organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1088-o1089

(2E)-3-[4-(1H-Benzimidazol-2-ylmeth­­oxy)phen­yl]-1-(4-meth­­oxy­phen­yl)prop-2-en-1-one

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasangotri, Mysore 570 006, India
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 29 March 2011; accepted 5 April 2011; online 13 April 2011)

In the title compound, C24H20N2O3, the mean plane of the benzimidazole unit makes dihedral angles of 79.88 (11) and 85.44 (12)° with the benzene and 4-meth­oxy­benzene rings, respectively. The benzene and 4-meth­oxy­benzene rings maske a dihedral angle of 16.10 (14)°. A pair of inter­molecular N—H⋯O hydrogen bonds connects adjacent mol­ecules into an inversion dimer, generating an R22(26) ring motif. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For the biological activity of benzimidazoles, see: Dhar (1981[Dhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds. New York: John Wiley.]); Pujar et al. (1988[Pujar, M. A., Bharamgoudar, T. D. & Sathyanarayana, D. N. (1988). Transition Met. Chem. 13, 423-425.]); Bouwman et al. 1990[Bouwman, E., Driessen, W. L. & Reedijk, J. (1990). Coord. Chem. Rev. 104, 143-172.]); Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Satyanarayana et al. (2004[Satyanarayana, M., Tiwari, P., Tripathi, B. K., Sriwastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883-889.]); Madkour et al. (2006[Madkour, H. M. F., Farag, A. A., Ramses, S. S. & Ibrahiem, N. A. A. (2006). Phosphorus Sulfur Silicon, 181, 255-265.]); Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54-59.]). For related structures, see: Jian et al. (2003[Jian, F.-F., Bei, F.-L., Wang, X. & Lu, L.-D. (2003). Chin. J. Struct. Chem. 22, 382-386.]); Jasinski et al. (2010[Jasinski, J. P., Braley, A. N., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o2052.]); Odabaşoğlu et al. (2007[Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3199-o3200.]). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20N2O3

  • Mr = 384.42

  • Triclinic, [P \overline 1]

  • a = 7.2244 (5) Å

  • b = 9.3201 (8) Å

  • c = 14.9422 (9) Å

  • α = 98.449 (2)°

  • β = 99.183 (4)°

  • γ = 99.478 (4)°

  • V = 964.01 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.983, Tmax = 0.983

  • 20466 measured reflections

  • 3952 independent reflections

  • 2206 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.162

  • S = 1.07

  • 3952 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg4 are the centroids of the N1/N2/C1/C6/C7 and C18–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—HN2⋯O2i 0.86 2.12 2.927 (3) 157
C11—H11⋯Cg1ii 0.93 2.58 3.490 (3) 165
C24—H24ACg4iii 0.96 2.61 3.467 (3) 149
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y-1, z; (iii) -x, -y, -z-1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The benzimidazole ring system and its related compounds play an important role in pharmaceutical and agricultural fields due to their broad spectrum of biological activities (Pujar et al., 1988, Bouwman et al., 1990). The synthesis of novel benzimidazole derivatives remains a main focus of medicinal research. Benzimidazoles are also useful as insecticides, acaricides, nematocides, herbicides and other plant-protective agents in the field of pest control (Madkour et al., 2006). In recent years, attention has increasingly been given to the synthesis of benzimidazole derivatives as a source of new antimicrobial agents. In addition, benzimidazole derivatives have played a crucial role in the theoretical development of heterocyclic chemistry and are also used extensively in organic synthesis. Chalcones constitute an important family of substances belonging to flavonoids, a large group of natural and synthetic products with interesting physicochemical properties, biological activity and structural characteristics. Chalcones are highly reactive substances of varied nature. They have been reported to possess many interesting pharmacological activities (Dhar, 1981) including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities (Dimmock et al., 1999; Satyanarayana et al., 2004). Chalcones are also finding application as organic nonlinear optical materials (NLO) for their SHG conversion efficiency (Sarojini et al., 2006).

The crystal structures of some benzimidazole derivatives viz., 2-chloromethyl-1H-benzimidazole nitrate (Jian et al., 2003) and 5-methoxy-1H-benzo[d]imidazole-2(3H)-thione (Odabaşoğlu et al., 2007) have been reported. In continuation of our work on the synthesis of benzimidazole derivatives (Jasinski et al., 2010) and in view of the importance of benzimidazoles, the title compound (I) is synthesized and its crystal structure is reported here.

In the title compound (I), (Fig. 1). the dihedral angles between the least squares planes of the benzimidazole (N1/N2/C1–C7) and the benzene (C9–C14) and 4-methoxybenzene (C18–C23) rings are79.88 (11)° and 85.44 (12)°, respectively. The benzene and 4-methoxybenzene rings form a dihedral angle of 16.10 (14)° with each other.

Molecule conformation of (I) is stabilized by one weak intramolecular C15—H15···O2 interaction (Table 1). Two molecules are connected by N—H···O hydrogen bonds into an inversion dimer, forming an R22(26) ring motif (Bernstein et al., 1995; Table 1, Fig. 2). Furthermore, crystal packing is stabilized by C—H···π interactions (Table 1), involving N1/N2/C1/C6/C7 (centroid Cg1) and C18–C23 (centroid Cg4) rings.

Related literature top

For the biological activity of benzimidazoles, see: Dhar (1981); Pujar et al. (1988); Bouwman et al. 1990); Dimmock et al. (1999); Satyanarayana et al. (2004); Madkour et al. (2006); Sarojini et al. (2006). For related structures, see: Jian et al. (2003); Jasinski et al. (2010); Odabaşoğlu et al. (2007). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

A mixture of a 4-(1H-benzimidazol-2-ylmethoxy)benzaldehyde (2.52 g, 0.01 mole) and p-methoxy acetophenone (1.5 g, 0.01 mole) in 50 ml ethanolic sodium hydroxide was stirred at 278–283 K for 3 h, then maintained at room temperature for 24 h and poured into ice cold water. The precipitate that appeared after neutralization with dilute HCl was filtered off and recystallized from 1,4-dioxane. The single crystals were grown from DMF by slow evaporation method and yield of the compound was 75% (m.p.: 521 K).

Refinement top

H atoms were placed in geometrically idealized positions [N—H = 0.86 Å and C—H = 0.93–0.97 Å], and refined as riding with Uiso(H) = 1.2Ueq(C,N) for amine, methylene and aromatic H atoms or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure and numbering scheme for the title compound (I). Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The dimer structure of (I), viewing down the a axis. Hydrogen atoms not involved in the showed interactions have been omitted for clarity.
(2E)-3-[4-(1H-Benzimidazol-2-ylmethoxy)phenyl]- 1-(4-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C24H20N2O3Z = 2
Mr = 384.42F(000) = 404
Triclinic, P1Dx = 1.324 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2244 (5) ÅCell parameters from 1843 reflections
b = 9.3201 (8) Åθ = 2.4–26.4°
c = 14.9422 (9) ŵ = 0.09 mm1
α = 98.449 (2)°T = 294 K
β = 99.183 (4)°Block, pale yellow
γ = 99.478 (4)°0.20 × 0.20 × 0.20 mm
V = 964.01 (12) Å3
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3952 independent reflections
Radiation source: Sealed Tube2206 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.074
Detector resolution: 10.0000 pixels mm-1θmax = 26.4°, θmin = 2.3°
dtprofit.ref scansh = 99
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1110
Tmin = 0.983, Tmax = 0.983l = 1818
20466 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.0726P]
where P = (Fo2 + 2Fc2)/3
3952 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C24H20N2O3γ = 99.478 (4)°
Mr = 384.42V = 964.01 (12) Å3
Triclinic, P1Z = 2
a = 7.2244 (5) ÅMo Kα radiation
b = 9.3201 (8) ŵ = 0.09 mm1
c = 14.9422 (9) ÅT = 294 K
α = 98.449 (2)°0.20 × 0.20 × 0.20 mm
β = 99.183 (4)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3952 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2206 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.983Rint = 0.074
20466 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.07Δρmax = 0.19 e Å3
3952 reflectionsΔρmin = 0.17 e Å3
263 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2640 (3)0.91719 (18)0.15238 (11)0.0644 (7)
O20.2171 (3)0.05475 (19)0.12143 (11)0.0687 (7)
O30.2682 (3)0.0583 (2)0.53944 (13)0.0787 (8)
N10.4160 (3)1.2698 (2)0.23251 (15)0.0660 (8)
N20.0984 (3)1.1935 (2)0.20220 (13)0.0620 (8)
C10.1351 (4)1.3169 (3)0.27147 (17)0.0617 (10)
C20.0158 (5)1.3923 (3)0.3165 (2)0.0805 (14)
C30.1061 (6)1.5136 (4)0.3826 (2)0.0951 (16)
C40.3040 (7)1.5591 (4)0.4022 (2)0.1014 (16)
C50.4185 (5)1.4847 (3)0.3566 (2)0.0846 (14)
C60.3318 (4)1.3610 (3)0.28934 (18)0.0639 (10)
C70.2708 (4)1.1720 (3)0.18325 (17)0.0574 (9)
C80.2866 (4)1.0467 (3)0.11237 (17)0.0654 (10)
C90.2628 (4)0.7851 (3)0.09807 (16)0.0524 (8)
C100.2442 (4)0.6636 (3)0.14123 (17)0.0599 (10)
C110.2379 (4)0.5253 (3)0.09186 (17)0.0604 (10)
C120.2522 (3)0.5040 (3)0.00069 (16)0.0529 (9)
C130.2741 (4)0.6283 (3)0.04203 (16)0.0573 (9)
C140.2791 (4)0.7682 (3)0.00605 (16)0.0584 (9)
C150.2423 (4)0.3536 (3)0.04834 (17)0.0594 (9)
C160.2578 (4)0.3078 (3)0.13370 (17)0.0590 (9)
C170.2407 (4)0.1501 (3)0.17049 (17)0.0555 (9)
C180.2517 (3)0.1048 (3)0.26800 (16)0.0539 (9)
C190.2228 (4)0.1918 (3)0.33441 (18)0.0656 (10)
C200.2258 (4)0.1433 (3)0.42634 (18)0.0671 (11)
C210.2600 (4)0.0023 (3)0.45189 (18)0.0600 (9)
C220.2893 (4)0.0862 (3)0.38702 (18)0.0640 (10)
C230.2863 (4)0.0362 (3)0.29682 (18)0.0596 (9)
C240.2382 (4)0.0284 (4)0.60934 (19)0.0868 (13)
HN20.011701.140900.176400.0740*
H20.116401.362800.302900.0970*
H30.032401.566800.415200.1140*
H40.359101.641700.447200.1210*
H50.550601.515500.369800.1020*
H8A0.188201.035800.058100.0780*
H8B0.410401.064300.094300.0780*
H100.236000.675100.203300.0720*
H110.223800.443900.121200.0730*
H130.285800.617300.103600.0690*
H140.293200.849900.023100.0700*
H150.222300.279900.013200.0710*
H160.280100.376700.171800.0710*
H190.200500.286400.316800.0790*
H200.205500.203800.469800.0800*
H220.311200.180900.404800.0770*
H230.307700.097100.253700.0720*
H24A0.110200.046800.616200.1300*
H24B0.256700.023800.666600.1300*
H24C0.327400.120800.592400.1300*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1020 (15)0.0440 (10)0.0521 (10)0.0225 (9)0.0220 (10)0.0067 (8)
O20.0988 (15)0.0499 (11)0.0553 (11)0.0118 (10)0.0127 (10)0.0072 (9)
O30.0908 (15)0.0888 (15)0.0566 (11)0.0184 (12)0.0189 (10)0.0062 (11)
N10.0812 (16)0.0496 (13)0.0661 (14)0.0156 (12)0.0116 (12)0.0062 (11)
N20.0790 (16)0.0476 (13)0.0561 (13)0.0093 (11)0.0106 (11)0.0045 (10)
C10.091 (2)0.0425 (15)0.0544 (16)0.0165 (14)0.0185 (15)0.0083 (12)
C20.109 (3)0.0629 (19)0.079 (2)0.0315 (17)0.0324 (18)0.0101 (17)
C30.147 (4)0.071 (2)0.079 (2)0.046 (2)0.040 (2)0.0025 (18)
C40.145 (4)0.071 (2)0.078 (2)0.026 (2)0.010 (2)0.0136 (19)
C50.108 (3)0.0615 (19)0.072 (2)0.0123 (18)0.0004 (18)0.0038 (16)
C60.087 (2)0.0465 (16)0.0558 (16)0.0135 (14)0.0085 (15)0.0064 (13)
C70.0799 (19)0.0430 (15)0.0524 (15)0.0162 (14)0.0154 (14)0.0107 (12)
C80.098 (2)0.0464 (16)0.0559 (16)0.0187 (14)0.0212 (15)0.0095 (13)
C90.0659 (16)0.0440 (14)0.0480 (14)0.0162 (12)0.0107 (12)0.0043 (11)
C100.0854 (19)0.0510 (16)0.0483 (14)0.0188 (14)0.0196 (13)0.0108 (12)
C110.0826 (19)0.0463 (15)0.0571 (16)0.0181 (13)0.0168 (14)0.0140 (12)
C120.0614 (16)0.0461 (15)0.0503 (14)0.0128 (12)0.0089 (12)0.0051 (12)
C130.0786 (18)0.0503 (15)0.0446 (14)0.0173 (13)0.0121 (12)0.0074 (12)
C140.0809 (19)0.0470 (15)0.0504 (15)0.0172 (13)0.0139 (13)0.0119 (12)
C150.0725 (18)0.0461 (15)0.0574 (16)0.0137 (13)0.0066 (13)0.0062 (12)
C160.0737 (18)0.0472 (15)0.0542 (15)0.0136 (13)0.0088 (13)0.0047 (12)
C170.0612 (16)0.0484 (15)0.0540 (15)0.0106 (12)0.0065 (12)0.0049 (13)
C180.0619 (16)0.0450 (14)0.0518 (15)0.0118 (12)0.0059 (12)0.0026 (12)
C190.086 (2)0.0477 (16)0.0610 (17)0.0143 (14)0.0112 (14)0.0039 (13)
C200.080 (2)0.0628 (18)0.0590 (17)0.0132 (15)0.0098 (14)0.0166 (14)
C210.0573 (16)0.0678 (18)0.0518 (15)0.0096 (14)0.0136 (12)0.0003 (14)
C220.0735 (19)0.0558 (17)0.0622 (17)0.0178 (14)0.0155 (14)0.0003 (14)
C230.0644 (17)0.0533 (16)0.0598 (16)0.0148 (13)0.0083 (13)0.0058 (13)
C240.083 (2)0.116 (3)0.0620 (18)0.0126 (19)0.0149 (16)0.0243 (19)
Geometric parameters (Å, º) top
O1—C81.421 (3)C17—C181.475 (3)
O1—C91.369 (3)C18—C231.397 (4)
O2—C171.240 (3)C18—C191.383 (4)
O3—C211.361 (3)C19—C201.386 (4)
O3—C241.423 (4)C20—C211.387 (4)
N1—C61.392 (4)C21—C221.375 (4)
N1—C71.309 (3)C22—C231.365 (4)
N2—C11.388 (3)C2—H20.9300
N2—C71.360 (4)C3—H30.9300
N2—HN20.8600C4—H40.9300
C1—C21.391 (4)C5—H50.9300
C1—C61.383 (4)C8—H8A0.9700
C2—C31.379 (4)C8—H8B0.9700
C3—C41.393 (7)C10—H100.9300
C4—C51.364 (6)C11—H110.9300
C5—C61.397 (4)C13—H130.9300
C7—C81.489 (4)C14—H140.9300
C9—C101.382 (4)C15—H150.9300
C9—C141.387 (3)C16—H160.9300
C10—C111.378 (4)C19—H190.9300
C11—C121.391 (3)C20—H200.9300
C12—C131.389 (4)C22—H220.9300
C12—C151.461 (4)C23—H230.9300
C13—C141.385 (4)C24—H24A0.9600
C15—C161.313 (4)C24—H24B0.9600
C16—C171.469 (4)C24—H24C0.9600
C8—O1—C9117.93 (19)C20—C21—C22120.3 (2)
C21—O3—C24117.8 (2)C21—C22—C23120.5 (3)
C6—N1—C7103.6 (2)C18—C23—C22121.2 (2)
C1—N2—C7106.5 (2)C1—C2—H2122.00
C1—N2—HN2127.00C3—C2—H2122.00
C7—N2—HN2127.00C2—C3—H3119.00
N2—C1—C2132.4 (3)C4—C3—H3119.00
C2—C1—C6122.9 (3)C3—C4—H4119.00
N2—C1—C6104.6 (2)C5—C4—H4119.00
C1—C2—C3115.8 (3)C4—C5—H5121.00
C2—C3—C4122.2 (4)C6—C5—H5121.00
C3—C4—C5121.2 (3)O1—C8—H8A110.00
C4—C5—C6118.1 (3)O1—C8—H8B110.00
N1—C6—C1111.2 (2)C7—C8—H8A110.00
C1—C6—C5119.8 (3)C7—C8—H8B110.00
N1—C6—C5129.0 (3)H8A—C8—H8B109.00
N2—C7—C8121.4 (2)C9—C10—H10120.00
N1—C7—C8124.6 (3)C11—C10—H10120.00
N1—C7—N2114.0 (2)C10—C11—H11119.00
O1—C8—C7107.2 (2)C12—C11—H11119.00
C10—C9—C14120.1 (2)C12—C13—H13119.00
O1—C9—C10115.3 (2)C14—C13—H13119.00
O1—C9—C14124.6 (2)C9—C14—H14120.00
C9—C10—C11119.6 (2)C13—C14—H14120.00
C10—C11—C12121.8 (3)C12—C15—H15115.00
C11—C12—C15118.4 (2)C16—C15—H15115.00
C11—C12—C13117.4 (2)C15—C16—H16119.00
C13—C12—C15124.2 (2)C17—C16—H16119.00
C12—C13—C14121.8 (2)C18—C19—H19119.00
C9—C14—C13119.3 (2)C20—C19—H19119.00
C12—C15—C16129.1 (3)C19—C20—H20121.00
C15—C16—C17121.5 (3)C21—C20—H20121.00
O2—C17—C18119.5 (2)C21—C22—H22120.00
C16—C17—C18119.0 (2)C23—C22—H22120.00
O2—C17—C16121.5 (2)C18—C23—H23119.00
C19—C18—C23117.2 (2)C22—C23—H23119.00
C17—C18—C19123.9 (2)O3—C24—H24A109.00
C17—C18—C23118.8 (2)O3—C24—H24B109.00
C18—C19—C20122.5 (3)O3—C24—H24C109.00
C19—C20—C21118.3 (2)H24A—C24—H24B109.00
O3—C21—C22115.5 (2)H24A—C24—H24C109.00
O3—C21—C20124.3 (2)H24B—C24—H24C109.00
C8—O1—C9—C10178.8 (3)C14—C9—C10—C111.4 (4)
C8—O1—C9—C141.1 (4)O1—C9—C14—C13179.4 (3)
C9—O1—C8—C7176.5 (2)C9—C10—C11—C120.8 (4)
C24—O3—C21—C22179.8 (3)C10—C11—C12—C15179.4 (3)
C24—O3—C21—C200.5 (4)C10—C11—C12—C130.3 (4)
C6—N1—C7—C8178.8 (2)C11—C12—C13—C140.9 (4)
C6—N1—C7—N21.1 (3)C13—C12—C15—C162.5 (5)
C7—N1—C6—C5179.9 (3)C15—C12—C13—C14178.8 (3)
C7—N1—C6—C11.1 (3)C11—C12—C15—C16177.8 (3)
C1—N2—C7—C8179.2 (2)C12—C13—C14—C90.3 (4)
C7—N2—C1—C60.1 (3)C12—C15—C16—C17179.0 (3)
C1—N2—C7—N10.7 (3)C15—C16—C17—C18177.6 (3)
C7—N2—C1—C2178.2 (3)C15—C16—C17—O22.4 (5)
N2—C1—C2—C3179.5 (3)O2—C17—C18—C19160.7 (3)
C6—C1—C2—C31.5 (4)C16—C17—C18—C23163.2 (3)
N2—C1—C6—N10.8 (3)O2—C17—C18—C2316.9 (4)
C2—C1—C6—C51.3 (4)C16—C17—C18—C1919.3 (4)
N2—C1—C6—C5179.8 (2)C17—C18—C23—C22177.0 (3)
C2—C1—C6—N1177.7 (2)C19—C18—C23—C220.7 (4)
C1—C2—C3—C40.9 (5)C17—C18—C19—C20177.1 (3)
C2—C3—C4—C50.2 (5)C23—C18—C19—C200.5 (4)
C3—C4—C5—C60.0 (5)C18—C19—C20—C210.3 (4)
C4—C5—C6—N1178.3 (3)C19—C20—C21—C220.2 (4)
C4—C5—C6—C10.6 (4)C19—C20—C21—O3179.5 (3)
N1—C7—C8—O1102.5 (3)O3—C21—C22—C23179.3 (3)
N2—C7—C8—O177.4 (3)C20—C21—C22—C230.4 (5)
O1—C9—C10—C11178.8 (3)C21—C22—C23—C180.7 (4)
C10—C9—C14—C130.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the N1/N2/C1/C6/C7 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—HN2···O2i0.862.122.927 (3)157
C11—H11···Cg1ii0.932.583.490 (3)165
C24—H24A···Cg4iii0.962.613.467 (3)149
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC24H20N2O3
Mr384.42
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.2244 (5), 9.3201 (8), 14.9422 (9)
α, β, γ (°)98.449 (2), 99.183 (4), 99.478 (4)
V3)964.01 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.983, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
20466, 3952, 2206
Rint0.074
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.162, 1.07
No. of reflections3952
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: CrystalClear (Rigaku/MSC, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the N1/N2/C1/C6/C7 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—HN2···O2i0.862.122.927 (3)157
C11—H11···Cg1ii0.932.583.490 (3)165
C24—H24A···Cg4iii0.962.613.467 (3)149
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y, z1.
 

Acknowledgements

ZB and MA thank the Unit of the Scientific Research Projects of Erciyes University, Turkey, for the research grant FBD-10–2949, and for support of the data collection at Atatürk University, Turkey. SS thanks Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. HSY thanks the UOM for sabbatical leave.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBouwman, E., Driessen, W. L. & Reedijk, J. (1990). Coord. Chem. Rev. 104, 143–172.  CrossRef CAS Web of Science Google Scholar
First citationDhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds. New York: John Wiley.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Braley, A. N., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o2052.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJian, F.-F., Bei, F.-L., Wang, X. & Lu, L.-D. (2003). Chin. J. Struct. Chem. 22, 382–386.  CAS Google Scholar
First citationMadkour, H. M. F., Farag, A. A., Ramses, S. S. & Ibrahiem, N. A. A. (2006). Phosphorus Sulfur Silicon, 181, 255–265.  Web of Science CrossRef CAS Google Scholar
First citationOdabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3199–o3200.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPujar, M. A., Bharamgoudar, T. D. & Sathyanarayana, D. N. (1988). Transition Met. Chem. 13, 423–425.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSatyanarayana, M., Tiwari, P., Tripathi, B. K., Sriwastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883–889.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1088-o1089
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds