3—Yb1—O8i | 75.0 (2) | C5—C4—C7 | 119.7 (8) |
O4—Yb1—O5 | 77.5 (2) | C3—C4—C7 | 122.1 (8) |
O4—Yb1—O9 | 139.4 (3) | C3—C4—C5 | 118.1 (8) |
O4—Yb1—N1 | 82.8 (2) | N1—C5—C4 | 123.5 (7) |
O4—Yb1—O8i | 73.7 (2) | O6—C6—C1 | 119.9 (8) |
O5—Yb1—O9 | 117.1 (3) | O5—C6—C1 | 115.0 (8) |
O5—Yb1—N1 | 66.0 (2) | O5—C6—O6 | 125.2 (8) |
O5—Yb1—O8i | 82.0 (2) | O7—C7—C4 | 117.2 (7) |
O9—Yb1—N1 | 71.5 (3) | O8—C7—C4 | 117.0 (8) |
O8i—Yb1—O9 | 142.3 (3) | O7—C7—O8 | 125.7 (8) |
O8i—Yb1—N1 | 143.8 (2) | N2—C8—C9 | 121.7 (8) |
O11—Cu1—N2 | 83.1 (3) | C8—C9—C13 | 119.9 (8) |
O7iv—Cu1—O11 | 87.9 (2) | C10—C9—C13 | 121.4 (8) |
O11—Cu1—O11ii | 180.00 | C8—C9—C10 | 118.7 (8) |
O11—Cu1—N2ii | 96.9 (3) | C9—C10—C11 | 119.8 (8) |
O7iii—Cu1—O11 | 92.1 (2) | C10—C11—C12 | 118.2 (8) |
O7iv—Cu1—N2 | 80.1 (2) | N2—C12—C14 | 115.0 (7) |
O11ii—Cu1—N2 | 96.9 (3) | N2—C12—C11 | 122.4 (8) |
N2—Cu1—N2ii | 180.00 | C11—C12—C14 | 122.7 (8) |
O7iii—Cu1—N2 | 99.9 (2) | O10—C13—C9 | 116.1 (9) |
O7iv—Cu1—O11ii | 92.1 (2) | O9—C13—O10 | 126.0 (10) |
O7iv—Cu1—N2ii | 99.9 (2) | O9—C13—C9 | 117.4 (9) |
O7iv—Cu1—O7iii | 180.00 | O12—C14—C12 | 121.1 (8) |
O11ii—Cu1—N2ii | 83.1 (3) | O11—C14—C12 | 114.8 (7) |
O7iii—Cu1—O11ii | 87.9 (2) | O11—C14—O12 | 124.1 (8) |
O7iii—Cu1—N2ii | 80.1 (2) | C1—C2—H2C | 120.00 |
Yb1—O5—C6 | 125.3 (5) | C3—C2—H2C | 120.00 |
Cu1v—O7—C7 | 138.2 (6) | C4—C3—H3C | 121.00 |
Yb1vi—O8—C7 | 140.4 (6) | C2—C3—H3C | 121.00 |
Yb1—O9—C13 | 136.8 (7) | N1—C5—H5A | 118.00 |
Cu1—O11—C14 | 114.7 (5) | C4—C5—H5A | 118.00 |
H1A—O1—H1B | 107.00 | C9—C8—H8A | 119.00 |
Yb1—O1—H1A | 119.00 | N2—C8—H8A | 119.00 |
Yb1—O1—H1B | 121.00 | C9—C10—H10A | 120.00 |
Yb1—O2—H2A | 117.00 | C11—C10—H10A | 120.00 |
Yb1—O2—H2B | 124.00 | C10—C11—H11A | 121.00 |
H2A—O2—H2B | 107.00 | C12—C11—H11A | 121.00 |
Yb1—O3—H3A | 113.00 | ||
O1—Yb1—O5—C6 | −31.3 (8) | Cu1v—O7—C7—C4 | 80.0 (10) |
O2—Yb1—O5—C6 | 127.4 (7) | Yb1vi—O8—C7—O7 | −13.3 (16) |
O3—Yb1—O5—C6 | 172.9 (7) | Yb1vi—O8—C7—C4 | 165.0 (6) |
O4—Yb1—O5—C6 | −75.6 (7) | Yb1—O9—C13—O10 | −18.5 (18) |
O9—Yb1—O5—C6 | 63.8 (7) | Yb1—O9—C13—C9 | 170.0 (7) |
N1—Yb1—O5—C6 | 12.0 (7) | Cu1—O11—C14—O12 | 173.2 (7) |
O8i—Yb1—O5—C6 | −150.5 (7) | Cu1—O11—C14—C12 | −7.1 (9) |
O1—Yb1—O9—C13 | −129.3 (11) | Yb1—N1—C1—C2 | 176.5 (7) |
O2—Yb1—O9—C13 | 35.3 (10) | Yb1—N1—C1—C6 | −3.0 (10) |
O3—Yb1—O9—C13 | −51.6 (11) | C5—N1—C1—C2 | 1.2 (13) |
O4—Yb1—O9—C13 | −156.7 (9) | C5—N1—C1—C6 | −178.3 (8) |
O5—Yb1—O9—C13 | 100.5 (11) | Yb1—N1—C5—C4 | −173.7 (6) |
N1—Yb1—O9—C13 | 149.8 (11) | C1—N1—C5—C4 | 1.1 (13) |
O8i—Yb1—O9—C13 | −13.5 (13) | Cu1—N2—C8—C9 | 174.0 (6) |
O1—Yb1—N1—C1 | 145.0 (6) | C12—N2—C8—C9 | 3.2 (13) |
O1—Yb1—N1—C5 | −40.1 (7) | Cu1—N2—C12—C11 | −173.7 (7) |
O2—Yb1—N1—C1 | −70.1 (6) | Cu1—N2—C12—C14 | 6.8 (8) |
O2—Yb1—N1—C5 | 104.8 (7) | C8—N2—C12—C11 | −1.4 (12) |
O3—Yb1—N1—C1 | −169.3 (6) | C8—N2—C12—C14 | 179.1 (7) |
O3—Yb1—N1—C5 | 5.6 (9) | N1—C1—C2—C3 | −2.8 (15) |
O4—Yb1—N1—C1 | 76.0 (6) | C6—C1—C2—C3 | 176.7 (9) |
O4—Yb1—N1—C5 | −109.2 (7) | N1—C1—C6—O5 | 12.5 (12) |
O5—Yb1—N1—C1 | −3.5 (6) | N1—C1—C6—O6 | −167.0 (8) |
O5—Yb1—N1—C5 | 171.4 (7) | C2—C1—C6—O5 | −167.0 (9) |
O9—Yb1—N1—C1 | −135.9 (7) | C2—C1—C6—O6 | 13.5 (14) |
O9—Yb1—N1—C5 | 39.0 (7) | C1—C2—C3—C4 | 2.0 (15) |
O8i—Yb1—N1—C1 | 26.7 (8) | C2—C3—C4—C5 | 0.1 (14) |
O8i—Yb1—N1—C5 | −158.4 (6) | C2—C3—C4—C7 | −177.9 (9) |
O1—Yb1—O8i—C7i | 68.2 (9) | C3—C4—C5—N1 | −1.8 (14) |
O2—Yb1—O8i—C7i | −80.8 (9) | C7—C4—C5—N1 | 176.3 (8) |
O3—Yb1—O8i—C7i | 4.4 (9) | C3—C4—C7—O7 | 173.3 (9) |
O4—Yb1—O8i—C7i | 122.3 (9) | C3—C4—C7—O8 | −5.1 (13) |
O5—Yb1—O8i—C7i | −158.4 (9) | C5—C4—C7—O7 | −4.7 (13) |
O9—Yb1—O8i—C7i | −33.7 (11) | C5—C4—C7—O8 | 176.9 (8) |
N1—Yb1—O8i—C7i | 173.9 (8) | N2—C8—C9—C10 | −3.3 (13) |
N2—Cu1—O11—C14 | 8.6 (6) | N2—C8—C9—C13 | 179.3 (8) |
O7iv—Cu1—O11—C14 | −71.7 (6) | C8—C9—C10—C11 | 1.4 (13) |
N2ii—Cu1—O11—C14 | −171.4 (6) | C13—C9—C10—C11 | 178.8 (8) |
O7iii—Cu1—O11—C14 | 108.3 (6) | C8—C9—C13—O9 | −157.1 (9) |
O11—Cu1—N2—C8 | −179.6 (8) | C8—C9—C13—O10 | 30.5 (13) |
O11—Cu1—N2—C12 | −8.3 (5) | C10—C9—C13—O9 | 25.5 (14) |
O7iv—Cu1—N2—C8 | −90.5 (7) | C10—C9—C13—O10 | −146.9 (10) |
O7iv—Cu1—N2—C12 | 80.8 (5) | C9—C10—C11—C12 | 0.3 (13) |
O11ii—Cu1—N2—C8 | 0.4 (8) | C10—C11—C12—N2 | −0.3 (13) |
O11ii—Cu1—N2—C12 | 171.7 (5) | C10—C11—C12—C14 | 179.2 (8) |
O7iii—Cu1—N2—C8 | 89.5 (7) | N2—C12—C14—O11 | 0.0 (10) |
O7iii—Cu1—N2—C12 | −99.2 (5) | N2—C12—C14—O12 | 179.7 (8) |
Yb1—O5—C6—O6 | 161.7 (7) | C11—C12—C14—O11 | −179.5 (8) |
Yb1—O5—C6—C1 | −17.8 (11) | C11—C12—C14—O12 | 0.2 (12) |
Cu1v—O7—C7—O8 | −101.7 (10) |
Symmetry codes: (i) x, y−1, z; (ii) −x−1, −y+2, −z+2; (iii) −x, −y+2, −z+2; (iv) x−1, y, z; (v) x+1, y, z; (vi) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O12vii | 0.81 | 1.96 | 2.757 (9) | 165 |
O1—H1B···O11iii | 0.82 | 2.02 | 2.782 (9) | 153 |
O2—H2A···O10 | 0.88 | 1.88 | 2.670 (11) | 149 |
O2—H2B···O5viii | 0.82 | 1.87 | 2.667 (9) | 163 |
O3—H3A···O7i | 0.84 | 1.82 | 2.607 (9) | 155 |
O3—H3B···O13 | 0.82 | 1.95 | 2.73 (2) | 159 |
O4—H4A···O10v | 0.82 | 1.95 | 2.760 (10) | 167 |
O4—H4B···O6ix | 0.82 | 1.98 | 2.802 (9) | 179 |
O13—H13A···O10 | 0.87 | 2.20 | 3.03 (2) | 161 |
O13—H13B···O12i | 0.85 | 1.96 | 2.81 (2) | 177 |
Symmetry codes: (i) x, y−1, z; (iii) −x, −y+2, −z+2; (v) x+1, y, z; (vii) x+1, y−1, z; (viii) −x+1, −y+1, −z+1; (ix) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [CuYb2(C7H3NO4)4(H2O)8]·H2O |
Mr | 1232.19 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 7.7120 (5), 9.2713 (6), 13.2452 (9) |
α, β, γ (°) | 75.529 (1), 76.216 (1), 78.117 (1) |
V (Å3) | 879.73 (10) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 5.98 |
Crystal size (mm) | 0.15 × 0.15 × 0.03 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.646, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7620, 3150, 3010 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.095, 1.18 |
No. of reflections | 3150 |
No. of parameters | 271 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0263P)2 + 10.305P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 2.78, −2.60 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
Yb1—N1 | 2.495 (7) | Yb1—O8i | 2.297 (6) |
Yb1—O1 | 2.365 (6) | Yb1—O9 | 2.334 (8) |
Yb1—O2 | 2.254 (7) | Cu1—N2 | 1.985 (7) |
Yb1—O3 | 2.330 (8) | Cu1—O7ii | 2.641 (6) |
Yb1—O4 | 2.346 (7) | Cu1—O11 | 1.944 (6) |
Yb1—O5 | 2.297 (5) |
Symmetry codes: (i) x, y−1, z; (ii) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O12iii | 0.81 | 1.96 | 2.757 (9) | 165 |
O1—H1B···O11iv | 0.82 | 2.02 | 2.782 (9) | 153 |
O2—H2A···O10 | 0.88 | 1.88 | 2.670 (11) | 149 |
O2—H2B···O5v | 0.82 | 1.87 | 2.667 (9) | 163 |
O3—H3A···O7i | 0.84 | 1.82 | 2.607 (9) | 155 |
O3—H3B···O13 | 0.82 | 1.95 | 2.73 (2) | 159 |
O4—H4A···O10vi | 0.82 | 1.95 | 2.760 (10) | 167 |
O4—H4B···O6vii | 0.82 | 1.98 | 2.802 (9) | 179 |
O13—H13A···O10 | 0.87 | 2.20 | 3.03 (2) | 161 |
O13—H13B···O12i | 0.85 | 1.96 | 2.81 (2) | 177 |
Symmetry codes: (i) x, y−1, z; (iii) x+1, y−1, z; (iv) −x, −y+2, −z+2; (v) −x+1, −y+1, −z+1; (vi) x+1, y, z; (vii) −x+2, −y+1, −z+1. |
Acknowledgements
This work was supported financially by Yuanpei University, Taiwan.
References
Bai, Y.-Y., Huang, Y., Yan, B., Song, Y.-S. & Weng, L.-H. (2008). Inorg. Chem. Commun. pp. 1030–1032. CrossRef Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chi, Y.-X., Niu, S.-Y. & Jin, J. (2009). Inorg. Chim. Acta, 362, 3821–3828. CrossRef CAS Google Scholar
Chuang, S.-T., Kuo, T.-S. & Shiu, K.-B. (2008). J. Chin. Chem. Soc. 55., 255–263. Google Scholar
Ghosh, S. K., Ribas, T. & Bharadwaj, P. K. (2004). CrystEngComm, 6, 250–256. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z., Xing, Y.-H., Wang, C.-G., Zeng, X.-Q., Ge, M.-F. & Niu, S.-Y. (2009). Transition Met. Chem. 34, 655–661. CrossRef CAS Google Scholar
Yue, Q., Yang, J., Yuan, H.-M. & Chen, J.-S. (2007). J. Mol. Struct. 827, 114–120. CrossRef CAS Google Scholar
Zhang, B.-F., Xie, C.-Z., Wang, X.-Q., Shen, G.-Q. & Shen, D.-Z. (2006). Acta Cryst. E62, m297–m299. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent year, many studies select pyridine-2,5-dicarboxylic acid as a bridging ligand, because it offers both N– and O-donors. Thus, the carboxylate group can bond to the lanthanide, while the nitrogen atom can bond to transition metal ions, allowing the possibility of 3 d-4f heterometallic coordination polymers (Zhang et al., 2006; Yue et al., 2007; Bai et al., 2008; Chi et al., 2009; Wang et al., 2009).
Herein, we successfully prepared a heterometallic coordination polymer, [CuYb2(C7H3NO4)4(H2O)8.H2O]n, from a hydrothermal reaction. Fig. 1 shows the structure unit of the title complex, which contains one CuII and two YbIII atoms, four pda ligands, eight coordinating and one non-coordinating water molecules. The YbIII center is eight-coordinated [YbNO3(H2O)4] in a slightly distorted square-antiprismatic geometry formed by two carboxylate O atoms from two pda anions, N,O-chelated by one pda anion and four coordinated water molecules. One CuII atom is N,O-chelated by two pda anions in the coordination basal plane and coordinated by two carboxyl O atoms at the apical position with an elongated octahedral geometry (selected bond lengths are given in Table 1) (Ghosh et al.,2004; Chuang et al., 2008). The molecular structure contains both Cu and Yb atoms, with pda ligands bridging the six coordinate CuII centers and eight coordinate YbIII centers to form a three-dimensional net structure.
The crystal structure contains the extensive O—H···O (shown as Fig. 2 and Table 2). π···π stackings are present in the crystal structure, the shortest centroid distance between parallel pyridine rings Cg5iv···Cg5((N2/C8—C12) is 3.843 (4) Å, respectively [symmetry code:(iv)=-X, 2-Y,2-Z].