organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1258-o1259

2-(Naphthalen-1-yl)-4-(naphthalen-1-yl­methyl­­idene)-1,3-oxazol-5(4H)-one

aDokuz Eylül University, Faculty of Arts and Sciences, Department of Chemistry, Tınaztepe, 35160 Buca, Izmir, Turkey, bKarabük University, Department of Physics, 78050, Karabük, Turkey, and cHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 21 April 2011; accepted 22 April 2011; online 29 April 2011)

In the title compound, C24H15NO2, the oxazole ring is oriented at dihedral angles of 10.09 (4) and 6.04 (4)° with respect to the mean planes of the naphthalene ring systems, while the two naphthalene ring systems make a dihedral angle of 4.32 (3)°. Intra­molecular C—H⋯N hydrogen bonds link the oxazole N atom to the naphthalene ring systems. In the crystal, inter­molecular weak C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers. ππ contacts between the oxazole and naphthalene rings and between the naphthalene ring systems [centroid–centroid distances = 3.5947 (9) and 3.7981 (9) Å] may further stabilize the crystal structure. Three weak C—H⋯π inter­actions also occur.

Related literature

For the roles of oxazolones in the syntheses of amino acids, peptides, anti­microbial or anti­tumor compounds, immunomodulators, heterocyclic precursors for biosensors coupling and/or photosensitive composition devices for proteins, see: Gottwald & Seebach (1999[Gottwald, K. & Seebach, D. (1999). Tetrahedron, 55, 723-738.]); Meiwes et al. (1997[Meiwes, J., Schudock, M. & Kretzschmar, G. (1997). Tetrahedron Asymmetry, 8, 527-536.]); Martinez et al. (1964[Martinez, A. P., Lee, W. W. & Goodman, L. (1964). Tetrahedron, 20, 2763-2771.]); Gelmi et al. (1997[Gelmi, M. L., Clerici, F. & Melis, A. (1997). Tetrahedron, 53, 1843-1854.]); Croce et al. (1994[Croce, P. D., Ferraccioli, R. & Rosa, C. L. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 2499-2502.]); Cannella et al. (1996[Cannella, R., Clerici, F., Gelmi, M. L., Penso, M. & Pocar, D. (1996). J. Org. Chem. 61, 1854-1856.]); Kojima et al. (1998[Kojima, S., Ohkawa, H., Hirano, T., Maki, S., Niwa, H., Ohashi, M., Inouye, S. & Tsuji, F. I. (1998). Tetrahedron Lett. 39, 5239-5242.]). For applications of the 5-oxazolones, including their use in semiconductor devices because of their promising photophysical and photochemical activity, see: Gündoğdu et al. (2010[Gündoğdu, C., Topkaya, D., Öztürk, G., Alp, S. & Ergün, Y. (2010). J. Heterocycl. Chem. 47, 1450-1453.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H15NO2

  • Mr = 349.37

  • Monoclinic, P 21 /c

  • a = 18.6927 (5) Å

  • b = 6.0646 (2) Å

  • c = 15.6262 (5) Å

  • β = 107.212 (2)°

  • V = 1692.11 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.42 × 0.35 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.986

  • 29257 measured reflections

  • 4260 independent reflections

  • 2911 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.136

  • S = 1.07

  • 4260 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg4 are the centroids of the C1—C3/C8—C10, C3—C8 and C15—C19/C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1 0.95 2.34 3.0110 (19) 127
C10—H10⋯O2i 0.95 2.46 3.324 (2) 152
C11—H11⋯O2i 0.95 2.47 3.3601 (18) 155
C23—H23⋯N1 0.95 2.25 2.908 (2) 126
C9—H9⋯Cg4ii 0.95 2.87 3.543 (2) 129
C18—H18⋯Cg1iii 0.95 2.61 3.381 (2) 139
C20—H20⋯Cg2iii 0.95 2.75 3.450 (2) 131
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Oxazolones that are internal anhydrides of acyl amino acids are important class of five-membered heterocycles. They are highly versatile intermediates used for the syntheses of several organic molecules, including amino acids, peptides (Gottwald & Seebach, 1999; Meiwes et al., 1997), antimicrobial or antitumor compounds (Martinez et al., 1964; Gelmi et al., 1997), immunomodulators, heterocyclic precursors for biosensors coupling (Croce et al., 1994; Cannella et al., 1996) and/or photosensitive composition devices for proteins (Kojima et al., 1998). They can be easily prepared from N-acyl amino acids by dehydration. 5-Oxazolones have also a wide range of applications including their use in semiconductor devices because of their promising photophysical and photochemical activities (Gündoğdu et al., 2010). The present study was undertaken to ascertain the crystal structure of the title compound.

The title compound consists of an oxazol ring and two naphthalene groups (Fig. 1), where the bond lengths are close to standard values (Allen et al., 1987). The intramolecular C-H···N hydrogen bonds link the oxazol nitrogen atoms to the naphthalene groups (Table 1 and Fig. 1).

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C1—C3/C8—C10), B (C3—C8), C (O1/N1/C12—C14), D (C15—C19/C24) and E (C19—C24) are planar. The naphthalene groups, containing the rings A, B and D, E are also nearly planar [with maximum deviations of 0.022 (2) Å for atom C6 and -0.061 (2) Å for atom C17] with dihedral angles of A/B = 1.62 (3) and D/E = 3.58 (4) °. Ring C is oriented with respect to the planar naphthalene groups at dihedral angles of 10.09 (4) and 6.04 (4) °, respectively, while the two naphthalene groups are oriented at a dihedral angle of 4.32 (3)°.

In the crystal, intermolecular weak C—H···O hydrogen bonds link the molecules into centrosymmetric dimers (Table 1 and Fig. 2). The ππ contacts between the oxazol and naphthalene rings and between the naphthalene groups Cg3—Cg4i and Cg1—Cg5i [symmetry code: (i) x, y - 1, z, where Cg1, Cg3, Cg4 and Cg5 are centroids of the rings A (C1—C3/C8—C10), C (O1/N1/C12—C14), D (C15—C19/C24) and E (C19—C24), respectively, may further stabilize the structure, with centroid-centroid distances of 3.5947 (9) and 3.7981 (9) Å, respectively. There also exist three weak C-H···π interactions (Table 1).

Related literature top

For the roles of oxazolones in the syntheses of amino acids, peptides, antimicrobial or antitumor compounds, immunomodulators, heterocyclic precursors for biosensors coupling and/or photosensitive composition devices for proteins, see: Gottwald & Seebach (1999); Meiwes et al. (1997); Martinez et al. (1964); Gelmi et al. (1997); Croce et al. (1994); Cannella et al. (1996); Kojima et al. (1998). For applications of the 5-oxazolones, including their use in semiconductor devices because of their promising photophysical and photochemical activity, see: Gündoğdu et al. (2010). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, (I), α-naphtaldehyde (0.74 g, 5 mmol), naphthalen-1-yl glycine (1.14 g, 5 mmol), acetic anhydride (2.49 ml, 12 mmol) and sodium acetate (0.41 g, 5 mmol) were heated until the mixture just liquefied, and then heating was continued for a further 2 h at 353 K. After completion of the reaction, ethanol (25 ml) was added and the mixture was kept at room temperature for 18 h. The solid product obtained was purified by washing with cold ethanol, hot water and a small amount of hexane, respectively. It was crystallized from hot ethanol (yield; 0.22 g, 30%, m.p. 453 K).

Refinement top

H-atoms were positioned geometrically with C—H = 0.95 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intra-molecular C-H···N bonds are shown as dashed lines.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound. The C-H···O hydrogen bonds are shown as dashed lines.
2-(Naphthalen-1-yl)-4-(naphthalen-1-ylmethylidene)-1,3-oxazol-5(4H)-one top
Crystal data top
C24H15NO2F(000) = 728
Mr = 349.37Dx = 1.371 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3844 reflections
a = 18.6927 (5) Åθ = 2.3–25.8°
b = 6.0646 (2) ŵ = 0.09 mm1
c = 15.6262 (5) ÅT = 100 K
β = 107.212 (2)°Block, yellow
V = 1692.11 (9) Å30.42 × 0.35 × 0.16 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4260 independent reflections
Radiation source: fine-focus sealed tube2911 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 28.5°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2525
Tmin = 0.964, Tmax = 0.986k = 88
29257 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0712P)2 + 0.094P]
where P = (Fo2 + 2Fc2)/3
4260 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C24H15NO2V = 1692.11 (9) Å3
Mr = 349.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.6927 (5) ŵ = 0.09 mm1
b = 6.0646 (2) ÅT = 100 K
c = 15.6262 (5) Å0.42 × 0.35 × 0.16 mm
β = 107.212 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4260 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2911 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.986Rint = 0.061
29257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.07Δρmax = 0.26 e Å3
4260 reflectionsΔρmin = 0.25 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44739 (6)0.05303 (17)1.11266 (7)0.0226 (3)
O20.51969 (6)0.2213 (2)1.08529 (8)0.0339 (3)
N10.33689 (7)0.0161 (2)1.00801 (8)0.0182 (3)
C10.30409 (8)0.4225 (2)0.88040 (10)0.0183 (3)
C20.24089 (8)0.2914 (2)0.85707 (10)0.0183 (3)
H20.24210.15210.88520.022*
C30.17453 (8)0.3596 (2)0.79239 (10)0.0185 (3)
C40.11021 (9)0.2236 (3)0.76755 (11)0.0231 (4)
H40.11090.08480.79600.028*
C50.04717 (9)0.2900 (3)0.70303 (11)0.0263 (4)
H50.00440.19690.68660.032*
C60.04523 (9)0.4962 (3)0.66073 (11)0.0265 (4)
H60.00120.54070.61560.032*
C70.10607 (9)0.6326 (3)0.68407 (10)0.0230 (4)
H70.10380.77160.65540.028*
C80.17232 (8)0.5692 (2)0.75047 (10)0.0188 (3)
C90.23747 (9)0.7022 (2)0.77577 (10)0.0208 (3)
H90.23680.84310.74900.025*
C100.30132 (9)0.6317 (2)0.83806 (10)0.0200 (3)
H100.34440.72340.85330.024*
C110.37403 (8)0.3572 (2)0.94585 (10)0.0197 (3)
H110.41560.45160.95080.024*
C120.38719 (8)0.1798 (2)1.00029 (10)0.0191 (3)
C130.45933 (9)0.1340 (3)1.06678 (11)0.0227 (4)
C140.37283 (8)0.1109 (2)1.07250 (10)0.0175 (3)
C150.34675 (8)0.3067 (2)1.10825 (10)0.0179 (3)
C160.39709 (9)0.4187 (3)1.17708 (10)0.0217 (3)
H160.44600.36051.20220.026*
C170.37753 (9)0.6171 (3)1.21081 (10)0.0229 (4)
H170.41260.68981.25920.027*
C180.30808 (9)0.7050 (2)1.17389 (10)0.0212 (3)
H180.29610.84341.19470.025*
C190.25329 (9)0.5932 (2)1.10494 (10)0.0192 (3)
C200.18039 (9)0.6812 (3)1.07013 (10)0.0227 (4)
H200.16900.82021.09090.027*
C210.12628 (9)0.5699 (3)1.00735 (11)0.0254 (4)
H210.07750.63080.98460.031*
C220.14316 (9)0.3641 (3)0.97648 (11)0.0238 (4)
H220.10520.28540.93340.029*
C230.21331 (8)0.2757 (3)1.00745 (10)0.0202 (3)
H230.22340.13710.98520.024*
C240.27132 (8)0.3873 (2)1.07232 (10)0.0172 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0174 (5)0.0225 (6)0.0250 (6)0.0026 (4)0.0017 (5)0.0044 (5)
O20.0192 (6)0.0353 (7)0.0414 (8)0.0083 (5)0.0002 (5)0.0108 (6)
N10.0193 (7)0.0164 (6)0.0190 (6)0.0017 (5)0.0059 (5)0.0001 (5)
C10.0221 (8)0.0179 (7)0.0165 (7)0.0010 (6)0.0081 (6)0.0024 (6)
C20.0216 (8)0.0164 (7)0.0176 (8)0.0013 (6)0.0070 (6)0.0008 (6)
C30.0188 (8)0.0200 (8)0.0172 (8)0.0012 (6)0.0060 (6)0.0004 (6)
C40.0209 (8)0.0236 (8)0.0245 (8)0.0014 (6)0.0064 (7)0.0029 (7)
C50.0193 (8)0.0328 (9)0.0255 (9)0.0023 (7)0.0048 (7)0.0016 (7)
C60.0219 (8)0.0315 (9)0.0252 (9)0.0069 (7)0.0054 (7)0.0023 (7)
C70.0260 (9)0.0223 (8)0.0220 (8)0.0052 (6)0.0091 (7)0.0021 (6)
C80.0223 (8)0.0197 (7)0.0157 (7)0.0018 (6)0.0074 (6)0.0013 (6)
C90.0305 (9)0.0147 (7)0.0195 (8)0.0001 (6)0.0110 (7)0.0008 (6)
C100.0227 (8)0.0190 (8)0.0195 (8)0.0035 (6)0.0079 (6)0.0023 (6)
C110.0195 (8)0.0196 (7)0.0206 (8)0.0041 (6)0.0072 (6)0.0019 (6)
C120.0168 (7)0.0205 (8)0.0199 (8)0.0030 (6)0.0053 (6)0.0025 (6)
C130.0212 (8)0.0211 (8)0.0248 (8)0.0012 (6)0.0052 (7)0.0028 (7)
C140.0147 (7)0.0197 (7)0.0179 (8)0.0009 (6)0.0042 (6)0.0028 (6)
C150.0199 (8)0.0186 (7)0.0159 (7)0.0002 (6)0.0064 (6)0.0001 (6)
C160.0198 (8)0.0238 (8)0.0207 (8)0.0004 (6)0.0047 (6)0.0001 (6)
C170.0266 (9)0.0230 (8)0.0185 (8)0.0041 (7)0.0058 (7)0.0043 (6)
C180.0296 (9)0.0172 (7)0.0192 (8)0.0008 (6)0.0110 (7)0.0017 (6)
C190.0242 (8)0.0186 (7)0.0169 (8)0.0003 (6)0.0095 (6)0.0031 (6)
C200.0279 (9)0.0201 (8)0.0232 (8)0.0072 (6)0.0123 (7)0.0029 (6)
C210.0224 (8)0.0286 (9)0.0255 (9)0.0075 (7)0.0073 (7)0.0023 (7)
C220.0193 (8)0.0283 (9)0.0222 (8)0.0002 (6)0.0039 (7)0.0015 (7)
C230.0200 (8)0.0202 (8)0.0204 (8)0.0018 (6)0.0061 (6)0.0010 (6)
C240.0202 (8)0.0181 (7)0.0146 (7)0.0009 (6)0.0072 (6)0.0019 (6)
Geometric parameters (Å, º) top
O1—C131.3949 (18)C11—C11.456 (2)
O1—C141.3935 (17)C11—H110.9500
O2—C131.2015 (18)C12—C111.348 (2)
N1—C121.3971 (18)C12—C131.465 (2)
N1—C141.2880 (18)C15—C141.456 (2)
C1—C21.380 (2)C15—C161.380 (2)
C1—C101.424 (2)C16—H160.9500
C2—C31.411 (2)C17—C161.404 (2)
C2—H20.9500C17—H170.9500
C3—C41.414 (2)C18—C171.364 (2)
C3—C81.425 (2)C18—H180.9500
C4—C51.365 (2)C19—C181.420 (2)
C4—H40.9500C20—C191.414 (2)
C5—C61.410 (2)C20—H200.9500
C5—H50.9500C21—C201.361 (2)
C6—C71.366 (2)C21—C221.407 (2)
C6—H60.9500C21—H210.9500
C7—H70.9500C22—C231.366 (2)
C8—C71.413 (2)C22—H220.9500
C9—C81.416 (2)C23—C241.418 (2)
C9—H90.9500C23—H230.9500
C10—C91.367 (2)C24—C151.440 (2)
C10—H100.9500C24—C191.426 (2)
C14—O1—C13105.32 (11)C11—C12—C13123.81 (14)
C14—N1—C12106.50 (13)O1—C13—C12105.36 (12)
C2—C1—C10118.66 (14)O2—C13—O1121.07 (14)
C2—C1—C11123.31 (14)O2—C13—C12133.56 (15)
C10—C1—C11118.03 (13)O1—C14—C15115.87 (12)
C1—C2—C3121.52 (14)N1—C14—O1114.99 (13)
C1—C2—H2119.2N1—C14—C15129.14 (14)
C3—C2—H2119.2C16—C15—C14118.16 (14)
C2—C3—C4121.43 (14)C16—C15—C24119.98 (14)
C2—C3—C8119.38 (14)C24—C15—C14121.84 (13)
C4—C3—C8119.18 (14)C15—C16—C17121.39 (14)
C3—C4—H4119.7C15—C16—H16119.3
C5—C4—C3120.55 (15)C17—C16—H16119.3
C5—C4—H4119.7C16—C17—H17120.1
C4—C5—C6120.32 (15)C18—C17—C16119.81 (14)
C4—C5—H5119.8C18—C17—H17120.1
C6—C5—H5119.8C17—C18—C19121.13 (14)
C5—C6—H6119.7C17—C18—H18119.4
C7—C6—C5120.53 (15)C19—C18—H18119.4
C7—C6—H6119.7C18—C19—C24119.71 (14)
C6—C7—C8120.72 (15)C20—C19—C18120.54 (14)
C6—C7—H7119.6C20—C19—C24119.73 (14)
C8—C7—H7119.6C19—C20—H20119.5
C7—C8—C3118.68 (14)C21—C20—C19121.06 (15)
C7—C8—C9122.97 (14)C21—C20—H20119.5
C9—C8—C3118.32 (13)C20—C21—C22119.51 (15)
C8—C9—H9119.4C20—C21—H21120.2
C10—C9—C8121.21 (14)C22—C21—H21120.2
C10—C9—H9119.4C21—C22—H22119.5
C1—C10—H10119.5C23—C22—C21121.06 (15)
C9—C10—C1120.91 (14)C23—C22—H22119.5
C9—C10—H10119.5C22—C23—C24121.11 (14)
C1—C11—H11115.9C22—C23—H23119.4
C12—C11—C1128.18 (14)C24—C23—H23119.4
C12—C11—H11115.9C19—C24—C15117.75 (13)
N1—C12—C13107.81 (13)C23—C24—C15124.75 (14)
C11—C12—N1128.32 (14)C23—C24—C19117.50 (14)
C14—O1—C13—O2178.58 (15)C13—C12—C11—C1177.33 (14)
C14—O1—C13—C121.12 (15)N1—C12—C13—O11.62 (16)
C13—O1—C14—N10.25 (17)N1—C12—C13—O2178.04 (18)
C13—O1—C14—C15179.03 (12)C11—C12—C13—O1175.62 (14)
C14—N1—C12—C11175.61 (16)C11—C12—C13—O24.7 (3)
C14—N1—C12—C131.47 (16)C16—C15—C14—O10.7 (2)
C12—N1—C14—O10.79 (17)C16—C15—C14—N1178.50 (15)
C12—N1—C14—C15179.96 (15)C24—C15—C14—O1179.11 (12)
C10—C1—C2—C30.4 (2)C24—C15—C14—N10.1 (2)
C11—C1—C2—C3179.11 (13)C14—C15—C16—C17175.58 (14)
C2—C1—C10—C90.2 (2)C24—C15—C16—C172.9 (2)
C11—C1—C10—C9179.72 (14)C18—C17—C16—C151.6 (2)
C1—C2—C3—C4178.99 (14)C19—C18—C17—C163.6 (2)
C1—C2—C3—C80.4 (2)C20—C19—C18—C17177.05 (14)
C2—C3—C4—C5178.21 (14)C24—C19—C18—C171.2 (2)
C8—C3—C4—C51.2 (2)C21—C20—C19—C18176.55 (14)
C2—C3—C8—C7178.33 (14)C21—C20—C19—C241.7 (2)
C2—C3—C8—C90.1 (2)C22—C21—C20—C190.1 (2)
C4—C3—C8—C71.1 (2)C20—C21—C22—C231.0 (2)
C4—C3—C8—C9179.54 (13)C21—C22—C23—C240.5 (2)
C3—C4—C5—C60.5 (2)C22—C23—C24—C15179.71 (13)
C4—C5—C6—C70.4 (2)C22—C23—C24—C191.0 (2)
C3—C8—C7—C60.2 (2)C19—C24—C15—C14173.26 (13)
C5—C6—C7—C80.5 (2)C19—C24—C15—C165.2 (2)
C9—C8—C7—C6178.61 (14)C23—C24—C15—C147.5 (2)
C10—C9—C8—C30.7 (2)C23—C24—C15—C16174.11 (14)
C10—C9—C8—C7177.68 (14)C15—C24—C19—C183.2 (2)
C1—C10—C9—C80.7 (2)C15—C24—C19—C20178.59 (13)
C12—C11—C1—C28.0 (3)C23—C24—C19—C18176.15 (13)
C12—C11—C1—C10172.50 (15)C23—C24—C19—C202.1 (2)
N1—C12—C11—C10.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the rings A (C1—C3/C8—C10), B (C3—C8) and D (C15—C19/C24), respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···N10.952.343.0110 (19)127
C10—H10···O2i0.952.463.324 (2)152
C11—H11···O2i0.952.473.3601 (18)155
C23—H23···N10.952.252.908 (2)126
C9—H9···Cg4ii0.952.873.543 (2)129
C18—H18···Cg1iii0.952.613.381 (2)139
C20—H20···Cg2iii0.952.753.450 (2)131
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y1/2, z3/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC24H15NO2
Mr349.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)18.6927 (5), 6.0646 (2), 15.6262 (5)
β (°) 107.212 (2)
V3)1692.11 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.35 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.964, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
29257, 4260, 2911
Rint0.061
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.136, 1.07
No. of reflections4260
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the rings A (C1—C3/C8—C10), B (C3—C8) and D (C15—C19/C24), respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···N10.952.343.0110 (19)127
C10—H10···O2i0.952.463.324 (2)152
C11—H11···O2i0.952.473.3601 (18)155
C23—H23···N10.952.252.908 (2)126
C9—H9···Cg4ii0.952.873.543 (2)129
C18—H18···Cg1iii0.952.613.381 (2)139
C20—H20···Cg2iii0.952.753.450 (2)131
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y1/2, z3/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCannella, R., Clerici, F., Gelmi, M. L., Penso, M. & Pocar, D. (1996). J. Org. Chem. 61, 1854–1856.  CrossRef PubMed CAS Google Scholar
First citationCroce, P. D., Ferraccioli, R. & Rosa, C. L. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 2499–2502.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGelmi, M. L., Clerici, F. & Melis, A. (1997). Tetrahedron, 53, 1843–1854.  CrossRef CAS Web of Science Google Scholar
First citationGottwald, K. & Seebach, D. (1999). Tetrahedron, 55, 723–738.  Web of Science CSD CrossRef CAS Google Scholar
First citationGündoğdu, C., Topkaya, D., Öztürk, G., Alp, S. & Ergün, Y. (2010). J. Heterocycl. Chem. 47, 1450–1453.  Google Scholar
First citationKojima, S., Ohkawa, H., Hirano, T., Maki, S., Niwa, H., Ohashi, M., Inouye, S. & Tsuji, F. I. (1998). Tetrahedron Lett. 39, 5239–5242.  CrossRef CAS Google Scholar
First citationMartinez, A. P., Lee, W. W. & Goodman, L. (1964). Tetrahedron, 20, 2763–2771.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMeiwes, J., Schudock, M. & Kretzschmar, G. (1997). Tetrahedron Asymmetry, 8, 527–536.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1258-o1259
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds