organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1156

1-(9-Methyl-11-sulfanyl­­idene-8-oxa-10,12-di­aza­tri­cyclo­[7.3.1.02,7]trideca-2,4,6-trien-13-yl)ethanone

aDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 11 April 2011; accepted 12 April 2011; online 16 April 2011)

The six-membered oxacyclo­hexene ring of the title compound, C13H14N2O2S, is fused with the benzene ring and the quarternary C atom lies above the plane of the benzene ring by 0.229 (8) Å, whereas the methine C atom (which bears the acetyl substituent) lies below this plane by 0.595 (8) Å. The oxacyclo­hexene ring is also fused with the sofa-shaped 2,6-diaza­cyclo­hexa­none ring. The methine C atom that belongs to both six-membered rings lies above the mean plane of the other five atoms (r.m.s. deviation = 0.077 Å) by 0.759 (5) Å. In the crystal, N—H⋯S hydrogen bonds link adjacent mol­ecules into a linear chain.

Related literature

For related structures, see: Kettmann & Svetlík (1996[Kettmann, V. & Svetlík, J. (1996). Acta Cryst. C52, 1496-1499.], 1997)[Kettmann, V. & Svetlík, J. (1997). Acta Cryst. C53, 1493-1495.]; Kurbanova et al. (2009[Kurbanova, M. M., Kurbanov, A. V., Askerov, R. K., Allakhverdiev, M. A., Khrustalev, V. N. & Magerramov, A. M. (2009). J. Struct. Chem. 50, 505-509.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2O2S

  • Mr = 262.32

  • Monoclinic, P 21 /n

  • a = 8.2382 (5) Å

  • b = 19.1223 (12) Å

  • c = 9.2209 (6) Å

  • β = 114.623 (1)°

  • V = 1320.51 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.589, Tmax = 1.000

  • 8830 measured reflections

  • 2292 independent reflections

  • 1523 reflections with I > 2σ(I)

  • Rint = 0.119

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.211

  • S = 0.99

  • 2292 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.88 2.49 3.324 (3) 158
N2—H2⋯S1ii 0.88 2.43 3.259 (3) 158
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, C13H14N2O2S (Scheme I, Fig. 1), is a conformationally restricted dihydropyrimidine analogue of 1,4-dihydropyridine-type calcium antagonists; the crystal structures of similar compounds have been reported (Kurbanova et al., 2009; Kettmann & Svetlík, 1996; Kettmann & Svetlík, 1997). Tthe six-membered oxacyclohexene ring that is fused with the benzene ring has the quarternary C atom lying above the plane of the benzene ring and the methine C (which bears the acetyl substituent) lying below this plane. The oxacyclohexene ring is also fused with the sofa-shaped diazacyclcohexane ring; the methine C that belongs to both six-membered rings lies above the mean plane of the other five atoms. Hydrogen bonds of the type N–H···S link adjacent molecules to form a linear chain (Fig. 2).

Related literature top

For related structures, see: Kettmann & Svetlík (1996, 1997); Kurbanova et al. (2009).

Experimental top

In round-bottom flask that was fitted with a reflux condenser and a mechanical stirrer, salicylaldehyde (1.25 mol), acetylacetone (1.50 mol), thiocarbamide (1.25 mol), trichloroacetic acid (25 mg) and ethanol (10 ml) were reacted for 3 h. The solid that formed was collected and recrystallized from ethanol, m.p. 514–515 K; yield 80%.

Refinement top

Hydrogen atoms were placed in calculated positions [C–H 0.93 to 0.9 and N–H 0.88 7 Å; U(H) 1.2 to 1.5U(C,N)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the hydrogen-bonded dimeric structure of C13H14N2O2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded chain structure.
1-(9-Methyl-11-sulfanylidene-8-oxa-10,12-diazatricyclo[7.3.1.02,7]trideca- 2,4,6-trien-13-yl)ethan-1-one top
Crystal data top
C13H14N2O2SF(000) = 552
Mr = 262.32Dx = 1.319 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2832 reflections
a = 8.2382 (5) Åθ = 2.7–28.3°
b = 19.1223 (12) ŵ = 0.24 mm1
c = 9.2209 (6) ÅT = 296 K
β = 114.623 (1)°Irregular block, colorless
V = 1320.51 (14) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2292 independent reflections
Radiation source: fine-focus sealed tube1523 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.119
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.589, Tmax = 1.000k = 2221
8830 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1282P)2]
where P = (Fo2 + 2Fc2)/3
2292 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C13H14N2O2SV = 1320.51 (14) Å3
Mr = 262.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2382 (5) ŵ = 0.24 mm1
b = 19.1223 (12) ÅT = 296 K
c = 9.2209 (6) Å0.40 × 0.30 × 0.20 mm
β = 114.623 (1)°
Data collection top
Bruker APEXII
diffractometer
2292 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1523 reflections with I > 2σ(I)
Tmin = 0.589, Tmax = 1.000Rint = 0.119
8830 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.211H-atom parameters constrained
S = 0.99Δρmax = 0.65 e Å3
2292 reflectionsΔρmin = 0.41 e Å3
164 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.70755 (12)0.51631 (6)0.41553 (12)0.0471 (4)
O10.6767 (4)0.29345 (19)0.3421 (3)0.0690 (10)
O20.6966 (4)0.34703 (14)0.7965 (3)0.0491 (8)
N10.6447 (4)0.40871 (16)0.5610 (3)0.0381 (8)
H10.54160.42960.53710.046*
N20.9280 (4)0.41746 (16)0.5844 (3)0.0398 (8)
H21.00750.43620.55560.048*
C10.7642 (4)0.4431 (2)0.5272 (4)0.0358 (9)
C20.8091 (5)0.2822 (2)0.4611 (5)0.0489 (10)
C30.9636 (7)0.2461 (4)0.4534 (6)0.0855 (18)
H3A0.92260.21390.36550.128*
H3B1.02710.22100.55100.128*
H3C1.04170.27990.43880.128*
C40.4941 (5)0.3002 (2)0.5599 (5)0.0584 (12)
H4A0.40100.32640.57190.088*
H4B0.50780.25590.61260.088*
H4C0.46330.29270.44860.088*
C50.6667 (5)0.3403 (2)0.6330 (4)0.0406 (9)
C60.8282 (5)0.3056 (2)0.6238 (4)0.0383 (9)
H60.85970.26470.69400.046*
C70.9783 (5)0.35889 (19)0.6938 (4)0.0405 (9)
H71.09020.33860.70000.049*
C80.9989 (6)0.3797 (2)0.8581 (4)0.0472 (11)
C91.1601 (7)0.4052 (2)0.9698 (5)0.0716 (15)
H91.25770.41000.94450.086*
C101.1735 (10)0.4238 (3)1.1220 (6)0.094 (2)
H101.28050.44101.19850.113*
C111.0297 (11)0.4164 (3)1.1571 (6)0.096 (2)
H111.03960.42881.25800.115*
C120.8736 (8)0.3917 (2)1.0492 (5)0.0747 (16)
H120.77660.38691.07520.090*
C130.8582 (6)0.3734 (2)0.8995 (4)0.0500 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0296 (6)0.0510 (7)0.0610 (7)0.0056 (4)0.0192 (5)0.0222 (5)
O10.0578 (18)0.099 (3)0.0400 (16)0.0015 (17)0.0104 (14)0.0118 (16)
O20.0670 (18)0.0456 (18)0.0456 (15)0.0074 (14)0.0341 (13)0.0029 (12)
N10.0286 (15)0.0385 (19)0.0522 (18)0.0001 (13)0.0218 (13)0.0067 (14)
N20.0265 (16)0.0402 (19)0.0509 (18)0.0005 (13)0.0144 (13)0.0105 (14)
C10.0246 (18)0.045 (2)0.0375 (19)0.0003 (16)0.0130 (14)0.0014 (16)
C20.051 (2)0.053 (3)0.046 (2)0.010 (2)0.0228 (19)0.0091 (19)
C30.072 (3)0.122 (5)0.063 (3)0.025 (3)0.029 (2)0.022 (3)
C40.053 (3)0.055 (3)0.074 (3)0.018 (2)0.033 (2)0.010 (2)
C50.047 (2)0.037 (2)0.043 (2)0.0050 (17)0.0232 (17)0.0016 (16)
C60.043 (2)0.035 (2)0.0365 (18)0.0000 (16)0.0171 (15)0.0004 (16)
C70.036 (2)0.036 (2)0.044 (2)0.0025 (16)0.0102 (15)0.0059 (16)
C80.058 (3)0.029 (2)0.039 (2)0.0001 (18)0.0048 (18)0.0003 (16)
C90.076 (3)0.050 (3)0.055 (3)0.008 (2)0.007 (2)0.000 (2)
C100.115 (5)0.065 (4)0.050 (3)0.010 (4)0.016 (3)0.011 (3)
C110.156 (6)0.061 (4)0.047 (3)0.012 (4)0.019 (4)0.015 (3)
C120.127 (5)0.045 (3)0.054 (3)0.003 (3)0.038 (3)0.005 (2)
C130.075 (3)0.029 (2)0.042 (2)0.001 (2)0.020 (2)0.0014 (17)
Geometric parameters (Å, º) top
S1—C11.685 (4)C4—H4B0.9600
O1—C21.201 (5)C4—H4C0.9600
O2—C131.369 (5)C5—C61.520 (5)
O2—C51.429 (4)C6—C71.523 (5)
N1—C11.324 (5)C6—H60.9800
N1—C51.443 (5)C7—C81.505 (6)
N1—H10.8800C7—H70.9800
N2—C11.322 (4)C8—C131.369 (6)
N2—C71.447 (5)C8—C91.387 (6)
N2—H20.8800C9—C101.407 (9)
C2—C31.475 (6)C9—H90.9300
C2—C61.509 (5)C10—C111.359 (10)
C3—H3A0.9600C10—H100.9300
C3—H3B0.9600C11—C121.342 (8)
C3—H3C0.9600C11—H110.9300
C4—C51.506 (5)C12—C131.377 (6)
C4—H4A0.9600C12—H120.9300
C13—O2—C5117.1 (3)C2—C6—C5117.0 (3)
C1—N1—C5126.5 (3)C2—C6—C7110.5 (3)
C1—N1—H1116.8C5—C6—C7105.0 (3)
C5—N1—H1116.8C2—C6—H6108.0
C1—N2—C7120.9 (3)C5—C6—H6108.0
C1—N2—H2119.5C7—C6—H6108.0
C7—N2—H2119.5N2—C7—C8112.1 (3)
N2—C1—N1117.2 (3)N2—C7—C6106.0 (3)
N2—C1—S1121.9 (3)C8—C7—C6109.5 (3)
N1—C1—S1120.9 (2)N2—C7—H7109.7
O1—C2—C3120.9 (4)C8—C7—H7109.7
O1—C2—C6122.2 (4)C6—C7—H7109.7
C3—C2—C6116.9 (4)C13—C8—C9118.9 (4)
C2—C3—H3A109.5C13—C8—C7120.3 (3)
C2—C3—H3B109.5C9—C8—C7120.8 (5)
H3A—C3—H3B109.5C8—C9—C10118.9 (6)
C2—C3—H3C109.5C8—C9—H9120.6
H3A—C3—H3C109.5C10—C9—H9120.6
H3B—C3—H3C109.5C11—C10—C9119.9 (5)
C5—C4—H4A109.5C11—C10—H10120.1
C5—C4—H4B109.5C9—C10—H10120.1
H4A—C4—H4B109.5C12—C11—C10121.3 (6)
C5—C4—H4C109.5C12—C11—H11119.3
H4A—C4—H4C109.5C10—C11—H11119.3
H4B—C4—H4C109.5C11—C12—C13119.5 (6)
O2—C5—N1109.7 (3)C11—C12—H12120.2
O2—C5—C4103.5 (3)C13—C12—H12120.2
N1—C5—C4110.0 (3)C8—C13—O2122.0 (3)
O2—C5—C6109.2 (3)C8—C13—C12121.5 (4)
N1—C5—C6108.4 (3)O2—C13—C12116.5 (5)
C4—C5—C6116.0 (3)
C7—N2—C1—N16.7 (5)C2—C6—C7—N260.7 (4)
C7—N2—C1—S1173.4 (3)C5—C6—C7—N266.3 (4)
C5—N1—C1—N210.3 (5)C2—C6—C7—C8178.1 (3)
C5—N1—C1—S1169.6 (3)C5—C6—C7—C854.9 (4)
C13—O2—C5—N171.3 (4)N2—C7—C8—C1393.0 (4)
C13—O2—C5—C4171.3 (3)C6—C7—C8—C1324.3 (5)
C13—O2—C5—C647.3 (4)N2—C7—C8—C987.1 (4)
C1—N1—C5—O2104.1 (4)C6—C7—C8—C9155.5 (4)
C1—N1—C5—C4142.7 (4)C13—C8—C9—C100.1 (6)
C1—N1—C5—C615.0 (5)C7—C8—C9—C10179.8 (4)
O1—C2—C6—C53.9 (6)C8—C9—C10—C110.0 (8)
C3—C2—C6—C5177.7 (4)C9—C10—C11—C120.0 (10)
O1—C2—C6—C7116.2 (4)C10—C11—C12—C130.1 (9)
C3—C2—C6—C762.3 (5)C9—C8—C13—O2178.5 (4)
O2—C5—C6—C2169.3 (3)C7—C8—C13—O21.4 (6)
N1—C5—C6—C271.2 (4)C9—C8—C13—C120.2 (6)
C4—C5—C6—C253.0 (5)C7—C8—C13—C12179.7 (4)
O2—C5—C6—C767.8 (3)C5—O2—C13—C813.2 (5)
N1—C5—C6—C751.7 (4)C5—O2—C13—C12168.4 (4)
C4—C5—C6—C7175.9 (3)C11—C12—C13—C80.2 (7)
C1—N2—C7—C873.8 (4)C11—C12—C13—O2178.6 (4)
C1—N2—C7—C645.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.882.493.324 (3)158
N2—H2···S1ii0.882.433.259 (3)158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H14N2O2S
Mr262.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.2382 (5), 19.1223 (12), 9.2209 (6)
β (°) 114.623 (1)
V3)1320.51 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.589, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8830, 2292, 1523
Rint0.119
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.211, 0.99
No. of reflections2292
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.41

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.882.493.324 (3)158
N2—H2···S1ii0.882.433.259 (3)158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

We thank Baku State University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKettmann, V. & Svetlík, J. (1996). Acta Cryst. C52, 1496–1499.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKettmann, V. & Svetlík, J. (1997). Acta Cryst. C53, 1493–1495.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKurbanova, M. M., Kurbanov, A. V., Askerov, R. K., Allakhverdiev, M. A., Khrustalev, V. N. & Magerramov, A. M. (2009). J. Struct. Chem. 50, 505–509.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1156
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds