organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1146

9-(5-Bromo-2-hy­dr­oxy­phen­yl)-10-(2-hy­dr­oxy­prop­yl)-3,3,6,6-tetra­methyl-1,2,3,4,5,6,7,8,9,10-deca­hydro­acridine-1,8-dione

aDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, bChemistry & Environmental Science Division, School of Science, Manchester Metropolitan University, England, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 April 2011; accepted 11 April 2011; online 16 April 2011)

The dihydro­pyridine ring in the title compound, C26H32BrNO4, adopts an envelope conformation with the methine C atom representing the flap. The cyclo­hexenone rings also adopt envelope conformations. The phenolic hy­droxy group forms an intra­molecular hydrogen bond to one of the two keto O atoms. Inter­molecular weak C—H⋯O hydrogen bonding is present in the crystal structure. The hy­droxy­propyl group is disordered over two sets of sites with an occupancy ratio of 0.636 (6):0.364 (6).

Related literature

For a related structure, see: Abdelhamid et al. (2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]).

[Scheme 1]

Experimental

Crystal data
  • C26H32BrNO4

  • Mr = 502.44

  • Monoclinic, P 21 /n

  • a = 10.6685 (4) Å

  • b = 16.8190 (5) Å

  • c = 14.1260 (5) Å

  • β = 106.303 (3)°

  • V = 2432.76 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.72 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.725, Tmax = 0.919

  • 11939 measured reflections

  • 5402 independent reflections

  • 3939 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.135

  • S = 1.03

  • 5402 reflections

  • 302 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 1.78 2.621 (4) 176
C10—H10A⋯O1i 0.99 2.54 3.417 (5) 147
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In an earlier study, we reported 10-(2-hydroxyethyl)-9-(2-hydroxyphenyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione, which was synthesized by the reaction of dimedone, salicyladehyde and 2-aminoethanol (Abdelhamid et al., 2011). In the present study, we replaced 2-aminoethanol by 1-amino-2-propanol and also used a bromine-subsituted salicyladehyde to form the title analog (Scheme I). The dihydropyridine ring in the C26H32BrNO4 adopts an envelope conformation with the methine C atom representing the flap. The cyclohexenone rings also adopt envelope conformations with the C atoms bearing the methyl C atoms representing the flaps. The phenolic hydroxy group forms an intramolecular hydrogen bond to one of the two keto O atoms (Fig. 1).

Related literature top

For a related structure, see: Abdelhamid et al. (2011).

Experimental top

5-Bromo-2-hydroxybenzaldehyde (10 mmol), 1-amino-2-propanol (10 mol) and 20 dimedone (20 mmol) were heated in pyridine (50 ml) for 5 h. The solid that was isolated from the cool solution was collected and recrystallized from ethano; m.p. 508 K.

Refinement top

H-atoms were placed in calculated positions [C–H 0.95 to 0.99, O–H 0.84 Å; U(H) 1.2 to 1.5U(C,O)] and were included in the refinement in the riding model approximation.

The hydroxypropyl group is disordered over two positions in respect of three of the four non-hydrogen atoms; the C atom connected to the dihydropyridine ring is ordered. The carbon–carbon distances were restrained to 1.54±0.01Å and the carbon–oxygen distances to 1.45±0.01 Å. The temperature factors of the primed atoms were set to those of the unprimed atoms, and the anisotropic temperature factors were restrained to be nearly isotropic. The disorder refined to a 63.6 (1): 36.4 ratio.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C26H32BrNO4 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.
9-(5-Bromo-2-hydroxyphenyl)-10-(2-hydroxypropyl)-3,3,6,6-tetramethyl- 1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione top
Crystal data top
C26H32BrNO4F(000) = 1048
Mr = 502.44Dx = 1.372 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3308 reflections
a = 10.6685 (4) Åθ = 2.3–29.4°
b = 16.8190 (5) ŵ = 1.72 mm1
c = 14.1260 (5) ÅT = 100 K
β = 106.303 (3)°Prism, colorless
V = 2432.76 (14) Å30.20 × 0.10 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5402 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3939 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.045
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2119
Tmin = 0.725, Tmax = 0.919l = 1317
11939 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0549P)2 + 1.4767P]
where P = (Fo2 + 2Fc2)/3
5402 reflections(Δ/σ)max = 0.001
302 parametersΔρmax = 0.76 e Å3
24 restraintsΔρmin = 0.66 e Å3
Crystal data top
C26H32BrNO4V = 2432.76 (14) Å3
Mr = 502.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6685 (4) ŵ = 1.72 mm1
b = 16.8190 (5) ÅT = 100 K
c = 14.1260 (5) Å0.20 × 0.10 × 0.05 mm
β = 106.303 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5402 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3939 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.919Rint = 0.045
11939 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05324 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.03Δρmax = 0.76 e Å3
5402 reflectionsΔρmin = 0.66 e Å3
302 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br11.00011 (3)0.07288 (2)0.84090 (3)0.02822 (14)
O10.6038 (2)0.22434 (18)1.01434 (16)0.0322 (6)
H10.53370.23330.97060.039*
O20.3796 (2)0.25478 (16)0.88504 (17)0.0306 (6)
O30.7557 (3)0.41222 (15)0.86062 (17)0.0284 (6)
O40.6148 (10)0.0597 (4)0.6070 (6)0.0224 (9)0.636 (6)
H40.67480.06480.65980.027*0.636 (6)
O4'0.6669 (7)0.0829 (4)0.4503 (4)0.0224 (9)0.364
H4'0.71730.04350.46080.027*0.364 (6)
N10.5582 (3)0.22319 (18)0.61661 (19)0.0209 (6)
C10.6924 (4)0.1925 (2)0.9722 (2)0.0253 (8)
C20.7829 (4)0.1395 (2)1.0291 (2)0.0291 (9)
H20.78030.12731.09420.035*
C30.8759 (4)0.1044 (2)0.9923 (2)0.0274 (8)
H30.93800.06861.03150.033*
C40.8772 (3)0.1223 (2)0.8975 (2)0.0231 (8)
C50.7896 (3)0.1759 (2)0.8406 (2)0.0206 (7)
H50.79280.18730.77540.025*
C60.6975 (3)0.2134 (2)0.8771 (2)0.0195 (7)
C70.6024 (3)0.2741 (2)0.8146 (2)0.0218 (7)
H70.58120.31460.85950.026*
C80.4774 (3)0.2344 (2)0.7571 (2)0.0214 (7)
C90.3703 (3)0.2291 (2)0.8002 (2)0.0245 (8)
C100.2455 (4)0.1933 (2)0.7402 (3)0.0316 (9)
H10A0.19520.23350.69350.038*
H10B0.19230.17680.78410.038*
C110.2724 (4)0.1208 (2)0.6826 (3)0.0320 (9)
C120.3568 (3)0.1482 (2)0.6168 (2)0.0260 (8)
H12A0.39450.10070.59370.031*
H12B0.29990.17500.55800.031*
C130.4664 (3)0.2038 (2)0.6662 (2)0.0213 (8)
C140.3435 (4)0.0568 (2)0.7541 (3)0.0392 (10)
H14A0.36040.01080.71690.059*
H14B0.28930.04040.79640.059*
H14C0.42660.07800.79510.059*
C150.1428 (4)0.0876 (3)0.6174 (3)0.0461 (12)
H15A0.16030.04140.58080.069*
H15B0.09800.12860.57090.069*
H15C0.08760.07150.65900.069*
C160.5558 (3)0.1821 (2)0.5232 (2)0.0253 (8)
H16A0.58470.22010.47990.030*0.636 (6)
H16B0.46450.16710.48930.030*0.636 (6)
H16C0.56830.22110.47400.030*0.364 (6)
H16D0.47060.15540.49580.030*0.364 (6)
C170.6394 (8)0.1092 (5)0.5351 (6)0.035 (2)0.636 (6)
H170.60790.07940.47150.042*0.636 (6)
C17'0.6674 (17)0.1202 (11)0.5460 (9)0.035 (2)0.364
H17'0.75420.14150.58460.042*0.364 (6)
C180.7835 (8)0.1139 (5)0.5556 (6)0.064 (3)0.636 (6)
H18A0.80610.15790.51800.096*0.636 (6)
H18B0.81650.06390.53610.096*0.636 (6)
H18C0.82300.12290.62620.096*0.636 (6)
C18'0.613 (4)0.0541 (18)0.598 (2)0.064 (3)0.364
H18D0.67260.00850.61000.096*0.364 (6)
H18E0.52700.03770.55690.096*0.364 (6)
H18F0.60500.07400.66150.096*0.364 (6)
C190.6444 (3)0.2861 (2)0.6502 (2)0.0207 (7)
C200.7162 (3)0.3212 (2)0.5820 (2)0.0221 (7)
H20A0.65380.35310.53100.027*
H20B0.74750.27720.54800.027*
C210.8325 (3)0.3738 (2)0.6323 (2)0.0208 (7)
C220.7910 (4)0.4311 (2)0.7019 (2)0.0241 (8)
H22A0.86720.46330.73760.029*
H22B0.72360.46770.66280.029*
C230.7371 (3)0.3877 (2)0.7761 (2)0.0222 (8)
C240.6607 (3)0.3159 (2)0.7426 (2)0.0208 (7)
C250.8732 (4)0.4213 (2)0.5529 (3)0.0273 (8)
H25A0.90040.38460.50850.041*
H25B0.94600.45660.58450.041*
H25C0.79910.45310.51500.041*
C260.9486 (3)0.3234 (2)0.6901 (2)0.0258 (8)
H26A0.97460.28690.64490.039*
H26B0.92330.29280.74090.039*
H26C1.02200.35840.72140.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0228 (2)0.0251 (2)0.0361 (2)0.00032 (17)0.00727 (15)0.00592 (15)
O10.0261 (15)0.0483 (19)0.0246 (13)0.0083 (14)0.0109 (10)0.0029 (12)
O20.0265 (15)0.0350 (17)0.0343 (14)0.0001 (13)0.0150 (11)0.0000 (12)
O30.0345 (15)0.0256 (15)0.0268 (13)0.0060 (12)0.0116 (11)0.0040 (10)
O40.036 (2)0.017 (2)0.021 (2)0.0144 (17)0.0188 (16)0.0029 (14)
O4'0.036 (2)0.017 (2)0.021 (2)0.0144 (17)0.0188 (16)0.0029 (14)
N10.0162 (15)0.0231 (17)0.0220 (14)0.0008 (13)0.0029 (11)0.0031 (12)
C10.023 (2)0.032 (2)0.0206 (17)0.0126 (17)0.0060 (14)0.0035 (15)
C20.036 (2)0.032 (2)0.0185 (17)0.0117 (19)0.0072 (15)0.0053 (15)
C30.027 (2)0.025 (2)0.0243 (18)0.0072 (17)0.0018 (14)0.0073 (15)
C40.0187 (19)0.022 (2)0.0266 (18)0.0048 (16)0.0040 (14)0.0021 (14)
C50.0211 (18)0.0206 (19)0.0192 (16)0.0067 (15)0.0039 (13)0.0003 (13)
C60.0202 (19)0.0179 (19)0.0197 (16)0.0072 (15)0.0047 (13)0.0003 (13)
C70.0217 (19)0.0215 (19)0.0230 (17)0.0027 (16)0.0076 (13)0.0000 (14)
C80.0202 (18)0.0174 (19)0.0258 (18)0.0021 (15)0.0052 (13)0.0057 (14)
C90.0205 (19)0.022 (2)0.0307 (19)0.0015 (16)0.0070 (14)0.0067 (15)
C100.020 (2)0.042 (3)0.034 (2)0.0015 (18)0.0095 (15)0.0067 (17)
C110.024 (2)0.034 (2)0.035 (2)0.0081 (18)0.0030 (15)0.0056 (17)
C120.0193 (19)0.027 (2)0.0292 (19)0.0010 (17)0.0025 (14)0.0030 (15)
C130.0149 (17)0.024 (2)0.0242 (18)0.0024 (15)0.0033 (13)0.0066 (14)
C140.044 (3)0.030 (2)0.041 (2)0.011 (2)0.0076 (18)0.0081 (17)
C150.033 (2)0.059 (3)0.042 (2)0.023 (2)0.0049 (18)0.006 (2)
C160.0224 (19)0.029 (2)0.0244 (18)0.0014 (17)0.0072 (14)0.0023 (15)
C170.031 (5)0.042 (4)0.038 (3)0.010 (4)0.020 (3)0.016 (2)
C17'0.031 (5)0.042 (4)0.038 (3)0.010 (4)0.020 (3)0.016 (2)
C180.066 (5)0.069 (5)0.058 (4)0.001 (4)0.021 (4)0.013 (4)
C18'0.066 (5)0.069 (5)0.058 (4)0.001 (4)0.021 (4)0.013 (4)
C190.0142 (17)0.0214 (19)0.0256 (17)0.0034 (15)0.0041 (13)0.0065 (14)
C200.0202 (18)0.023 (2)0.0253 (17)0.0049 (16)0.0091 (13)0.0072 (14)
C210.0193 (18)0.0197 (19)0.0252 (17)0.0019 (15)0.0092 (13)0.0040 (14)
C220.028 (2)0.0162 (19)0.0308 (19)0.0032 (16)0.0136 (15)0.0049 (14)
C230.0170 (18)0.020 (2)0.0299 (19)0.0031 (15)0.0075 (14)0.0055 (14)
C240.0155 (17)0.0199 (19)0.0270 (18)0.0001 (15)0.0061 (13)0.0053 (14)
C250.030 (2)0.024 (2)0.0312 (19)0.0009 (17)0.0142 (15)0.0045 (15)
C260.0206 (19)0.027 (2)0.0304 (19)0.0010 (17)0.0088 (14)0.0023 (15)
Geometric parameters (Å, º) top
Br1—C41.908 (4)C14—H14C0.9800
O1—C11.360 (4)C15—H15A0.9800
O1—H10.8400C15—H15B0.9800
O2—C91.251 (4)C15—H15C0.9800
O3—C231.226 (4)C16—C171.499 (7)
O4—C171.394 (7)C16—C17'1.547 (9)
O4—H40.8400C16—H16A0.9900
O4'—C17'1.488 (10)C16—H16B0.9900
O4'—H4'0.8400C16—H16C0.9900
N1—C131.393 (4)C16—H16D0.9900
N1—C191.394 (4)C17—C181.484 (8)
N1—C161.483 (4)C17—H171.0000
C1—C21.391 (5)C17'—C18'1.535 (10)
C1—C61.405 (5)C17'—H17'1.0000
C2—C31.376 (5)C18—H18A0.9800
C2—H20.9500C18—H18B0.9800
C3—C41.376 (5)C18—H18C0.9800
C3—H30.9500C18'—H18D0.9800
C4—C51.382 (5)C18'—H18E0.9800
C5—C61.383 (5)C18'—H18F0.9800
C5—H50.9500C19—C241.364 (5)
C6—C71.532 (5)C19—C201.509 (4)
C7—C241.507 (4)C20—C211.526 (5)
C7—C81.509 (5)C20—H20A0.9900
C7—H71.0000C20—H20B0.9900
C8—C131.357 (5)C21—C221.529 (5)
C8—C91.440 (5)C21—C261.533 (5)
C9—C101.490 (5)C21—C251.536 (5)
C10—C111.538 (6)C22—C231.516 (5)
C10—H10A0.9900C22—H22A0.9900
C10—H10B0.9900C22—H22B0.9900
C11—C141.525 (5)C23—C241.459 (5)
C11—C121.535 (5)C25—H25A0.9800
C11—C151.535 (5)C25—H25B0.9800
C12—C131.507 (5)C25—H25C0.9800
C12—H12A0.9900C26—H26A0.9800
C12—H12B0.9900C26—H26B0.9800
C14—H14A0.9800C26—H26C0.9800
C14—H14B0.9800
C1—O1—H1109.5C17'—C16—H16A102.0
C17'—O4'—H4'109.5N1—C16—H16B108.6
C13—N1—C19119.7 (3)C17—C16—H16B108.6
C13—N1—C16119.9 (3)H16A—C16—H16B107.5
C19—N1—C16120.1 (3)N1—C16—H16C110.1
O1—C1—C2117.0 (3)C17—C16—H16C115.3
O1—C1—C6122.5 (3)C17'—C16—H16C110.1
C2—C1—C6120.4 (3)N1—C16—H16D110.1
C3—C2—C1120.9 (3)C17'—C16—H16D110.1
C3—C2—H2119.5H16C—C16—H16D108.4
C1—C2—H2119.5O4—C17—C18106.6 (7)
C2—C3—C4118.6 (3)O4—C17—C16110.0 (6)
C2—C3—H3120.7C18—C17—C16122.0 (8)
C4—C3—H3120.7O4—C17—H17105.7
C3—C4—C5121.3 (3)C18—C17—H17105.7
C3—C4—Br1120.5 (3)C16—C17—H17105.7
C5—C4—Br1118.2 (2)O4'—C17'—C18'103.1 (17)
C6—C5—C4121.0 (3)O4'—C17'—C16106.7 (8)
C6—C5—H5119.5C18'—C17'—C16102 (2)
C4—C5—H5119.5O4'—C17'—H17'114.4
C5—C6—C1117.7 (3)C18'—C17'—H17'114.4
C5—C6—C7120.9 (3)C16—C17'—H17'114.4
C1—C6—C7121.4 (3)C17—C18—H18A109.5
C24—C7—C8108.3 (3)C17—C18—H18B109.5
C24—C7—C6111.6 (3)H18A—C18—H18B109.5
C8—C7—C6110.9 (3)C17—C18—H18C109.5
C24—C7—H7108.7H18A—C18—H18C109.5
C8—C7—H7108.7H18B—C18—H18C109.5
C6—C7—H7108.7C17'—C18'—H18D109.5
C13—C8—C9120.6 (3)C17'—C18'—H18E109.5
C13—C8—C7120.3 (3)H18D—C18'—H18E109.5
C9—C8—C7119.0 (3)C17'—C18'—H18F109.5
O2—C9—C8121.7 (3)H18D—C18'—H18F109.5
O2—C9—C10120.1 (3)H18E—C18'—H18F109.5
C8—C9—C10118.2 (3)C24—C19—N1120.0 (3)
C9—C10—C11110.6 (3)C24—C19—C20121.1 (3)
C9—C10—H10A109.5N1—C19—C20119.0 (3)
C11—C10—H10A109.5C19—C20—C21115.0 (3)
C9—C10—H10B109.5C19—C20—H20A108.5
C11—C10—H10B109.5C21—C20—H20A108.5
H10A—C10—H10B108.1C19—C20—H20B108.5
C14—C11—C12110.2 (3)C21—C20—H20B108.5
C14—C11—C15109.7 (3)H20A—C20—H20B107.5
C12—C11—C15109.2 (3)C20—C21—C22108.7 (3)
C14—C11—C10110.0 (3)C20—C21—C26111.0 (3)
C12—C11—C10108.2 (3)C22—C21—C26110.0 (3)
C15—C11—C10109.6 (4)C20—C21—C25108.8 (3)
C13—C12—C11114.6 (3)C22—C21—C25109.5 (3)
C13—C12—H12A108.6C26—C21—C25109.0 (3)
C11—C12—H12A108.6C23—C22—C21112.1 (3)
C13—C12—H12B108.6C23—C22—H22A109.2
C11—C12—H12B108.6C21—C22—H22A109.2
H12A—C12—H12B107.6C23—C22—H22B109.2
C8—C13—N1120.0 (3)C21—C22—H22B109.2
C8—C13—C12121.5 (3)H22A—C22—H22B107.9
N1—C13—C12118.5 (3)O3—C23—C24121.2 (3)
C11—C14—H14A109.5O3—C23—C22121.5 (3)
C11—C14—H14B109.5C24—C23—C22117.4 (3)
H14A—C14—H14B109.5C19—C24—C23121.6 (3)
C11—C14—H14C109.5C19—C24—C7120.6 (3)
H14A—C14—H14C109.5C23—C24—C7117.8 (3)
H14B—C14—H14C109.5C21—C25—H25A109.5
C11—C15—H15A109.5C21—C25—H25B109.5
C11—C15—H15B109.5H25A—C25—H25B109.5
H15A—C15—H15B109.5C21—C25—H25C109.5
C11—C15—H15C109.5H25A—C25—H25C109.5
H15A—C15—H15C109.5H25B—C25—H25C109.5
H15B—C15—H15C109.5C21—C26—H26A109.5
N1—C16—C17114.8 (4)C21—C26—H26B109.5
N1—C16—C17'107.9 (5)H26A—C26—H26B109.5
C17—C16—C17'13.0 (11)C21—C26—H26C109.5
N1—C16—H16A108.6H26A—C26—H26C109.5
C17—C16—H16A108.6H26B—C26—H26C109.5
O1—C1—C2—C3180.0 (3)C11—C12—C13—C88.0 (5)
C6—C1—C2—C32.3 (6)C11—C12—C13—N1171.6 (3)
C1—C2—C3—C40.5 (6)C13—N1—C16—C1791.6 (6)
C2—C3—C4—C51.8 (5)C19—N1—C16—C1794.3 (6)
C2—C3—C4—Br1177.9 (3)C13—N1—C16—C17'103.5 (10)
C3—C4—C5—C60.1 (5)C19—N1—C16—C17'82.4 (10)
Br1—C4—C5—C6179.5 (3)N1—C16—C17—O449.4 (8)
C4—C5—C6—C12.6 (5)C17'—C16—C17—O4110 (4)
C4—C5—C6—C7178.7 (3)N1—C16—C17—C1876.5 (8)
O1—C1—C6—C5178.6 (3)C17'—C16—C17—C1816 (3)
C2—C1—C6—C53.8 (5)N1—C16—C17'—O4'177.2 (10)
O1—C1—C6—C70.1 (5)C17—C16—C17'—O4'59 (3)
C2—C1—C6—C7177.6 (3)N1—C16—C17'—C18'74.8 (16)
C5—C6—C7—C2428.8 (4)C17—C16—C17'—C18'49 (4)
C1—C6—C7—C24152.6 (3)C13—N1—C19—C2415.8 (5)
C5—C6—C7—C892.0 (4)C16—N1—C19—C24170.1 (3)
C1—C6—C7—C886.6 (4)C13—N1—C19—C20163.1 (3)
C24—C7—C8—C1334.3 (4)C16—N1—C19—C2011.1 (4)
C6—C7—C8—C1388.5 (4)C24—C19—C20—C2116.5 (5)
C24—C7—C8—C9146.0 (3)N1—C19—C20—C21164.7 (3)
C6—C7—C8—C991.2 (4)C19—C20—C21—C2246.6 (4)
C13—C8—C9—O2177.8 (3)C19—C20—C21—C2674.4 (4)
C7—C8—C9—O21.9 (5)C19—C20—C21—C25165.8 (3)
C13—C8—C9—C103.3 (5)C20—C21—C22—C2355.7 (4)
C7—C8—C9—C10177.0 (3)C26—C21—C22—C2365.9 (4)
O2—C9—C10—C11140.9 (3)C25—C21—C22—C23174.4 (3)
C8—C9—C10—C1140.3 (4)C21—C22—C23—O3144.8 (3)
C9—C10—C11—C1462.2 (4)C21—C22—C23—C2435.9 (4)
C9—C10—C11—C1258.2 (4)N1—C19—C24—C23172.3 (3)
C9—C10—C11—C15177.2 (3)C20—C19—C24—C236.5 (5)
C14—C11—C12—C1377.2 (4)N1—C19—C24—C79.1 (5)
C15—C11—C12—C13162.3 (3)C20—C19—C24—C7172.1 (3)
C10—C11—C12—C1343.1 (4)O3—C23—C24—C19177.0 (3)
C9—C8—C13—N1166.7 (3)C22—C23—C24—C193.7 (5)
C7—C8—C13—N113.6 (5)O3—C23—C24—C71.6 (5)
C9—C8—C13—C1213.7 (5)C22—C23—C24—C7177.7 (3)
C7—C8—C13—C12165.9 (3)C8—C7—C24—C1931.9 (4)
C19—N1—C13—C813.5 (5)C6—C7—C24—C1990.4 (4)
C16—N1—C13—C8172.4 (3)C8—C7—C24—C23149.4 (3)
C19—N1—C13—C12166.9 (3)C6—C7—C24—C2388.2 (4)
C16—N1—C13—C127.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.841.782.621 (4)176
C10—H10A···O1i0.992.543.417 (5)147
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC26H32BrNO4
Mr502.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.6685 (4), 16.8190 (5), 14.1260 (5)
β (°) 106.303 (3)
V3)2432.76 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.72
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.725, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
11939, 5402, 3939
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.135, 1.03
No. of reflections5402
No. of parameters302
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.66

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.841.782.621 (4)176
C10—H10A···O1i0.992.543.417 (5)147
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

We thank Manchester Metropolitan University, Baku State University and the University of Malaya for supporting this study.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1146
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds